
 

 

 
Abstract 

 
Dimensionality reduction and clustering on statistical 

manifolds is presented. Statistical manifold [16] is a 2D 
Riemannian manifold which is statistically defined by 
maps that transform a parameter domain onto a set of 
probability density functions. Principal component 
analysis (PCA) based dimensionality reduction is 
performed on the manifold, and therefore, estimation of a 
mean and a variance of the set of probability distributions 
are needed. First, the probability distributions are 
transformed by an isometric transform that maps the 
distributions onto a surface of hyper-sphere. The sphere 
constructs a Riemannian manifold with a simple geodesic 
distance measure. Then, a Fréchet mean is estimated on 
the Riemannian manifold to perform the PCA on a tangent 
plane to the mean. Experimental results show that 
clustering on the Riemannian space produce more 
accurate and stable classification than the one on 
Euclidean space. 
 

1. Introduction 
Texture segmentation is of fundamental importance in 

image analysis and pattern recognition tasks and have 
been studied extensively [1,2,3,4]. Example approaches 
include transform methods [5,6], stochastic techniques 
[7,8], and combined techniques [9]. Also, curve evolution 
techniques are gaining in popularity [10,11,12,13]. Most 
of the reported methods deal with image models that have 
two or more regions and associated probability density 
functions. In [11,14], statistics of image regions are 
modeled with parametric methods, while Kim et al. [13] 
use Parzen’s density estimates as region descriptors and 
then utilize an information theoretic approach to image 
segmentation. A mixture of parametric and nonparametric 
methods has been proposed in [4], where different 
techniques are applied to different feature spaces. 

Meanwhile, Sochen et al. [15] introduced a geometric 
framework by which images and image feature spaces are 
considered as 2-dimensional manifolds. Later, a statistical 

manifold framework has been studied for texture image 
segmentation [16], which is substantially different from 
the work of [15] that constructs non-statistical manifolds. 
However, there was a drawback in the statistical manifold 
framework, which introduces boundary offsets in some 
situations when creating a metric tensor map, 
consequently decreasing efficiency in boundary detection 
applications. The drawback has been overcome [17] by 
using a diffusion scheme on statistical manifolds and a 
substantial improvement has made over the initial work. 
The result is a more robust framework for localizing 
texture boundaries. As a related work, a vector probability 
diffusion scheme has been introduced by [18], where the 
probabilities are treated as a vector field and then a 
minimization problem is solved on the field. 

In this paper, we introduce a principal component 
analysis (PCA) based dimensionality reduction and texture 
clustering scheme applied to the statistical manifold 
framework. Statistical manifold is defined as an 
embedding map that assigns each image coordinate with a 
set of probability density functions (PDFs) of features. A 
multinomial distribution representation is used for the 
statistical manifold to accommodate multimodal 
distributions in discrete spaces. Being PDFs whose 
discrete sum are unity, multinomial distributions are 
confined on a hyper-plane of n-simplex, which is nice 
because it is possible to employ linear methods for 
dimensionality reduction. Therefore, we first use an 
ordinary PCA method to reduce dimensionality of the 
multinomial distribution. It is not required for the reduced 
ones to have unity of summation, and thus their linearity is 
not guaranteed. On the other hand, an isometric 
transformation maps the multinomial distributions into 
points on a sphere, and a distance between two points on 
the sphere are measured by the arc length of a great circle 
connecting the points [19]. Applying a linear method to 
this manifold is not straightforward since a mean point 
and its tangent plane must be estimated on the spherical 
manifold, which leads to the use of special projections and 
to the estimation of Fréchet mean [20]. 

In the next section, we review the definition of 
statistical manifolds and the diffusion scheme on statistical 
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manifolds. Then, the dimensionality reduction on 
statistical manifolds and a clustering method are discussed 
in section 3. Section 4 presents some segmentation results, 
and then section 5 concludes the paper. 

 

2. Statistical Manifolds 
A Riemannian manifold Mp is an abstract surface of 

arbitrary dimension p with a proper choice of metric. 
Then, an image I(x) parameterized in R2, that is, 
x=(x,y)∈R2, is viewed as a 2-dimensional Riemannian 
manifold, M2, embedded in Rn with a embedding map (x, 
I(x)), where n=3 for intensity images and 5 for color 
images. Similarly, m-dimensional feature spaces of an 
image can be considered as M2 embedded in Rm+2 [15].  

2.1. Statistical embedding 
Statistically defined manifold has been introduced in 

[16], where each feature at a local coordinate x∈R2 is 
represented by a set of PDFs rather than by deterministic 
values. Parametric estimation methods can be used for the 
feature statistics, but in most cases they are not suitable to 
model multimodal distributions. A Gaussian mixture 
model could be used for multimodal cases, but it bears 
high computational complexity. Thus, here only 
nonparametric methods, such as simple normalized 
histogram or Gaussian kernel based estimation are 
considered. 

Accordingly, for an M-dimensional feature space, the 
embedding map becomes (x, f(θ1;x), …, f(θM;x)) called a 
statistical embedding. Means and variances of each feature 
can be used directly as features, constructing ordinary 
non-statistical image or feature manifolds. This directly 
leads to the work of [15], namely non-statistical 
embedding and non-statistical manifold. Figure 1 
illustrates the difference between non-statistical and 
statistical manifolds. Statistical manifolds associate each 
parameter location xp with a set of PDFs of features while 
non-statistical manifolds map the parametric space onto a 
set of scalar values of features. 

An example of the statistical embedding is depicted in 
Figure 2. The PDFs in the first column are estimated from 
a point inside the body of the cheetah and the set on the 
second column from outside the body. It is clear that the 
PDFs for gray value, for instance, for both points are 
different: bi-modal and mono-modal.  

2.2. Manifold of multinomial distributions 
In the statistical embedding described above, PDF for a 

feature θ can be modeled with a multinomial distribution 
specified by a parameterization z: 

 
       (a) Non-statistical                           (b) Statistical 
Figure 1. Unlike non-statistical manifolds which map the 
parametric space onto a set of scalar values of features, statistical 
manifolds associate each parameter location xp with a set of 
PDFs of features. 
 

 
Figure 2. Statistical embedding. The PDFs are estimated from 
inside (first column) and outside (second) of the body. 
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Then, a statistical manifold S={p(θ, z)} can be identified 
as a n-simplex in Rn+1 whose coordinate system is (z1, …, 
zn+1).  That is, the multinomial distributions are laid on the 
surface of the simplex (Figure 3a). 

Meanwhile, Fisher’s information matrix defined as 

( ) [ ] log ( , ) log ( , )ij z i z j z i jg z E f z f z dθ θ θ
Θ

= ∂ ∂ = ∂ ∂∫ ,       (2) 

provides a geometry under a statistical manifold, where 
∂i= ∂/∂zi and Θ is a parameter space [21]. Alternatively, 
the matrix can be represented as  

( ) 4 ( , ) ( , )ij i jg z f z f z dθ θ θ
Θ

= ∂ ∂∫ .                (3) 

Then an isometric transformation of p(θ, z), 

2 , 1,..., 1i iz i nξ = = + ,                             (4)  

maps the n-simplex onto a surface of n+1-dimensional 
sphere, Sn, of radius 2. This leads to the fact that the 
Fisher information corresponds to the inner product of 
tangent vectors to the sphere. Then, the information 
distance of two distributions p and p′ is defined as 

11
1( , ) 2cos ( )n

i iid p p z z+−
=′ ′= ∑                      (5) 

which is the arc length of a great circle connecting the 
distributions (Figure 3b). Here, the length is a geodesic 
distance. The geodesic distance of (5) is used for a 
diffusion process on statistical manifolds. 
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Figure 3. Multinomial distributions as points on an n-simplex (a) 
and a sphere (b). 
 

2.3. Diffusion on statistical manifold 
A classical anisotropic diffusion process proposed by 

Perona and Malik [22] can be used on the statistical 
manifolds. Explicitly, the diffusion equation on statistical 
manifold M2 can be defined as 

ft = div(c(d(f,f’))∇f) = c(d(f,f’))∆f + ∇c⋅∇f,            (6) 

where div is the divergence operator, and ∇ and ∆ 
respectively represent the gradient and Laplacian 
operators. We denote the diffused manifold as 2M . 
Diffusion on non-statistical manifolds use an edge 
estimate ||∇θ|| as an argument of a monotonically 
decreasing function c(⋅) to achieve a conduction 
coefficient. However, on statistical manifold, the geodesic 
distance is used for the conduction coefficient since edges 
on a statistical manifold can be identified by the geodesic 
distance. Then, following the discretization scheme in [22] 
and with the choice of  

2 2( ( , )) exp( ( , ) / )c d p p d p p K′ ′= − ,                   (7) 

the diffusion process on a statistical manifold becomes 
straightforward and produces promising results for further 
processing. 

Figure 4 shows a significant difference between 
statistical and non-statistical manifolds using a synthetic 
image (2a) generated from two known PDFs (2b) of the 
same mean and variance of intensity. To identify the 
texture boundary, a metric tensor map, defined as a 
determinant of metric tensor, is calculated. The metric 
tensor for statistical manifold is based on PDF 
dissimilarity measures such as Kullback-Leibler (K-L) 
divergence and will be defined later in section 2.4. Tensor 
maps based on non-statistical manifolds, which take only 
parametric information of a PDF into account, failed to 
locate the desired texture boundary (2c, 2d), unless prior 
knowledge of the PDFs are provided. In contrast, the one 
on statistical manifolds results in a successful localization 
of the texture boundary (2e). One drawback of using PDF 
dissimilarity measures is that they induce offsets from true 
boundaries (the yellow mark), or sometimes produce thick 

lines when the shape of PDFs gradually change over a 
boundary. The offset and the thickness of detected 
boundary depends on window size used to estimate PDFs. 
Also, the use of K-L divergence normally results in two 
thin lines for texture boundaries, which is equally 
undesirable. This will be shown in a later section. Figure 
2f shows the result of a diffusion process on a statistical 
manifold. Compare the locations of the mark and the 
detected boundary. The diffusion corrects offsets falsely 
induced in the previous boundary detection. 

 

 
Figure 4. Statistical manifolds can be used to separate regions 
that have the same mean and variance but look different. The test 
image (a) was generated from two different PDFs, f1 and f2 in 
(b). A technique based on non-statistical manifolds failed to 
accurately locate the boundary of the two regions (c,d), but 
statistical manifold framework successfully identifies the texture 
boundary (e). In addition, diffusion on the statistical manifold 
produces a better result (f). 
 
 

2.4. Metric tensor 
A metric tensor matrix contains information related to 

the geometric structure of a manifold and is used to 
measure distances on manifolds. The determinant of the 
metric tensor matrix is a good indicator used for edge 
detection in various image processing applications. 

The calculation of metric tensor matrix requires partial 
derivatives with respect to the parametric domain. Lee et 
al. [16] used K-L divergence as an approximation of the 
partial derivatives of PDF f(x) at location x=(x, y). That is,  

( )
( )

1
2

( )

( ), ( )
( ( ), ( )) ( ( ), ( ))

f KL f

KL f f
f f f f

δ
δ δ

∂
≅

∂
= +
= + + +⎡ ⎤⎣ ⎦kl kl

x
x
x

x x x
x x x x x x

      (8) 

where  
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Then, the metric tensor matrix for a statistical manifold is 
defined as 

1
( ) 1

x x x y

x y y y

KL KL KL KL
KL KL KL KLτ
+⎛ ⎞

=⎜ ⎟+⎝ ⎠
x ,                (10) 

and its determinant measures statistical dissimilarity of 
nearby features on manifolds. The determinant of τ(x) is 
much larger than unity when the manifold has a high 
statistical gradient, while the value is close to unity at 
locations where the manifold is statistically stationary. 

3. Clustering on statistical manifolds 
Clustering a set of multinomial distributions may be 

carried out straightforward by applying a simple k-means 
algorithm with an appropriate distance measure. Also, 
kernel based methods could be used to implicitly handle 
the distance measure. However, due to the curse of high 
dimension and its instability induced in clustering results, 
benefits are often acquired when a dimension of input 
space is reduced. Figure 5 shows an example of instability 
in clustering when used full rank feature space. The result 
on the left is produced by applying an ordinary k-means 
clustering algorithm to the PDFs in statistical manifold 
framework. Not to mention a computational complexity, 
clustering result is not trustworthy. In contrast, reduced 
features space with three principal components of PCA 
scheme produces more accurate clustering results (on the 
right in figure 5) compared to the full feature space. 

In this section, we investigate a PCA based dimension 
reduction technique for a set of multinomial distributions. 
The distributions are first transformed by (4) onto a 
surface of n+1 dimensional sphere. The surface is a 
Riemannian sub-manifold in Rn+1 and is denoted as Sn 
here. 

 

 
Figure 5. An example shows instability of clustering with a large 
input dimension. 
 
 

3.1. Fréchet means 
Given a set of multinomial distributions, L={p1, p2, …, 

pN}, pi∈S={p(θ, z), i=1,…N, a mean distribution of the set 
can be obtained by independently computing the 
arithmetic mean of each coordinate. Then, the arithmetic 
mean minimizes the sum of squared distance between the 

mean and the sample data set. However, our experiments 
show better clustering results when a Fréchet mean is 
used. Fréchet mean minimizes the sum of squared distance 
along geodesics on Riemannian manifolds and uniquely 
exists when the distributions are limited to a sufficiently 
small part of the manifold [23,24]. Multinomial 
distributions mapped onto Sn satisfy this condition since 
all coordinates are positive.  

A gradient descent algorithm established by [23] and 
expressed differently by others [24,25,26] is illustrated in 
Figure 6. First, the points ξi∈Sn for i=1…, N (Figure 6a) 
are projected onto a tangent plane 

t

nT Sy  at yt by an inverse 
projection (Figure 6b), 

1( )
t

i iexp−= yv ξ ,                                (11) 

where expy(v) projects a point v on a tangent plane at y 
onto a sphere. An expectation is calculated on the tangent 
plane and projected back onto the sphere by a projection 
expy (Figure 6c), 

1 ( [ ])
t

i
t exp+ = Eyy v .                            (12) 

Explicit expressions for these projections are given as 
[27], 
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y
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exp T S
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y

y
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v v y v v v v v

ξ ξ ξ ξ ξ
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With a proper selection of starting point, the algorithm 
converges within a few iterations. Figure 7 shows the 
difference of the Fréchet and the arithmetic means for the 
image shown in Figure 2a. 
 
 

 
Figure 6. Iterative method to estimate Fréchet mean on a sphere. 
Points (a) on the sphere are projected on a tangent plane (b) at an 
initial point of mean estimate. An expectation is calculated and 
projected back onto the sphere (c). Iterate the procedure until the 
mean converges. 
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Figure 7. Fréchet mean distribution vs. arithmetic mean 
distribution. They are different in general. 

3.2. Dimensionality reduction 
Let ŷ∈Sn be a Fréchet mean estimated by the iteration 

method described in the previous section, and let V={vi}, i 
= 1,…, N, be the projections at the mean. Then, the set V 
spans the entire ˆ

nTyS  when N»n, and an ordinary singular 
value decomposition can be applied to extract eigenspace 
of the tangent plane. This simply leads to a PCA based 
dimensionality reduction of the tangent plane, and the 
clustering can be applied to this reduced space. The shape 
of the reduced space is arbitrary and nonlinear, and 
accordingly, a nonlinear technique such as LLE (locally 
linear embedding) [28] could be a possible choice for the 
clustering. However, it is unrealistic in terms of speed to 
use algorithms of complexity of O(N2) when N is large. 
So, in this paper, a simple k-means method is used for 
clustering at the cost of misclassification. Figure 8 shows 
the case. The object is labeled as green in Figure 8a, but 
some of background is misclassified as objects. Among 
the misclassification, the ones indicated with ellipses 
should belong to background. These particular areas 
correspond to the portion indicated in Figure 8b, which 
can be correctly classified with LLE method. 

4. Results 
Several textured or mixed images are tested for 

clustering. PDFs are estimated with 32 bins and with 
different features for different images. Then, they are 
diffused with 20 iterations. Each iteration requires less 
than 2 seconds for images of size 256×256 on a 2.8GHz 
Pentium 4 machine with MatlabTM implementation. 

The top row of the figure 9 shows the tensor maps on 
manifolds M2 (left) and 2M  (right) for the test image in 
figure 2. The diffusion process removes offsets and 
merges two thin lines across boundaries. Clustering results 
on both manifolds are depicted right below the tensor 
maps. As expected, more smooth and accurate clustering 
is achieved on 

2M . 
Next experiment compares stability of clustering in between 

Euclidean Rn+1 (first column) and Sn (second column) 
spaces. From top to bottom in Figure 10, 3, 5, and 7 
principal components are used for clustering, respectively. 
It is evident that the Sn space produces more accurate 
results than Euclidean space. Also, clustering stability in 

Euclidean space decreases as the number of principal 
components increase. Finally, in Figure 11, the clustering 
method is tested with various natural images presented in 
[29]. For most cases, color information alone is used to 
construct feature PDFs.  

 
 

  
(a) (b) 

Figure 8. A case of misclassification. 
 

 
Figure 9. Intensity values are used as features. The diffusion 
process generates smooth and strong boundary on statistical 
manifolds, consequently producing accurate clustering results. 
 

 
Figure 10. Clustering results and stability comparison in between 
Euclidean and Sn spaces. 
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Figure 11. Natural image segmentation with the clustering on 
statistical manifolds. Expect the first sample which uses intensity 
value as feature, color information in RGB alone is used as 
feature.  
 

5. Conclusion 
A clustering scheme on statistically defined manifolds 

is presented. The algorithm handles textured or mixed 
images with one framework. Our experiment on natural 
image segmentation shows promising results in classifying 
textured or mixed images, even if we used only one 
feature, that is, color information. The framework could 
be more powerful if multiple feature spaces are 
considered. 
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