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The proposed 
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network analysis, 
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model user priorities 

among incoming 
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interest, and a single sender can flood multi-
ple receivers. As a result, users must process 
a large volume of email messages of differ-
ent importance levels.1 Research recently es-
timated that businesses lose US$650 billion 
annually in productivity due to unnecessary  
email interruptions (http://www.forbes.com/ 
2008/10/15/cio-email-manage-tech-cio-cx_ 
rm_1015email.html). There is an urgent 
need to solve this information overload 
problem by developing systems that can 
learn personal priorities from data and iden-
tify important messages for each user.

Personalized email prioritization (PEP) 
has been underexplored. Unlike spam filter-
ing, where people are less concerned with 
sharing individually labeled spam messages, 
PEP research looks at collecting nonspam 
email messages with personally assigned 
importance labels. Few people are will-
ing to share their personal messages due to 
privacy concerns, however, and companies 
such as Google, Yahoo, and Microsoft, that 

have access to customers’ email messages,  
cannot share private data with academic 
institutions for the same reason. Publicly 
available email data, such as the Enron cor-
pus, are insufficient for training and testing 
of PEP systems because they lack personal 
importance judgments. This leaves research-
ers no choice but to collect private data un-
der strict Institutional Review Board (IRB) 
guidelines. Such data-collection processes 
are costly, time consuming, and tedious, 
making it difficult to acquire a large number 
of users with diverse criteria in judging the 
importance of email messages. 

This article presents the first study on 
PEP with a fully personalized method-
ology,2 where only each user’s personal 
email data (textual content and social  
network information) is available for the 
system during the system’s training and 
testing. This is an important assumption 
for the generality of PEP methods—that 
is, we cannot rely on the availability of 

Email is one of the most prevalent personal and business communica-

tion tools today, but it exhibits some significant drawbacks. Unlike tele-

phone conversations or face-to-face meetings, email messages are received  

(after some spam filtering) in the same way regardless of a user’s level of 
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centralized access to customer pri-
vate data in the development cycle 
or evaluation phase, and we can-
not take the liberty of using a par-
ticular user’s private data to build 
models for other users because of the  
potential leak of private information. 
Such strictly separate data makes 
our work fundamentally different 
from research in spam filtering and 
other previous work on email-based 
prediction. (See the “Related Work 
in Personalized Email Prioritization” 
sidebar for other approaches.)

We propose a novel approach that 
combines unsupervised clustering, so-
cial network analysis, semisupervised 
feature induction, and supervised 
classification to model user priori-
ties among incoming email messages. 
We treat the priority prediction task 
as a supervised classification problem 
and use standard support vector ma-
chines (SVMs) as the classifiers. The 
novel part of our approach is the en-
riched representations of email mes-
sages and users, with automatically 
extracted features.

We constructed a data set of ano-
nymized email messages with user-
annotated importance levels (from 1 
to 5) for this study. We use personal 
email data to induce such enriched 
features. A personal social network 
(PSN) is automatically constructed 
for each user based on the messages 
he or she receives. The PSN is a graph 
with nodes that represent email con-
tacts (senders plus recipients in the 
CC lists) and links that indicate pair-
wise email interactions among the 
contacts. We constructed a PSN for 
two reasons: 

•	 We do not want our method to rely 
on the unrealistic assumption that 
multiuser private data are always 
available for system development 
and model optimization.

•	 A PSN better represents a user’s 
social activity than a global so-
cial network, which might include 
noisy features and de-emphasize  
personalization in the inductive 
learning of important features 
through the network. 

By analyzing each user’s PSN graph 
structure, our system can capture 
social groups of senders and recipi-
ents who have similar email interac-
tion patterns or similar social roles 
and possibly share similar priority 
judgments over email messages. Our 
system can also propagate priority 
scores through a personal email net-
work, from user-labeled messages 
(training instances) to other messages 
that do not have user-assigned impor-
tance scores.

Social Clustering
To predict the importance of email 
messages, the sender information 
would be highly informative. For ex-
ample, we might have multiple project 
teams or social activity groups, and 
members in each group might natu-
rally share corecipient lists and have 
similar judgments on message priority 
levels. Thus, capturing such groups 
would help us predict the importance 
of email message senders or recipients.

When we have a limited amount of 
training data, we will likely encounter  

Eric Horvitz and his colleagues built an email alerting 
system that used support vector machines to classify 
newly arrived email messages into two categories—

that is, high or low in terms of utility.1 However, their task 
did not consider personalization or investigate social net-
work analysis.

Joshua Tyler and his colleagues used the Newman Cluster-
ing algorithm to discover social structures from email mes-
sages.2 They found that the automatically discovered social 
structures (such as social leaders) are consistent with human 
interpretation of organizational structures. However, they 
did not focus on the email prioritization problem.

Carman Neustaedter and her colleagues defined metrics 
for measuring the social importance of individuals based on 
the From, To, and CC fields in email messages and recorded 
user actions in replying and reading email.3 They used these 
metrics for retrieving old email messages rather than priori-
tization of new messages.

Lisa Johansen and her colleagues used social clustering to 
predict the importance of email messages.4 The major dif-
ference between their method and ours is that their clus-
ters were induced from a community social network, not 
based on personal social networks or the content informa-
tion in email messages.

Lastly, Fei-Yue Wang and his colleagues discussed the the-
oretical, methodological, and technological underpinnings 
of social computing in general and reviewed the major  
application areas.5 

With this article, we leverage the good ideas in these pre-
vious works and develop new techniques for personalized 
email prioritization.
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senders who have no labeled mes-
sages in the training set during the 
testing phase. If we can identify such 
users as members of groups based on 
unsupervised clustering, we can in-
fer each user’s priorities for messages 
from other group members. That is, 
we can cluster users based on their in-
teraction patterns in a personal email 
data set. The cluster membership of 
the sender of each email message can 
be treated as the message’s features 
(in addition to a standard bag-of-
word representation) when inferring 
its importance. The importance of 
each sender group can be automati-
cally learned by SVM classifiers.

We chose the Newman Clustering 
(NC) algorithm, which researchers 
have used to successfully find social 
structures in large organizations.3 It 
defines the edge-betweenness (which 
we discuss in detail later) as a measure 
of the shortest path(s) going through 
a specific link among all-pairs short-
est paths. A link with a high edge- 
betweenness score is crucial for con-
necting two highly connected compo-
nent clusters. By deleting links with high 
edge-betweenness scores and removing 
those edges from the graph, we obtain 
disconnected component clusters.

One way to control the granular-
ity level of clusters is to prespecify 
the number of desired clusters, which 
might be based on domain knowl-
edge about the social networks in 
email or automatically determined 
by algorithms with a certain opti-
mization criterion or heuristic mea-
sure. For example, the NC method 
can pick the number that yields the 
largest decrease in the sum of edge-
betweenness per cluster.4 We use this 
method in our work.

Unsupervised Learning of 
Social Importance Features
We measure the social importance 
levels of contacts without relying on 

the availability of labeled training 
data. We examine multiple graph-
based metrics to characterize the so-
cial centrality of each contact in a 
PSN. Most of these metrics have been 
used in social network analysis (SNA) 
or link structure analysis but have 
not been studied in any depth with 
respect to PEP.

Let us define graph G = (V, E) for 
a PSN, where vertices V correspond 
to the contacts and edges E reflect the 
email interactions: Eij = 1 if there is 
(at least) one message from contact i 
to contact j; otherwise Eij = 0.

We have defined seven metrics to 
describe email message features:

•	 in-degree centrality,
•	 out-degree centrality,
•	 total-degree centrality,
•	 clustering coefficient,
•	 clique count,
•	 betweenness centrality, and
•	 PageRank score.

In-degree centrality is a normal-
ized measure for the in-degree of each 
contact (i):
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where |V| is the total number of con-
tacts in the PSN. A high score indi-
cates a popular receiver in the PSN.

Out-degree centrality is a normal-
ized measure for the out-degree of 
each contact (i). It might imply some 
degree of importance, for example,  
as an announcement sender or a  
mailing-list organizer. 
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Total-degree centrality is a nor-
malized measure for the number of 

unique senders and recipients who 
had links with node i. That is, it is the 
simple average of the node’s in-degree 
and out-degree:
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The clustering coefficient measures 
the connectivity among the neighbors 
of node i:
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where Nbr(i) − {x : (Exi ≠ 0) ∨ (Eix ≠ 0)} 
is the node’s neighborhood and  
Z = |Nbr(i)| ⋅ (|Nbr(i)| − 1) is the 
normalization denominator. Previ-
ous research used this metric to dis-
criminate spam from nonspam email 
messages.5

A clique is generally defined 
as a fully connected subgraph in  
an undirected graph. The clique 
count of node i in our case is de-
fined as

ClqCnt( )i I c i I c
c G

= × ≥( )∈∑ ( , ) | | 3

where G is a PSN graph, c ∈ G is a 
clique, I(c, i) ∈ {0, 1} is the binary in-
dicator of whether clique c contains 
node i, and I(|c| ≥ 3) ∈ {0, 1} is a bi-
nary indicator of whether the size of 
clique c is at least three. This met-
ric reflects the node’s centrality in its  
local neighborhood, taking all the re-
lated nontrivial cliques (including the 
nested ones) into account. We follow 
the convention in clique-based social 
network analyses of ignoring cliques 
of size one or two.

The betweenness centrality is the 
percentage of shortest paths going 
through node i out of all possible 
paths. A high score in this measure 
means that the corresponding person 
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is a contact point between different 
social groups.
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where sjk is the number of all-
pairs shortest paths going through j
and k (from j to k), and sjk(i) is the 
number of all-pairs shortest paths 
going through j and k via i. This met-
ric has been used in social network 
analysis.3

PageRank is a popular method 
in link-analysis research. We use 
it to induce a global measure of im-
portance for email contacts. It is 
recursively defi ned, taking the tran-
sitivity of popularity into account. 
Let us use an N-by-N matrix X
to represent email connections 
among N contacts in a personal 
email data set and defi ne the matrix 
elements as

Xij
ij

j
n

ij

n

n
=

′= ′∑ 1

where nij is the count of messages 
from i to j. Let U be a matrix with el-
ements that have an identical score of 
1/N and defi ne a linear combination 
of X and U as E = (1 − a) X + aU)T

0 < a < 1.
Use an N × 1 vector r (the Page-

Rank vector) to store the impor-
tance scores of the N contacts, and 
set the initial values of its elements to 
be 1/N. Then update this vector iter-
atively: r(k+1) = Er(k). The vector con-
verges to the principal eigenvector of 
matrix E when k is suffi ciently large. 
The stationary vector contains one 
Page Rank score per contact in a per-
sonal email data set.

We call all these metrics the so-
cial importance (SI) features of email 
messages. That is, we represent the 
sender of each message in a personal 
email data set using the automati-
cally extracted SI features, in addi-
tion to the sender ID. The enriched 
sender representation is a part of 
the message representation. These 
features (together with other mes-
sage features) are weighted by SVM 
classifi ers, based on how informa-
tive they are in making priority 
predictions. 

Semisupervised Learning of 
Social Importance Features
Semisupervised SI features are those 
we induce based on both the user-
assigned importance labels (in fi ve 

levels) of training instances (mes-
sages) and the graphical structure of 
email interactions in a personal email 
data set. Typically, only a small sub-
set of the messages has importance 
labels. We propose the Level-Sensitive 
PageRank (LSPR) approach to propa-
gate labeled importance of the train-
ing examples to other messages and 
connected users.

We defi ne V as an N-by-5 matrix, 
where rows represent users (indexed 
by i = 1, 2, …, N), columns are for 
importance levels (labeled as k = 1, 2, 
3, 4, 5), and each cell is the number 

of messages received by a user and at 
the corresponding level. We further 
normalize each column vector of the 
matrix using the sum of all elements 
in each column as the denominator to 
normalize each column element. The 
normalized column vector vk shows 
the proportions of the labels at level 
k over users. Vector vk is sparse when 
the user only labels a few instances at 
level k in the training set.

Treating vk as the initial label dis-
tribution at level k over all users and 
assuming labels are transitive from 
user to user through their email 
connections, we defi ne the iterative 
update of an LSPR vector as

p X p pk
t T

k
t

ka a( ) ( ) ( )( )+ = − +1 11 (1)

In the fi rst term in the formula, ma-
trix X is the same as we defi ned 
earlier for PageRank. It represents 
the transitional probabilities among 
users based on unlabeled email inter-
actions. The second term in the for-
mula represents the supervised label 
bias over users. Constant a ∈ [1, 0] 
controls the balance between the two 
terms in the iterative updating of the 
LSPR vector. The vector converges to 
the principal eigenvector of matrix 
Ek = (1 − a)XT + avk1T when t is suf-
fi ciently large.6 The stationary LSPR 
vector is denoted as pk, with elements 
that sum to one, representing the ex-
pected proportion for each node to 
have the importance labels at level k. 

Applying this calculation to impor-
tance level k = 1, 2, 3, 4, and 5, we 
obtain fi ve stationary vectors in ma-
trix P = (p1, p2, p3, p4, p5). The row 
vectors of matrix P provide a 5D rep-
resentation. We use the LSPR row 
vectors as additional features to rep-
resent each message, as the semisu-
pervised LSPR features of its sender. 
The elements in matrix P are typi-
cally small when the number of 

our method leverages 

the frequencies and 

importance of messages, 

while conventional link-

analysis methods use only 

one type of directed link.

IS-25-04-Yang.indd   5 08/07/10   4:17 PM



6	 	 www.computer.org/intelligent	 IEEE INTELLIGENT SYSTEMS

S o c i a l  L e a r n i n g

users (N) in the personal email net-
work is large. To make the values of 
LSPR features in a range comparable 
with those of other features (such as 
term weights and the values of unsu-
pervised SI features) in the enriched 
vector representation of email mes-
sages, we renormalize each LSPR sub-
vector (5D) into a unit vector. That is, 
we use the sum of the five elements as  
the denominator of each element in 
the normalization.

Our formulae for LSPR are  
algorithmically similar to those in 
Topic Sensitive PageRank (TSPR) and  
Personalized PageRank (PPR) meth-
ods, where a topic distribution is used 
to represent the interest of each user 
over webpages. In fact, the LSPR 
method is inspired by the TSPR and 
PPR work. However, in our method, 
the graph structure is constructed us-
ing two types of objects (people and 
messages), whereas the graph struc-
tures in TSPR and PPR (and in Page
Rank) have only one type of node  
(webpages). Our method also lever-
ages both the frequencies and impor-
tance of messages, while conventional 
link-analysis methods use only one type 
of directed link. More importantly, we 
focus on effectively using a partially  
labeled personal email network and 
assume the transitivity of importance 
among users is sensitive to the impor-
tance levels of messages exchanged 
among these users.

Experiments
We recruited a set of subjects, mostly 
from the Language Technologies In-
stitute at Carnegie Mellon University, 
including faculty members, staff, and 
graduate students. Each subject was 
asked to label at least 400 nonspam 
messages during a one-month period 
using a five-level scale. Only seven us-
ers actually labeled more than 200 
messages, which we used as the col-
lected data for our experiments.

In each personal data collection, 
we sorted the email messages tempo-
rally and split the sorted list into 70 
and 30 percent portions. We used the 
70 percent portion for training and 
parameter tuning and the remaining 
30 percent for testing. The full set of 
training examples was used to induce 
the NC and SI features. For LSPR, 
we used all the messages in the train-
ing set to propagate 30, 60, 90, 120, 
and 150 labels in the training set, re-
spectively. The average number of 
training messages per user was 395 
(with the maximum of 1,225 and the  
minimum of 164); the average num-
ber of test messages per user was 169 
(with the maximum of 525 and the 
minimum of 70).

Preprocessing
We applied a multipass preprocess-
ing to the email messages. First, we 
applied email address canonicaliza-
tion. Because each person might have 
multiple email accounts, it is neces-
sary to unify them before applying 
social network analysis. For instance, 
“John Smith” john.smith+@cs.cmu.
edu, “John” smith@cs.cmu.edu, and 
“John Smith” john747@gmail.com 
might be the email addresses of the 
same person. We used regular ex-
pression patterns and longest string 
matching algorithms to identify email 
addresses that might belong to the 
same user. We then manually checked 
all the groups and corrected the er-
rors in the process. We also applied 
word tokenization and stemming us-
ing the Porter stemmer; we did not 
remove stop words from the title and 
body text.

Features
The basic features (BF) are the tokens 
in the From, To, CC, Title, and Body 
Text sections in email messages. We 
used a vector to represent those fea-
tures for each email message with a 

dimension v, the vocabulary size, 
which we call the BF subvector.

We used an m-dimensional subvec-
tor to represent the NC features for 
each email message’s sender, where m 
is the number of clusters produced by 
the clustering algorithm based on the 
user’s personal social network. An el-
ement of the subvector is 1 if the user 
belongs to the corresponding cluster 
and 0 otherwise; each user can be-
long to only one cluster. If the sender 
of a message in the test set is not in 
the training set, he or she is assigned 
to a default cluster. We calculated the 
sum of the importance values of mes-
sages in each cluster and used it as the 
cluster’s importance value. The clus-
ter with the median importance value 
is the default cluster.

We also used another 7D subvec-
tor to represent the SI features per 
user, with real-valued elements, and a 
5D subvector to represent each user’s 
LSPR features, with elements that are 
the mixture weights of the user at the 
five importance levels. If the sender of 
a message in the test set was not in 
the training set, the LSPR subvector 
of this message was assigned to the 
mean of LSPR vectors by default.

The concatenation of all these sub-
vectors yields a synthetic vector per 
email message as its full representation.

Classifiers
We used five linear SVM classifiers 
to predict the importance level per 
email message. Each classifier takes 
each message’s vector representation 
as its input and produces a score with 
respect to a specific importance level. 
The importance level with the highest 
score is taken as the predicted impor-
tance level by our system for the cor-
responding input message. We used 
the standard SVMlight software pack-
age (http://svmlight.joachims.org). 

We ran the SVM classifiers with 
messages represented using the BFs 
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only as the performance 
baseline. We also ran 
the SVM classifiers with  
additional features, in-
cluding the unsupervised 
SI features, the NC fea-
tures, and the semisu-
pervised LSPR features. 
We named the baseline 
system SVM.BF and the 
system using the combi-
nation of all the feature 
types SVM.BF+. We var-
ied the number of labeled 
messages used in train-
ing the SVM classifiers 
from 30 to 150 labeled 
messages per user and 
measured the system per-
formance under these con-
ditions. All the training- 
set sizes are relatively 
small, compared to large 
data collections used in 
benchmark evaluations 
for text categorization—
for example, the RCV1 
news story collection has 
780,000 training exam-
ples for 103 categories. 
This is part of the diffi-
culty we must deal with 
for PEP.

Metrics
We used mean absolute error (MAE) 
as the main evaluation metric, which 
is standard in evaluating systems that 
produce multilevel discrete predic-
tions. MAE is defined as

MAE = −=∑1 1/ | |N y yi
N

i iˆ

where N is the number of messages in 
the test set, yi is the true importance 
level of message i, and ŷi  is the pre-
dicted importance level for that mes-
sage. Because we have five levels of im-
portance, the MAE scores range from 
0 (best) to 4 (worst).

There are two conventional ways 
to compute the performance average 
over multiple users. The first, micro-
averaged MAE, involves pooling the 
test instances from all users to ob-
tain a joint test set and computing 
the MAE on the pool. The other way, 
macro-averaged MAE, is to com-
pute the MAE on the test instances 
of each user and then take the aver-
age of the per-user MAE values. The 
former gives each instance an equal 
weight and tends to be dominated by 
the system’s performance on the data 
of users who have the largest test sets. 
The latter gives each user an equal 
weight. Both methods can be infor-
mative, so we present the evaluation 

results in both variants of 
the metric.

Results
Figure 1 shows the per-
formance of SVM.BF and 
SVM.BF+ conditioned on 
varying training-set sizes 
of 30 to 150 labeled mes-
sages. Adding the social-
network based features 
(SI, NC, and LSPR) sig-
nificantly reduced the im-
portance prediction errors 
in both micro- and macro-
averaged MAE. We con-
ducted Wilcoxon signed-
rank tests to compare the 
results of SVMs using only 
BF features versus using the 
additional features. The p-
values in these conditions 
are below 1 percent except 
in one case, when the train-
ing-set size is 60 and the  
p-value is 5 percent. These 
results strongly support  
the advantage of leveraging 
the social-network features 
in combination with con-
tent-based features over the 
baseline approach.

Parameter Tuning
We tuned two parameters per user on 
held-out validation data: the margin 
parameter C in SVM, which controls 
the balance between training-set er-
rors and model complexity, and the 
parameter a in LSPR, which balances 
the two terms in Equation 1. We split 
each user’s training set into 10 sub-
sets and repeated a 10-fold cross vali-
dation procedure: using one subset 
for validation and the union of the re-
maining subsets for training the SVM 
with a specific value of C, or running 
LSPR with a specific value of a.

We repeated this procedure on 10 
validation subsets, with the C values 

Figure 1. Performance of support vector machines (SVMs) in 
(a) micro-averaged mean absolute error (MAE) and (b) macro-
averaged MAE. The MAE ranges from 0 to 4, where a lower value 
means better performance. Results from the baseline system 
(SVM.BF) and the system using the combination of all the feature 
types (SVM.BF+) strongly support the advantage of leveraging 
the social-network features in combination with content-based 
features over the baseline approach.
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in the range from 10−3 to 103, and 
the values in the range from 0.05 to 
0.25. The value of each parameter 
that yielded the best average perfor-
mance on the 10 validation sets was 
selected for evaluation on the test set 
of each user. We found the system’s 
performance relatively stable (with 
small variance) with the settings of  
a ∈ [0.05, 0.25] and C ∈ [1, 1,000].

Computational Efficiency
The computational cost consists of 
several parts:

1.	 unsupervised NC clustering and 
SI-feature induction,

2.	 semi-supervised induction of LSPR 
features,

3.	 supervised training of SVM clas-
sifiers (5 per user), and

4.	 online construction of NC, SI, 
and LSPR features for new send-
ers in the test set but not in the 
training set, and priority predic-
tion on test messages.

Parts 1 through 3 belong to the off
line training and validation phase, 
and part 4 belongs to the online  

testing phase performed for each in-
stance. We measured the CPU time 
on an Intel Xeon 3.16-GHz proces-
sor in training and testing over the 
data set of one user (who has the larg-
est data set). Part 1 took 12 seconds, 
part 2 took 6.7 seconds, and parts 3 
and 4 took under a second each.

Because the data sets were rela-
tively small, computational cost was 
not an issue in our experiments. In 
future applications of our method, 
the training data from some users 
could grow much larger; in that case, 
sampling from the available training 
data is a potential solution for effi-
cient computation. For example, we 
could use the most recent few hun-
dred (or thousands) of messages for 
updating the features and classifiers 
periodically offline (once a day or 
once a week as needed).

O ur experiments demonstrate 
the effectiveness of our pro-

posed approach on personal email 
data from multiple users. Future 
work would include collecting more 

data and comparative studies on dif-
ferent clustering, graph mining, and 
classification algorithms with respect 
to PEP.
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