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Abstract

Nonnegative tensor factorization (NTF) is a recent mul-
tiway (multilinear) extension of nonnegative matrix fac-
torization (NMF), where nonnegativity constraints are im-
posed on the CANDECOMP/PARAFAC model. In this pa-
per we consider the Tucker model with nonnegativity con-
straints and develop a new tensor factorization method,
referred to as nonnegative Tucker decomposition (NTD).
The main contributions of this paper include: (1) multi-
plicative updating algorithms for NTD; (2) an initialization
method for speeding up convergence; (3) a sparseness con-
trol method in tensor factorization. Through several com-
puter vision examples, we show the useful behavior of the
NTD, over existing NTF and NMF methods.

1. Introduction

Subspace analysis or principal component analysis
(PCA) is a widely-used linear data model, the task of which
is to learn the basis matrix A = [a; ay---ar] € R™*F
and the encoding variable matrix § € R%*! which mini-
mizes || X — AS/||? (|| - || denotes the Euclidean norm which
is also known as Frobenious norm when the argument is a
matrix), given a data matrix X = [z, @5 --- ;] € R™*L A
successful spin-off of PCA is independent component anal-
ysis (ICA) [9] where the linear data model X = AS is
learned such that row vectors of the encoding variable ma-
trix are as statistically independent as possible, while sub-
space analysis produces uncorrelated components. In the
case where the data matrix contains only nonnegative el-
ements, X € RTXZ, positive matrix factorization (PMF)
[16] or nonnegative matrix factorization (NMF) [13] is
known as a useful tool in learning parts-based representa-
tion as well as in feature extraction.

Computer vision involves a set of image or video data
that can be well represented by 3-way or multiway data ar-
ray which is known as tensor. For example, a vector is a
1-way tensor, a matrix is a 2-way tensor, a cube is a 3-way
tensor, and so on. The multiway structure reflects rows,
columns, RGB (or HSV) color coordinates, time, and so

on. In conventional subspace analysis or matrix factoriza-
tion methods, 2D image data are converted to 1D image
vectors, discarding the spatial structure of the original 2D
image data. Recently the 2D extension of subspace analysis
methods have been proposed, including 2D-PCA [26], and
2D-NMF [27].

A general framework that takes the multiway struc-
ture into account, is multilinear algebra involving tensor
decomposition. Exemplary tensor decomposition meth-
ods include: (1) the Tucker model (also known as mul-
tilinear SVD or N-mode SVD) [20, 11, 4]; (2) the
CANDECOMP/PARAFAC model [2, 5]; (3) nonnega-
tive tensor factorization (NTF) [25, 19, 7, 3] where non-
negativity constraints are incorporated into the CANDE-
COMP/PARAFAC model or the PARAFAC2 model. In
computer vision applications, N-mode SVD was applied
to face image representation [21], showing that considering
multiple modes such as different people, expressions, head
poses, and lighting conditions improves the face recognition
performance [22]. Multilinear ICA was also applied to face
image representation and recognition [23]. NTF preserves
2D structure of image data in the factorization, leading to a
superior decomposition in the sense of sparse coding, com-
pared to NMF [7].

Existing methods of NTF [25, 19, 7] considered the
CANDECOMP/PARAFAC model where a nonnegative ten-
sor is approximated by a linear sum of outer products of
nonnegative vectors. In this paper we consider the Tucker
model [20] and nonnegativity constraints on the core tensor
and mode matrices as well. Then we develop multiplicative
updating algorithms for learning a Tucker decomposition
of a nonnegative tensor with restricting a core tensor and
mode matrices to be nonnegative. The multiplicative updat-
ing algorithms iteratively matricize tensor into each mode
and then solve NMF problem. The method is referred to as
nonnegative Tucker decomposition (NTD), in order to dis-
tinguish it from previous work, NTF. By fixing the tensor
as a structured tensor, NMF, NTF, and nsNMF [17] can be
represented as special cases of the NTD. Moreover those
multiplicative updating algorithms also can be re-derived
from those of the NTD. We present a practically useful ini-



tialization method for NMF and NTD, which dramatically
speeds up the convergence. We also stress out the sparse-
ness control in NTD through a structured core tensor, just
like nsNMF [17]. Recently, Mgrup et al. independently
developed a HONMF method similar to our NTD [15] with
its emphasis on biomedical data analysis. HONMF incorpo-
rates the additive L;norm penalty for sparseness but suffers
from slow convergence with random initialization.

2. Background: Multiway analysis

A brief overview of CANDECOMP/PARAFAC and
Tucker model is presented, which is necessary for further
understanding NTD. Important notations are in Table. 1.

Notation | Description
X N-way tensor
X matrix
X mode-n matricization of tensor X’
A™ mode-n matrix in Tucker model
® Kronecker product
® Khatri-Rao product
o outer product
® Hadamard product

Table 1. Notations involving tensor algebra.

An N-way tensor X € RI*[2XXIN hag N indices
(i1,12,...,in) and its elements are denoted by ;,i,. iy
where 1 < 4, < I,. The mode-n matricization of
X € RIvxI2xXIN rearranges the elements of X to form
the matrix X (,) € RIn > ntrlnsa-InlilaIn—1 - \where
Iny1lyqo---INI I - -+ I, is in cyclic order. Following
Kiers [10], the fastest-changing index is ¢,,+1 in the case of
mode-n matricization. Matricizing a tensor is analogous to
vectorizing a matrix.

The scalar product of two tensors X', ) is defined as
<X,y> = Zil,ig,,..,iN Liqig-inYirio-in-: The Frobenius

norm of a tensor X is given by || X]| = /(X, X).

2.1. CANDECOMP/PARAFAC model

An N-way tensor X € RI1x[2XXIn ig referred to be of
rank-1 if it is represented by the outer product of N vectors:

X:a(l)oa(2)0~-~oa(N), (1)

where a(™) € R forn =1,2,..., N. In an element-wise
form, it is written as
2 N
Liqig-in — al(-ll)G,EQ) . SN), (2)
where a( ") denotes the 7,,th element of the vector a™_ The
rank of tensor X, denoted R = rank(X’), is the minimal

number of rank-1 tensors that is required to yield X’:

R
x=> ADoAl o ..0Al), 3)

r=1

where A:(;ﬁ) represents the rth column vector of the mode
matrix A™ e RI» ¥R,

The CANDECOMP/PARAFAC model seeks a rank-R
approximation of the tensor X, i.e.,

R
X%X:A:(}T)oA:(i)o...oA:(,J?\[)7 @)

which can be written in an element-wise form as

JRCONCI e 5)

Tiyig..in ~ 1r 127‘ er

uM:a

The mode-n matricization of X in the CANDE-
COMP/PARAFAC model (4), is expressed by Khatri-Rao
products (column-wise Kronecker product) of mode matri-
ces:

X =~ AM A=) o 5 A@ 5 AW
0AM o ...0 A"+ o A‘"*”} " (©6)
2.2. Tucker model

The mode-n product of a tensor S €
R %2 XN by g matrix A™ e RV s
defined by

n
[§xpa®]
J1 - In—1tnJn+1""JN
JIn
= : :Sjl"'jnfljnjn%»l"'jl\]a’injn7 (7)
Jn=1

leading to a tensor S x,, A € RIJxJ2xxlnxxJy
With the mode-n product, a familiar matrix factorization
X = USV ' iswritten as X = S x; U x5 V in the
tensor framework. The mode-n product has following two
properties:

(Ex, U)x, V =
(Ex,U)x,V

(8 xm V) x, U )
S x, (VU). )

The Tucker model seeks a decomposition of an N-way
tensor X € RI1*12>XIN a5 mode products of a core ten-

sor § € RJ1XJ2XXJIN and N mode matrices A" €
Rln,XJn’

Xr8x; AV xy AP oy AN (10)



which can be written in an element-wise form as

1) (2 (N
Z Sj1ja- JNa1131a12;2 T aiNJ)N' (1D

L~
Liyig-in ~

The mode-n matricization of X in the Tucker model
(10), is expressed by Kronecker products of the mode-n ma-
tricization of the core tensor and mode matrices:

A(”*l) R ---

X =~ A™Sq, ®A? AW

®A(N) R ® A(nt2) ® AlntD) T , (12)
where S, is the mode-n matricization of the core tensor
S. The representation (12) plays a crucial role in deriving
multiplicative updating algorithms for NTD.

2.3. Difference between two models

CANDECOMP/PARAFAC and Tucker models were in-
dependently developed, providing a ground for multilinear
analysis. The main difference between these two models
is in the presence of the core tensor in the Tucker model.
The core tensor allows column vectors of mode matrices to
interact each other in order to reconstruct the original ten-
sor. For example, an individual element of the core tensor,
Sj1ja--jn» SETVES as the weight of the associated combina-

tion of A( ) A(Q) ,A(]ijz In contrast, the CANDE-
COMP/PARAFAC model confine such interactions to occur
among A A A( ). At first sight, the CANDE-
COMP/PARAFAC model can be viewed as a special case of
the Tucker model when the core tensor equals to an unit su-
perdiagonal tensor, i.e., S = Z where 4;,iy...ix = Oiqig-in -
However in general, the core tensor in the Tucker model
cannot be rotated to the unit superdiagonal tensor as in
the CANDECOMP/PARAFAC model. Strictly speaking,
only the CANDECOMP/PARAFAC model has an unique-
ness property up to scaling and permutation of the mode
matrices [6, 12]. Even though the Tucker model has not
the uniqueness property, it is more useful in data compres-
sion [24]. The Tucker model requires a small number of
component vectors for respective mode than the CANDE-
COMP/PARAFAC model, since it uses every combination
of mode vectors (column vectors of mode matrices).

3. Nonnegative Tucker decomposition

Given a nonnegative N-way tensor X € R/ x2xxIn

nonnegative Tucker decomposition (NTD) seeks a factor-
ization of X that is of the form:
XrX=8x A0 x, AD ...y AWM (13)

where the core tensor S € R71*72% /N and mode matri-
ces A € RInx7n forn = 1,..., N are restricted to have

only nonnegative elements in the factorization. As discrep-
ancy measures between the data A and the model X, we
consider LS error function Jr ¢ and I-divergence [J; which
are given by

P12
Js = |X - X|%, (14)
Liyig--i
I = Z {xmz iy log S
11,82, ,EN Livig-in
~Tiyiyin + Tiyigin ) - (15)

NTD provides a general form of the nonnegative tensor
factorization, including NMF, nsNMF, and NTF at special
cases. Table. 2 summaries models for NMF, nsNMF, and
NTF in the framework of tensor decomposition. As will
be shown in Sec. 3.1, the core tensor and mode matri-
ces are learned iteratively, through multiplicative update al-
gorithms. However, instead of learning the core tensor in
NTD, we can place a pre-specified specific structure on the
core tensor. In this way, nsNMF and NTF emerge from the
NTD.

3.1. Multiplicative updating algorithms

We derive multiplicative updating algorithms for mode
matrices A as well as the core tensor S for the NTD.
Updating algorithms are quite similar to those in NMF. It
is possible to directly derive multiplicative updating algo-
rithms in an element-wise manner for minimizing the error
function (14) or (15), as done in NTF [25, 19]. However,
updating algorithms in an element-wise form seem to be
very complicated, which might bother an efficient and com-
pact implementation. Thus, the approach we take here is
to fully use matrix representations of Tucker model given
in (12), through properties of Kronecker product and vec(-)
operation.

In order to derive an updating rule, we use the following
properties:

vec (UBVT> — (VeU)vec(B), (16)
Uev]" = U oV,
(UeV)(B&C) UB®VC.
We define
A0 [A@H) ®-0AV g ...
90AM g .. & A<n+1>] ’ a7

which collects Kronecker products of mode matrices except
for A in a backward cyclic manner.
3.1.1 Updating mode matrices

The mode-n matricization of the NTD leads to

Xy = AMSHAWT = AMg®) - (18)



Model matrix representation

NTD representation

NMF X ~ AS

X%IXlAXQST

nsNMF X~AMS

XzMxleQST

NTF | X~ 5, A0 A or o ALY

X%IXlA(l) XQA(2)-~-XNA(N)

nsNTF N/A

XreMx; AW x; AD oy A

Table 2. Models for NMF, nsNMF, and NTF are summarized in the framework of the tensor decomposition.

which is of the same form as the NMF model. Thus, up-
dating algorithms for A™ follow the NMF updating algo-
rithms for A.

o LS:
X(SPT
A AM) {() o (n)L (19)
[Ams s
e I-divergence:
X/ (AMS)] 8T

12T

where / is the element-wise division, 1 € RInx1 o ¢
R7»¥1 with z; = > S(;)ij. In updating A™, the rest
of parameters denoted by Sff) are fixed.

The encoding variable matrix .S X”) should be computed
through Kronecker products, which requires a heavy com-

putation. We compute Sff) in the following way:

SV = 15,,)ANT

- s x1 AW ox, AT T
M1 ATTD xNA(N)]( )
= -S X1 A(l) X+ Xp_1 A(n_l)
Kyt AT sy A(N)]( )

— :s X mstm A("U} . Q1)

In the LS case, computation costs are more reduced by:

AMg T — [S X matn A(m)TA("”)} " S
n)T m
XS = [& s AT (22)
(n)

Updating algorithms for the rest of mode matrices can be
easily derived in the same way, by matricizing the Tucker
model into associated modes.

3.1.2 Updating core tensor
From (18) and (16)

vec (X(n)) vec (A(H)S(H)A(\n)-r)

_ (A(\n) ® A(")) vee (S(ny), (23)

which is of the same form as NMF. Therefore, we use updat-
ing algorithms for the encoding variable matrix S in NMF
and show that associated parameters are efficiently com-
puted in the framework of the tensor algebra.

LS: We use the updating algorithm for S in NMF, leading
to

vec (S(n)) < vec (S(n)) ® Ko, (24)

where

C vea e
T A e a0 A0 0 A0 vee (1)

Invoking (16) again, leads to
407 & 4] vee (X )
= vee (AT X, A0)
— e ([X 1 AT ey ACOT] (n)>
In a similar way, we calculate
(40" @ 4] ' 40" & 4] vee (S )

_ {A<\n>TA<\n> ® A(n)TAm)} vee (S ()

vee (A(H)TA(H)S(n)A(\n)TA(\n))

vec ([8 x1 AT AM oy A(N)TA(N)L )) .

With these calculations, the updating algorithm for the core
tensor S is written as

XxlA(l)T~~ XNA(N)T
S XlA(l)TA(l)... XNA(N)TA(N)'

S—8® (26)



I-divergence: We only present a final result to save a space:

(X/i’) x1 ADT oy AT
leA(l)T--~><NA(N)T

S—8® , @D

where £ is a tensor whose every elements are one.

Table 3 summaries multiplicative updating algorithms
for NMF, nsNMEF, NTF, and NTD, in the case of the LS er-
ror measure. Algorithms for NMF, nsNMF, and NTF can be
easily re-derived by plugging an adequate core tensor into
updating algorithms for mode matrices in NTD. Our multi-
plicative updating algorithms for NTD are directly derived
from NMF multiplicative updating algorithms, the mono-
tonic convergence analysis in [14] can be applied to our case
as well.

3.2. Initialization methods

A simple NMF fitting algorithm is iteratively solving
least square problem and then projecting its solution in to
first orthant (convert negative term into zero). Absolutely
this naive approach never gives local optimal solutions.
However, we modify it to find good initial starting points
for NMF and NTD.

Consider a subproblem of the NMF, finding coefficients
of a conic combination, & ~ As, where A € RTXR, s €
Rf The least square solution s = A™ s consists of nonneg-
ative terms S and negative terms S_. If an energy of 5_ is

small, then there is a high probability of s = :AJF:E, where
A consist of columns of A which associated with 5, will
be nonnegative and a relatively good solution. The updating
S in the NMF reql\lires solving [, number of data samples,
subproblems but A will be different for each subproblem.
Our simple trick is that applying multiplicative updating al-
gorithm again into projected least square solutions. Since 0
elements always remain 0 in multiplicative updating algo-
rithm, A is automatically selected from A and then s is
updated for each subproblem.

The numerical experiments show that the assumption,
the energy of negative terms should be small, holds for both
A and S in the NMF but only for the core tensor S in the
NTD. We present initialization methods for NMF and NTD
based on these observations. Algorithms are described in
Table. 4 and 5.

3.3. Sparseness control

The nsNMF model [17] is described by X ~ AMS,
introducing a smoothing matrix M given by

M=(1—0)1+%11T, (28)

where the parameter 6 satisfies 0 < § < 1. The parameter
0 controls the extent of smoothness of the matrix operator

Table 4. NMF initialization algorithm
Input: X € RT”, R.
Output: A € RTXR, S e Rf”.
- A «—rand(m, R)
- S« rand(R, m)
Repeat 30 ~ 50 times
- A — max(X ST e)
T
A A® %
- S — max(A"T X, €)

ATX
S S®A7As

Table 5. NTD initialization algorithm
Input: X € REXIN 7 Ty
Output: S € fo'“XJN, A e Rf:”",Vn
- AY — NMF intialization(X (1, J1)

- A™N) « NMF intialization(X (y, Jn)

-8 —rand(Jy,...,JN)
Repeat 30 ~ 50 times

T
AW 40 g [ KS)]

. {X(N)SEAN)T]
{A(N)SSWS;N)T]

8 —max(X x; ADT oy AT ¢

X ADT AT
. S — S@ SXlA(T)TA(l)“.XXNA(N)TA(N)

M. For 6 = 0, the model (28) is equivalent to the original
NME. As § — 1, stronger smoothing is imposed on M,
leading to a strong sparseness on both A and S in order to
maintain the faithfullness of the model to the data.

The same idea can be applied to the NTD. We propose a
nsNTD model:

X =~ (leM(l)M(N)> XlA(l)"'XNA(N)
= Sx; AVMW .oy AM Y, (29)
where M (1), e, M ) are smoothing matrices for each

mode. They smooth the core tensor and mode matrices si-
multaneously as M does A and S in the nsNMF. For the
same reason, a sparseness on both & and A(l)7 cee AW g
obtained. Moreover we don’t have to derive new updating
algorithms. New updating algorithms are given by just re-
placing S into S %1 MW ... MW and A(l), .. .,A(N)
into A(l)M(l), e AN AT i original mode matrices
and core tensor updating algorithms, respectively.



Model Update rule

NMF A*A®jfg§m S‘_S@‘)f{f‘;
nsNMF A<—A®Z%’ S*S@?m%ﬁr—)s
NTF A A g ng;w

Table 3. LS multiplicative update algorithms for NMF, nsNMF, NTF, and NTD, are summarized. With abuse of notations, in the case of

the NTE, 8 = [A("*l) ©--0AVAM ... AC+D

S
, while in the case of the NTD, S(:) = S(n)A<\")T. The updating

algorithms in the NTF, are equivalent to the ones in [25, 19], but they are of a compact form.

A nsNTF, multiway generalized version of nsNMF, can
be easily derived in the framework of the NTD. A tensor
which has all elements zero except those for which all in-
dices are the same is called a superdiagonal tensor. If all
nonzero elements equal unity, then is is referred to as the
unit superdiagonal tensor Z. In the framework of the NTD,
the cases where: (1) S =1;2)S = M;(3)S =Z, lead
to (1) NMF; (2) nsNMF; (3) NTF, respectively (see Table
2). Now, we define a smoothing core tensor M as

0
With this core tensor M fixed, the nsNTF emerges from
the NTD.

4. Numerical experiments

Our MATLAB implementation of the NTD partly uses
the tensor toolbox [1]. We use AT&T and Cambridge Uni-
versity, ORL dataset [ 18] which consists of 400 face images
in our experiments. We fix the location of the two eyes, crop
the face, and resize to 48 x 48 pixel. So 48 x 48 x 400 ten-
sor and 48 - 48 x 400 matrix are used for NTD and NMF
respectively. We set J; = Jo = 24, J3 = 30 and R = 30
for NTD and NMF respectively in all experiment.

At first, we compare our initialization method with ran-
dom initialization. The results, Fig. 1, show that our meth-
ods dramatically speed up convergence.

We show that the NTD indeed controls the sparseness
with smoothing matrices. We set the smoothing parameter ¢
into 0, 0.5, and 0.8. The sparseness, measured by Hoyer[8],
of S, AW AP A®) jncreases from [0.50 0.56 0.53 0.44]
to [0.67 0.59 0.56 0.56] and [0.82 0.59 0.57 0.58] respec-
tively. Fig. 2 shows some basis images of each result. Slices
of the S x; ANV x5 A® are basis images in our setting,
where image is 2D matrix rather than 1D vector. As the ¢
increases, basis images also become more sparser.

We synthesize simple toy data for testing nsNTF. The

28f = = = NTD Random init. method 7
=== NTD Our init. method

***** NMF Random init. method q
== NMF Our init. method

Frobenius error

A e )

. . . . . . . . .
0 200 400 600 800 1000 1200 1400 1600 1800
Number of iterations

Figure 1. Frobenius error trace of: NMF and NTD with different
initialization methods. Our propose methods dramatically speeds
up convergence. Iterations in initialization step are also added in
these error trace for fair comparisons.

Figure 2. Sample basis images. From top to bottom: (1) 6 = 0;
(2) 0 = 0.5; (3) & = 0.8. As the 0 increases, basis images become
more sparser.

data tensor is generated by

3
x=> AoAR oA 1y 31)

r=1
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Figure 3. From left to right: (1) original signal; (2) recovered sig-
nal from the NTF; (3) recovered signal from the nsNTF wihth
0 =0.8;

The nsNTF find original sparse signal successfully.

where AV = A® = A® are 10 x 3 matrices and ele-
ments of V follow i.i.d /(0 0.3%). The original and recov-
ered element of A are shown in Fig. 3. Only the nsNTF
find original sparse signal successfully.

Finally, we show the behavior of NMF and NTD, given
noise-contaminated images. Each face images were super-
imposed by ’pepper & salt’ noise. Learned basis images
are shown in Fig. 5, where one can see that basis images
learned by NTD are not sensitive to “pepper & salt’ noise,
whereas those by NMF are deteriorated. Reconstructed im-
ages by NMF and NTD are also shown in Fig. 4, where the
superiority of the NTD regarding the robustness to noise
is observed. Averages peak signal-to-noise ratio (PSNR)
for NMF and NTD are 22.16dB and 24.12dB, respectively.
Most of pixels in a neighborhood are more likely to be sim-
ilar each other, while this is not true in the case of the ’pep-
per & salt’ noise. NMF breaks the neighborhood structure
since it needs reshaping 2D images into 1D vectors. In con-
trast to NTD, 2D neighboring structure is preserved in the
framework of 3-way tensor, leading to better reconstructed
images in the case of the *pepper & salt’ noise. and this is
the reason why NTD is robust to noise.

5. Conclusions

We have presented a method of nonnegative Tucker de-
composition which included NMF, nsNMF, and NTF as its
special cases. Exploiting standard NMF algorithms, we
have derived multiplicative update algorithms for NTD in
a compact form in the framework of tensor algebra. De-
pending on the structure of the core tensor in NTD, existing
methods such as NMF, nsNMF, and NTF emerged. Initial-
ization method which helps fast convergence and sparse-
ness control method (nsNTD and nsNTF) also has been pre-

Figure 4. From top to bottom: (1) original face images; (2) images
contaminated by “pepper & salt’ noise; (3) reconstructed images
by NMF; (4) reconstructed images by NTD.

Figure 5. Basis images learned by (a) NMF and (b) NTD, given a
set of face imaged contaminated by pepper & salt noise.

sented. We have verified our presented methods from nu-
merical experiment with face image data set. Useful behav-
ior of the NTD in image representation and image denoising
has been shown. We are now investigating on analysis of a
large scale sparse tensor with NTD.
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