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Abstract

Although it is usually assumed in many pattern recog-
nition problems that different patterns are distinguishable,
some patterns may have inseparable overlap. For example,
some facial expressions involve subtle muscle movements,
and are difficult to separate from other expressions or neu-
tral faces. In this paper, we consider such overlapped pat-
terns as “clusters”, and present a novel method to quan-
tify cluster overlap based on the Bayes error estimation on
manifolds. Our method first applies a manifold learning
method, ISOMAP, to discover the intrinsic structure of data,
and then measures the overlap of different clusters using
the k-NN Bayes error estimation on the learned manifolds.
Due to the ISOMAP’s capability of preserving geodesic dis-
tances and k-NN’s localized estimation, the method can
provide an accurate measure of the overlap between clus-
ters, as demonstrated by our simulation experiments. The
method is further applied for an analysis of a specific type
of facial expression impairment in schizophrenia, i.e.,“flat
effect”, which refers to a severe reduction in emotional ex-
pressiveness. In this study, we capture facial expressions
of individuals, and quantify their expression flatness by es-
timating overlap between different facial expressions. The
experimental results show that the patient group has much
larger facial expression overlap than the control group, and
demonstrate that the flat affect is an important symptom in
diagnosing schizophrenia patients.

1. Introduction

In pattern classification problems, it is usually assumed
that different patterns can be well separated. However,
real data always has overlap, which will cause classifica-
tion errors [3]. Such overlap could be generated from noisy
measurements, or from continuous events. For example,
some facial expressions involve subtle and continuous mus-

cle movements, and are difficult to be separated from each
other or neutral faces. Another example is the face pose
estimation, where the face pose change is also a contin-
uous process. There are only approximate, not absolute,
class boundaries to separate faces into frontal, left and right
views. Therefore, we consider such overlapped patterns as
“clusters”. Due to the uncertainty of patterns, it is diffi-
cult to quantitatively evaluate the cluster overlap, especially
when the data has high dimensionality. In this paper, we
present a novel method to estimate the overlap between dif-
ferent clusters based on Bayes error estimation on mani-
folds.

Given a dataset whose elements are generated from over-
lapped clusters, we first apply a manifold learning method,
ISOMAP [13], to discover the intrinsic structure of the data.
The advantages of ISOMAP manifold learning are that it
can reduce the data dimensionality, and recover the intrinsic
structure of the data. Then, based on the learned manifold, a
k-NN based method of estimating Bayes error is applied to
quantify the cluster overlap. The benefit of estimating clus-
ter overlap on manifolds is that ISOMAP can reduce data
dimensionality and preserve neighborhood information as
well, thus facilitating the distance measurement during k-
NN based Bayes error estimation.

This method is first demonstrated by experiments us-
ing simulated data, and then is successfully applied for the
analysis of a specific type of facial expression impairment
in schizophrenia, “flat effect”, which refers to a severe re-
duction in emotional expressiveness. In this application, fa-
cial features are first extracted through video tracking. For
each individual, the extracted features are embedded into an
ISOMAP manifold. The overlap between different expres-
sions are measured on the manifold, to describe the flat-
ness of facial expressions for the individual. By comparing
the expression overlap between the groups of schizophre-
nia patients and healthy controls, our method demonstrates
that the patient group has much larger overlap between ex-
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pressions, thus quantifying the presence of facial expression
flatness in schizophrenia and thereby aiding in diagnosis,
prognosis or studying treatment effects.

The rest of the paper is organized as follows. In Section
2, the related work is reviewed. The method of measuring
cluster overlap using manifold is introduced in Section 3.
Section 4 introduces its application to the analysis of facial
expression impairments in a neuropsychiatric disorder. The
paper concludes in Section 5.

2. Related Work

This section reviews some related work, including com-
monly used linear and nonlinear component analysis, and
the cluster overlap estimation. The linear component analy-
sis methods, including the classic Principal Component
Analysis (PCA) and Fisher Linear Discriminant Analysis
(LDA), have been widely applied to solve many computer
vision and pattern recognition problems. A well-known ex-
ample is face recognition [8, 17]. However, both PCA and
LDA have the assumption that each class follows Gaussian
distribution. Nonparametric discriminant analysis (NDA)
[4] can avoid such limitations, by computing scatter matri-
ces in neighborhoods instead of globally. The linear com-
ponent analysis using the matrix representation has been
generalized to the tensor space that can provide multi-linear
analysis [14]. However, such linear methods will fail for
the cases where the data has a non-linear structure. The
efforts to generalize the linear component analysis can be
categorized into two types: kernel-based methods, and the
nonlinear manifold learning algorithms. The kernel based
methods, such as Kernel PCA (KPCA) [1] and Kernel LDA
(KLDA) [11], implicitly map the data to a higher dimen-
sional space through kernel functions [7]. Nonlinear man-
ifold learning methods, such as ISOMAP [13], and LLE
[10], aim at recovering the nonlinear structures of data by
using their neighboring relationship. Such manifold meth-
ods are superior to the linear methods, in that they can han-
dle problems with complicated nonlinear distributions.

In pattern classification, the features obtained from the
component analysis are then used to design classifiers for
distinguishing different patterns. The classification errors
due to the noise and the underlying class overlap are usu-
ally measured empirically, such as through cross-validation
[3]. However, such empirical validation largely depends on
the feature selection and classifier design, and cannot reveal
the underlying overlap between classes. Fukunaga et al. use
Parzen windows and k-NN to estimate the Bayes error rates
[5]. It has been shown that the error rate estimated based
on the k-NN rule has upper bound of twice the true Bayes
error [3]. The accuracy of k-NN estimation depends on the
selection of the window function and its parameters. And
furthermore, when the data has high dimensionality, the k-
NN based method needs more computation and more data

samples to locate nearest neighbors in the high dimensional
space. Our method combines the merits of manifold learn-
ing and k-NN Bayes error estimation to measure the cluster
overlap. The ISOMAP manifold learning method is used to
reduce data dimension, remove noise, and preserve the geo-
desic distances for accurately searching nearest neighbors.
Based on learned manifolds, the k-NN based method can
then provide a reasonably accurate estimation of the under-
lying cluster overlap.

3. Manifold Based Analysis of Cluster Overlap

Given a set of data generated from m different patterns,
which is denoted as Ci, i = 1, ..., m, the data can be as-
sumed to lie in a manifold that characterizes different pat-
terns. Due to noise and the possible underlying overlap,
the data from different patterns also has overlap on a mani-
fold, thus forming “clusters”. In this section, we first briefly
review the ISOMAP learning method that will be used in
our method, and then present the method to estimate cluster
overlap on the manifold.

3.1. ISOMAP Manifold Learning

In this method, we apply the ISOMAP manifold learning
algorithm because it can preserve the geodesic distances of
the original data. Such property allows us to measure the
true “geodesic” distances on the learned ISOMAP mani-
fold that has lower dimensionality. In ISOMAP, a shortest-
path graph is first constructed based on local neighbors, and
then the global nonlinear structure is recovered by applying
multi-dimensional scaling (MDS) on the shortest distances.
The ISOMAP learning method is summarized in Table 1.

3.2. A Probabilistic k-NN Model of Estimating
Overlap

We present a probabilistic method to estimate Bayes er-
ror between different clusters as the measurement of their
overlap, using the learned manifold. The probabilistic
method is based on the k-NN estimation of Bayes error
[4, 3]. The Bayes error is the minimal error rate that a proba-
bilistic classifier can achieve based on the Bayes rule, while
the k-NN estimation has an upper bound that is twice of the
true Bayes error [3]. The k-NN method is also known to
be sensitive to the selection of parameters of window func-
tions, especially for high dimensional data. Our method is
different from the k-NN estimation presented in [4], in that
our method defines the nearest neighbors as obtained from
the manifold learning, directly estimates the posterior prob-
ability of clusters, and automatically selects the parameter
of the window function.

To estimate the Bayes error in a manifold, we first define
the posterior probability of a cluster given a data point x, as
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Table 1. ISOMAP algorithm

1. Input: the data set Ω = {xi, i = 1, ..., n}
2. Compute the pair-wise distance d(xi, xj) between data

points xi and xj , where d is the distance metric, usu-
ally L2 norm.

3. Search the nearest neighbors NN(xi), for each data
point xi in the set Ω. The neighbors can be found using
one of the following two methods:

(a) k-nearest neighbors (k-NN): finding k closet
neighbors in Ω.

(b) ε-nearest neighbors (ε-NN): NN(xi) =
{xj |d(xi, xj) < ε, i �= j, xj ∈ Ω}

4. Construct a graph G = {V, E} by connecting each
data point with its neighbors. V represents a set of
nodes in the graph. Each node represents a data point.
E is a set of links between nodes, with the weights set
as the distances between nodes.

5. Compute the shortest path distances from the graph G,
and obtain a shortest distance matrix D.

6. Apply the multi-dimensional scaling (MDS) to D, and
embed the original data points to the lower dimen-
sional ISOMAP subspace.

Eqn. (1):

P (Ci|x) =
∫

y∈Ci

p(y|x)dy (1)

where Ci is the cluster label, and y is the data from cluster
Ci.

We assume the p(y|x) as a Gaussian distribution
G(y; x, σ) with the mean of x and standard deviation of σ,
as shown in Eqn. (2):

p(y|x) = G(y; x, σ) =
1√
2πσ

exp{−d2(x, y)
2σ2

} (2)

p(y|x) defined in Eqn. (2) is actually a window function
that applies a kernel to each data point. Please note that
there is only one parameter σ in this function. The σ will
be automatically estimated from nearest neighbors in our
method, as explained later. The class probability P (Ci|x)
can then be directly estimated based on Eqns. (1) and (2).
Since the d(x, y) is large when y is far from data x , we only
use the data in the neighborhood of x to estimate P (Ci|x)
for reducing computational complexity, as shown in Eqn.

(3).

P (Ci|x) ≈
∫

y∈Ci,y∈NNx

p(y|x)dy

∝
∑

y∈Ci,y∈NNx

p(y|x) (3)

In Eqn (3), NNx is the neighborhood of x, and y are the
nearest neighbors of x from cluster Ci. In our method,
the neighborhood is defined on the manifold subspace af-
ter ISOMAP embedding, instead of the original data space.
Assuming that the data x after embedding is F (x), the geo-
desic distance dg(x, y) and the neighborhood NNx after the
embedding are defined as:

dg(x, y) = ||F (x) − F (y)||2
NNx = {y|dg(x, y) < εx} (4)

and

p(y|x) =
1√
2πσ

exp{−d2
g(x, y)
2σ2

} (5)

In Eqn. (4), εx decides the size of neighborhood. If εx is a
fixed value for all x, the neighborhood is the ε-NN. If εx is
varied to guarantee k nearest neighbors for each data, NNx

equals to the k-NN.
According to the definition, the Bayes error rate is esti-

mated at each data point x, as Eqn. (7):

P (Error|x) = 1 −
max

i
{λiP (Ci|x)}∑

j λjP (Cj |x)
(6)

where λi is the risk for misclassifying cluster Ci. For sim-
plicity, we usually assume the equal risk for each class, i.e.,
∀i, j, λi = λj . Therefore, by the definition, the pairwise
Bayes error P(Ci,Cj)(Error) between two clusters Ci and
Cj , is estimated as:

P(Ci,Cj)(Error) =
∑

x∈{Ci,Cj}
P (Error|x)P (x)dx (7)

where P (x) is usually assumed uniformly distributed in the
data set. In what follows, we use the estimated Bayes error
as the measurement of cluster overlap, defined as Zi,j =
P(Ci,Cj)(Error).

We go back to the problem of automatically determining
the parameter σ in p(y|x) from the manifold embedding.
As the second order moment of a Gaussian distribution, the
σ is estimated as Eqn. (8):

σ2 = E
x,y∈NNx

{d2
g(x, y)} (8)

Again, the estimation is performed in the neighborhood ob-
tained from ISOMAP manifolds. In summary, our estima-
tion method fully utilizes the benefits of manifold learn-
ing algorithm, through reducing the data dimensionality and
preserving geodesic distances in the neighborhood.
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(a) (b)

(c) (d) (e) (f)
Figure 1. Validation of overlap measurements using Swiss Roll data: (a) the Swiss Roll data with its parameter, i.e., the rolling angle,
sampled at clusters; (b) ISOMAP embedding of the data at two dimensional space. Each color represents one cluster; (c) comparing the
ground truth with the estimated Bayes error using the presented method; (d) a box and whisker plot of the results in (c); (e) comparing the
ground truth with the estimated Bayes error using the k-NN based method [5] in the original data space; (f) a box and whisker plot of the
results in (e)

3.3. Validation on Simulation Data

We simulate a set of data to validate the algorithm. Pre-
vious studies [13, 10] uniformly sample a Swiss Roll man-
ifold for validation, while in this experiment, we generate a
set of data on the Swiss Roll manifold by sampling its pa-
rameter space to form clusters with different levels of over-
lap. Assuming that there are n clusters in the data, the data
of each cluster is simulated from a Gaussian distribution,
pi(t) = G(t; µi, σi), i = 1, ..., n, where t is the parameter
of the Swiss Roll manifold , and µi and σi are the mean and
standard deviation of the i-th cluster. From the simulation
processing, we know the ground truth, i.e., the Bayes error
rate between two Gaussian distributions. For simplicity, all
the clusters are assigned the same the priors, and the same
σi. However, the center of each cluster is randomly varied,
thus yielding different Bayes errors as the ground truth for
comparison with the estimated overlap. The Swiss Roll data
in the original data space is illustrated in Figure 1.(a). The
ISOMAP embedding of one set of Swiss Roll data is shown
in Figure 1.(b), where different colors represent different
clusters. In the experiments, we use the same parameter as
in [13], i.e., ε = 5. It clearly shows that ISOMAP can re-
cover the clusters on the original Swiss Roll data, and that
there is an overlap between different clusters.

The simulated data after ISOMAP embedding is then
used to estimate Bayes errors. The estimated cluster overlap
is then compared with the ground truth, as shown in Figure
1.(c) and (d). It is found that the estimation provides an
accurate estimation of the true Bayes error. The linear cor-
relation coefficient between the estimation and the ground
truth is around 0.97 for our results. Therefore it demon-
strates that we can use this method to quantify the cluster

overlap. For comparison, the original k-NN based method
[5] is applied in the original data space. The estimation re-
sults are shown in Figure 1.(e) and (f), where we can see
that the estimation results are less stable, especially for data
sets that have overlap greater than 10%, demonstrating the
benefits of measuring cluster overlap on the ISOMAP man-
ifold.

4. Application: Measuring Flat Facial Expres-
sions in Schizophrenia

In this section, we apply the presented method of mea-
suring cluster overlap to the study of a population with the
neuropsychiatric disorder of schizophrenia that manifests as
flatness (lack or low intensity) of facial expressions. We
use videos that contain different facial expressions of indi-
viduals for the analysis. By measuring the expression over-
lap, our method can quantify flat affect in schizophrenia.
The background is introduced in Section 4.1. Section 4.2
presents the feature extraction in video for the analysis. The
experimental results are summarized in Section 4.3.

4.1. Background

Facial expressions have been widely used in clinical re-
search to study the affective and cognitive states, and psy-
chopathology of an individual. Specifically, the expression
analysis has played a major role in the study of schizophre-
nia which is a neuropsychiatric disorder characterized by
deficits in emotional expressiveness [12]. One type of fa-
cial expression impairment that is often demonstrated by
patients with schizophrenia is “flat affect”, i.e., a severe re-
duction in emotional expressiveness. Examples are shown
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in Figure.3, where a patient failed to express different emo-
tions. In this study, the video data of 12 patients with
schizophrenia and 12 healthy controls has been acquired un-
der the supervision of psychiatrists. During the interviews
with participants, they are individually guided through vi-
gnettes that are provided by the participants themselves and
describe a situation in their life pertaining to each emotion.
The vignettes are recounted back to the participants by the
psychiatrist, to elicit evoked expressions. Videos captured
during the interview include segments of different expres-
sions and the neutral expression as well, and their time
stamps of expressions are recorded for the later analysis.

Clinicians currently rely on manual and subjective meth-
ods of rating expressions, and the clinical research in
schizophrenia has focused on the perception and recogni-
tion capabilities of the patients, and not so much on the way
in which patients express emotions differently from healthy
controls [12, 6]. Many automated facial expression analysis
methods have been presented [9], with most of them focus-
ing on facial expression recognition. None of them have
been applied in clinical research to study the impaired fa-
cial expression in schizophrenia. In this paper, we apply
our method of measuring the cluster overlap to quantify flat
affect in schizophrenia patients using videos of facial ex-
pression.

4.2. Facial Feature Extraction in Video

Manually labeling fiducial points to analyze facial ex-
pressions is usually very time-consuming, and subjective to
the person who labeled the face. Especially in our study,
each video could contain more than 10,000 frames. There-
fore it is a formidable task to manually mark all the fiducial
points through the videos. To automate the process, we first
detect the face and fiducial points in the first frame of the
video, and then track the fiducial points at all the remaining
frames. Our method applies an AdaBoost based algorithm
[15] to detect frontal and near-frontal faces. Figure 2.(a)
shows a face detection result at the first frame of a video.
Inside the detected faces, some important fiducial points, as
shown in 2.(b), are defined to characterize the facial expres-
sion changes. An active appearance model (AAM) [2] is
used to automatically detect and track the fiducial points.
Figure 2.(b) and (c) shows the detected and tracked fiducial
landmarks in a video.

(a) (b) (c)
Figure 2. Fiducial landmarks detection and tracking. (a) a face
detected at the first frame; (b)(c) the landmarks tracked at different
frames

Based on the fiducial landmarks, geometric features are
extracted for characterizing facial changes [16]. The geo-
metric features describe the area changes of facial regions,
and some facial actions that are known to be closely related
with expressions, such as eye opening, mouth opening and
closing. As the result, the extracted feature vector has 37
elements. Features of each participant are normalized by
his/her features at neutral faces. Finally, each feature vector
is normalized by subtracting its mean from it and dividing it
by its standard deviation, for the following analysis on the
manifold.

4.3. Measuring Flat Affect in Schizophrenia

For the analysis of the flatness of facial expressions
in patients with schizophrenia, the features extracted from
videos are embedded into ISOMAP manifolds. Our method
builds an individual manifold for each participant, and
the individual manifold will be used for subsequent over-
lap measurements. Since each video contains on average
10,000 frames, we downsample each video to around 2,000
data points, making it suitable for ISOMAP based learning.
Our method uses k-NN during ISOMAP learning, where k
is set as around 20. However, our experiments show that the
results are robust to the parameter changes. Figure 3 show
the example images and the ISOMAP manifolds of two par-
ticipants, including one control and one patient. From this
example, we clearly observe that there is more overlap in
the schizophrenia patient than the healthy control.

After ISOMAP embedding, we measure the overlap
among different expressions, including happiness, sadness,
anger, fear, and neutral expressions. The pair-wise overlap
Zi,j = P(Ci,Cj)(Error) between the i-th expression and
j-th expression are measured. We then define the minimal
overlap between one expression to other expressions as a
“flatness index” at all expressions, i.e. Zi = min

j �=i
{Zi,j}. A

larger flatness index means that it is less possible to distin-
guish this expression from at least one of the other facial ex-
pressions. Although the length of each persons’ expressions
may vary, our methods uniformly normalize the weights of
each data point, i.e., P (x) in Eqn. (7), according to the clus-
ter size; therefore the comparison of cluster overlap is not
affected by cluster size.

The method is applied to each participant from both the
healthy control group and the patient group. The results are
summarized in Table 2. In this table, we show the mean
flatness index for each group, at happy, sad, anger, fear and
neutral expressions respectively. We also use the flatness
index from all the participants of two groups for a t-test, to
evaluate the significance level of the group difference. It
is observed that the mean flatness index is much smaller in
the healthy controls than in the patients, and the p-values
from the t-test demonstrate that the group differences are
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(a) (b) (c) (d) (e) (f)
Figure 3. Examples of ISOMAP manifold for two participants. (a)(b): happy and sad faces of a healthy control. (c) the ISOMAP manifold
of the healthy control. Different colors represent data from different expressions; (d)(e): anger and fear faces of a patient; (f) the ISOMAP
manifold of the patient. Visual comparison reveals that the patient expressions have a greater overlap than the controls, whose expression
embedding is more clustered

significant, at all expressions. Among all the flatness mea-
surements, we are especially interested in the flatness index
of the neutral expression. Since the flatness index at neu-
tral expression refers to the overlap between the emotional
faces of an individual and his/her non-emotional faces, it
directly measures the “flat affect”. The flatness index at
other expressions actually measures a mixture of flat af-
fect and another type of impairment, “inappropriate affect”,
which refers to inappropriate expressions for intended emo-
tions. Using the estimated overlap to measure inappropriate
affect needs further research. In summary, by measuring
the overlap among different expressions and non-emotional
faces, our method quantitatively validates the clinical claim
that the flat affect is an important symptom characterizing
schizophrenia patients.

Table 2. Comparison of Expression Overlap between schizophre-
nia patients and controls using Flatness Index

Mean of flatness Happiness Sadness Anger Fear Neutral
index

Controls 0.057 0.091 0.051 0.030 0.093
Patients 0.263 0.340 0.310 0.239 0.241

P-Value of t-test 0.007 0.002 0.002 0.004 0.014

5. Conclusion

This paper presents a novel method to estimate the clus-
ter overlap on manifolds. Our method first embeds the orig-
inal data into ISOMAP manifolds to reduce the data dimen-
sionality and recover its underlying structure. We then es-
timate the cluster overlap, by applying k-NN based estima-
tion on the manifold. This method is applied to a clini-
cal study to quantify a specific impairment, the “flat affect”
of facial expressions, in schizophrenia patients. Our future
work will correlate our method with clinical measures of
flat affect, and will also apply this method to the feature
extraction in general pattern recognition problems.
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