
So what’s the difference between a session type
and an ordinary type anyway?

Frank Pfenning

Computer Science Department
Carnegie Mellon University

Thirty Years of Session Types
October 22, 2023

Apologies for impressionistic style and lack of references

1 / 21

What’s not really different?

Ordinary: data type vs. phrase type

Session: message type vs. behavioral type

Ordinary: intuitionistic propositions as simple types

Session: linear propositions as session types

Ordinary: preservation and progress

Session: session fidelity and deadlock freedom

2 / 21

So what is special?

1 Integration of global and local types

Global types ∼ specifications
Local types ∼ implementations

2 Substructural (linear or affine) types

Reflect process state
Channel types evolve during communication

This talk focuses on 2

What have we learned more broadly?

3 / 21

Example: a Store (or Network)

storeA = N{ ins : A ⊸ storeA,
del : ⊕{none : 1, some : A⊗ storeA } }

Typing judgment for processes ∆ ⊢ P :: (x : A)

Process P provides channel x of type A
P is client to channels in ∆ = (x1 : A1, . . . , xn : An)

In linear logic / process calculus

prop/type provider action continuation
A N B external choice receive choice A or B
A ⊸ B implication receive channel a : A B
A⊕ B internal choice send choice A or B
A⊗ B conjunction send channnel a : A B
1 unit send unit (none)

4 / 21

Type Evolution

storeA = N{ ins : A ⊸ storeA,
del : ⊕{none : 1, some : A⊗ storeA } }

server :: (s : storeA) =
recv s (ins⇒ % s : A ⊸ storeA

recv s (x ⇒ % s : storeA
. . .)

| del⇒ % s : ⊕{none : 1, some : A⊗ storeA }
send s some ; % s : A⊗ storeA
send s y ; % s : storeA
. . .)

Even in a languages like Go, channels have a fixed type

But see Ferrite session type library for Rust!

5 / 21

Sample Rules (External Choice)

∆ ⊢ Pℓ :: (x : Aℓ) (∀ℓ ∈ L)

∆ ⊢ recv x (ℓ⇒ Pℓ)ℓ∈L :: (x : N{ℓ : Aℓ}ℓ∈L)
NR

k ∈ L ∆, x : Ak ⊢ Q :: (z : C)

∆, x : N{ℓ : Aℓ}ℓ∈L ⊢ send x k ; Q :: (z : C)
NL

6 / 21

Preservation and Progress

A configuration is a collection of semantic objects proc(P)

Dynamics specified using multiset rewriting

proc(recv c (ℓ⇒ Pℓ)ℓ∈L), proc(send c k ; Q) (k ∈ L)
−→ proc(Pk), proc(Q)

Type evolves from c : N{ℓ : Aℓ} to c : Ak

Server and client agree on type change

c is a private channel between the two processes

Action is internal to the configuration

Preservation (= session fidelity) holds

Progress (= deadlock freedom) also holds

7 / 21

Did we back ourselves into a corner?

A lot of communication is not synchronous

A lot of computation is not linear (eg, reuses data)

A lot of communication is not dyadic (eg, multicast)

Fortunately, the principles of (local) session types extend

Generalize from synchronous/linear/dyadic

8 / 21

Step 1: Asynchronous Communication

Messages as processes

Requires continuation channels for type safety

Example: internal choice
From

∆, x : Aℓ ⊢ Qℓ :: (z : C) (∀ℓ ∈ L)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ recv x (ℓ⇒ Qℓ)ℓ∈L :: (z : C)
⊕L

To

∆, x ′ : Aℓ ⊢ Qℓ(x
′) :: (z : C) (∀ℓ ∈ L)

∆, x : ⊕{ℓ : Aℓ}ℓ∈L ⊢ recv x (ℓ(x ′)⇒ Qℓ(x
′)) :: (z : C)

⊕L

Right rule now types a message as process

k ∈ L

x ′ : Ak ⊢ send x k(x ′) :: (x : ⊕{ℓ : Aℓ}ℓ∈L)
⊕R

9 / 21

Step 1: Asynchronous Dynamics

Message has continuation channel

Receiver has a continuation process

proc(send c k(c ′)), proc(recv c (ℓ(x ′)⇒ Qℓ(x
′))ℓ∈L) (k ∈ L)

−→ proc(Qk(c
′))

We can still track the provenance of a channel

Ultimately yields data layout, functionally

10 / 21

Example Revisited

storeA = N{ ins : A ⊸ storeA,
del : ⊕{none : 1, some : A⊗ storeA } }

server :: (s : storeA) =
recv s (ins(s ′)⇒ % s ′ : A ⊸ storeA

recv s ′ ((x , s ′′)⇒ % s ′′ : storeA
. . .)

| del(s ′)⇒ % s ′ : ⊕{none : 1, some : A⊗ storeA }
send s ′ some(s ′′) ; % s ′′ : A⊗ storeA
send s ′′ (y , s ′′′) ; % s ′′′ : storeA
. . .)

11 / 21

Step 2: Multicast

Distinguish linear channels xL and nonlinear channels xS

Distinguish ephemeral semantic objects proc(P), msg(P) and
persistent semantic objects !msg(P).

Ephemeral objects are consumed during transitions
Persistent objects are subject to garbage collection

We can model multicast using persistent messages

Sample rules: internal choice / sending a label

proc(send cL k(c
′
L)) −→ msg(send cL k(c

′
L))

msg(send cL k(c
′
L)), proc(recv cL (ℓ(x

′
L)⇒ Qℓ(x

′
L))ℓ) −→ proc(Qk(c

′
L))

proc(send cS k(c′S)) −→ !msg(send cS k(c′S))
!msg(send cS k(c′S)), proc(recv cS (ℓ(x′S)⇒ Qℓ(x

′
S))ℓ) −→ proc(Qk(c

′
S))

12 / 21

Step 2: Shared Service

Symmetric with multicast

The server is now persistent, not the message

Spawns a fresh copy of itself upon message receipt

Sample rules: external choice / receiving a label

proc(recv cS (ℓ(x′S)⇒ Pℓ(x
′
S))) −→ !srv(recv cS (ℓ(x′S)⇒ Pℓ(x

′
S)))

!srv(recv cS (ℓ(x′S)⇒ Pℓ(x
′
S))),msg(send cS k(c′S)) −→ proc(Pk(c

′
S))

We can still track provenance

13 / 21

Step 3: Combining Linear and Nonlinear Types

We use shift to mediate between linear and nonlinear layers

Nonlinear AS ::= AS→ BS | AS × BS | . . . | ↑AL

Linear AL ::= AL ⊸ BL | AL ⊗ BL | . . . | ↓AS

No need to distinguish the syntax of types or processes

The mode signifies dyadic or variadic channel

Mode determines:

Garbage collection for nonlinear processes and messages
No garbage collection for linear processes and messages

This difference is significant

14 / 21

Taking Stock

Starting point:

Synchronous linear session types
Channel type evolves during communication

Now:

Asynchronous session types with continuation channels
Combined linear (no gc) and nonlinear (with gc)
Types do not evolve, due to continuation channels
Provenance can be tracked

Next:

What’s the connection to ordinary types?

15 / 21

Process Composition

Process composition xm ← P(x) ; Q(x)

Dynamics (for linear x and a)

proc(x ← P(x) ; Q(x)) −→ proc(P(a)), proc(Q(a)) a fresh

Statics (all variables and propositions linear except ΓS)

ΓS,∆ ⊢ A ΓS,∆
′,A ⊢ C

ΓS,∆,∆′ ⊢ C
cut

ΓS,∆ ⊢ P(x) :: (x : A) ΓS,∆
′, x : A ⊢ Q(x) :: (z : C)

ΓS,∆,∆′ ⊢ (x ← P(x) ; Q(x)) :: (z : C)
cut

16 / 21

Compiling Functional Programs

At this point, session types ∼ ordinary types
Compile functional expressions with a destination d

JeK d = P

where Γ ⊢ e : Am implies Γ ⊢ JeK d :: (d : Am)
Translation is compositional

Je1 e2K d = x1 ← Je1K x1 ;
x2 ← Je2K x2 ;
send x1 (x2, d)

Jλx . eKd = recv d ((x , d ′)⇒ JeK d ′)

JxKd = fwd d x

Example

Jλx . xK d = recv d ((x , d ′)⇒ fwd d ′ x)

17 / 21

Sequential Interpretation

Parallelism/concurrency is possible, but not necessary

Example: call-by-need

Je1 e2K d = x1 ← Je1K x1 ; % run Je1K x1 until it blocks on x1
x2 ← Je2K x2 ; % suspend Je2K x2
send x1 (x2, d) % pass x2 and d to function x1

Jλx . eKd = recv d ((x , d ′)⇒ JeK d ′)

JxKd = fwd d x

Can also represent call-by-value and futures

18 / 21

Circling back: so what is special?

1 Integration of global and local types

Global types ∼ specifications
Local types ∼ implementations

2 Substructural (linear or affine) types

Reflect process state
Channel types evolve during communication

3 Revise and extend

Asynchronous communication
Continuation channels (with channel provenance)
Nonlinear types (shared servers and multicast)
Combining linear and nonlinear types

4 Import to “ordinary” functional programming

With futures, call-by-need, call-by-value
Cannibalized session types for mixed linear/nonlinear types
(significant for memory (re)use)
Cannibalized continuation channels for data layout

19 / 21

What I have learned

The significance of linear types

The significance of mixed linear/nonlinear types

The elegance of futures

The connection between channel provenance and data layout

20 / 21

What I still don’t know

Fundamentally, what are global session types?

How are they connected to local session types?

What does this mean beyond process communication?

21 / 21

