Message-Passing Concurrency and Substructural Logics

Frank Pfenning

Department of Computer Science
Carnegie Mellon University

Tutorial, POPL 2018
January 8, 2018
Tutorial Objectives

- High-level abstractions for message-passing concurrent programming
- Session types as robust and expressive organizing force
- Substructural logics as a foundation for concurrency
- Concrete instantiation of ideas in one retro language, Concurrent C0
- Entry to literature
- Solved problems and current questions
Tutorial Approach

- Organized around **specification and programming**
- Three examples
 - Message streams (prime number sieve)
 - Concurrent data structure (queue)
 - Shared service (message buffer)
- Arrive at working code
- Extract essence and relate to logic
Tutorial Outline

■ Part I: Programming in Concurrent C0
 ■ Message streams (prime number sieve)
 ■ Concurrent data structure (queue)

■ Part II: Substructural Logics
 ■ Linear sequent calculus
 ■ Correspondence with message-passing concurrency

■ Part III: Sharing
 ■ Stratified session types
 ■ Manifest sharing via adjunctions
A process \textit{count} produces the stream of numbers 2, 3, 4, 5, \ldots up to some limit.

A process \textit{primes} receives the first number p and passes it on, since it must be prime.

Then \textit{primes} spawns a new filter process which removes all multiples of p from its input stream and recurses.

In steady state we have:

- one producer process (\textit{count})
- one filter process for each prime number already output (\textit{filter p_i})
- one process (\textit{primes}) that outputs only primes
A Session Type for Streams

- A data structure of lists might be described as
 \[\text{list} = \{ \text{cons} : \text{int} \times \text{list}, \text{nil} : 1 \} \]
 \[\text{cons}(2, \text{cons}(3, \ldots, \text{nil}())) : \text{list} \]

- We describe a \textit{stream} of integer messages along some communication channel analogously
 \[\text{stream} = \bigoplus \{ \text{next} : \langle \text{!int} ; \text{stream} \rangle, \text{empty} : \langle \rangle \} \]
 next, 2, next, 3, \ldots, empty

 - \[\bigoplus \{ l_1 : A_1, \ldots, l_n : A_n \} \text{ sends one of the } l_i \text{ and continues according to } A_i \]
 - \[\langle A_1 ; \ldots ; A_n \rangle \text{ describes a sequence of interactions} \]
 - \text{!int sends an integer}
 - \langle \rangle \text{ closes the channels}
Creating a Stream (live: primes.c1)

```c
choice stream {
    <!int ; !choice stream> Next;
    < > Empty;
};
typedef <!choice stream> stream;

stream $c$ count(int n) {
    for (int i = 2; i < n; i++)
        //invariant $c : stream$
        {
            $c$.Next; /* $c : <!int ; stream> */
            send($c, i); /* $c : stream */
        }
    $c$.Empty; /* $c : < > */
    close($c);
}
```
Takeaways

- !<tp> sends a value $v : <tp>$
- !choice <name> sends a label (internal choice)
- $<ch>$ represents channel variables
- stream l count(...) {...} forks a new process and provides a fresh channel $l : \text{stream}$ each time it is called
- Session type of l changes during communication
- Channel types must be loop invariant
- Closing a channel terminates the providing process
Using a Stream (live: primes.c1)

```c
void print_stream(stream $s) {
    while (true) {
        switch ($s) {
            case Empty: { /* $s : < > */
                wait($s);
                print("\n");
                return;
            }
            case Next: { /* $s : <!int ; stream> */
                int x = recv($s); /* $s : stream */
                printint(x); print(" ");
                break;
            }
        }
    }
}

int main() {
    stream $nats = count(100);
    print_stream($nats);
    return 0;
}
```
Takeaways

- Client performs complementary actions to provider
- `switch ($<ch>) {...} receives and branches on label`
- `<tp> x = recv($<ch>); receives a basic data value`
- Channels behave **linearly**:
 - Guarantees **session fidelity**
 - All messages must be consumed
stream t filter(int p, stream s) {
 switch (s) {
 case Empty: {
 wait(s);
 t.Empty; close(t);
 }
 case Next: {
 int x = recv(s);
 if (x % p != 0) {
 t.Next;
 send(t, x);
 }
 t = filter(p, s); /* tail-call */
 }
 }
}
Takeaways

- Processes always **provide** channels
- Process may also **use** channels
- Provider/client send/receive actions are complementary
- Used channels must close before provided channels
- Tail calls can be used instead of loops
Generating Primes (live: primes.c1)

```c
stream $p$ primes(stream $s$) {
    switch ($s$) {
        case Empty: {
            wait($s$); $p$.Empty; close($p$);
        }
        case Next: {
            int $x$ = recv($s$);
            $p$.Next; send($p$, $x$);
            stream $t$ = filter($x$, $s$);
            $p$ = primes($t$);
        }
    }
}

int main() {
    stream $nats$ = count(100);
    stream $primes$ = primes($nats$);
    print_stream($primes$);
    return 0;
}
```
Takeaways

- `$<ch> = <proc>(...);` (spawn) creates fresh channel provided by new process instance
- `$<ch1> = $<ch2>` (forwarding)
 - Identifies channels `$<ch1>` and `$<ch2>`
 - Terminates provider of `$<ch1>`
 - Converse of spawn
- Strong identification between a process and the channel it provides
- Prime sieve creates $n + 2$ (lightweight) processes to produce the nth prime
- Implementation uses threads (C) or goroutines (Go)
Part I: Programming in Concurrent C0
- Message streams (prime number sieve)
- Concurrent data structure (queue)

Part II: Substructural Logics
- Linear sequent calculus
- Correspondence with message-passing concurrency

Part III: Sharing
- Stratified session types
- Manifest sharing via adjunctions
A Simple Buffer

- So far, all messages flow in the same direction through the network of processes.
- In contrast, a simple buffer process is responsive.

receive Ins, 1, Ins, 7, Del,
send Some, 1
receive Ins, 8, Del,
send Some, 7,
receive Del,
send Some, 8,
receive Del
send None, (close)

- Labels received signify an external choice.
External Choice

- External choice \(\&\{\ell_1 : A_1, \ldots, \ell_n : A_n\} \) receives one of the \(\ell_i \) and continues according to \(A_i \).
- \(?\text{int}\) receives an integer.
- The buffer interface:

 \[
 \text{buffer} = \&\{\text{Ins} : \langle ?\text{int} ; \text{buffer} \rangle, \text{Del} : \text{buffer_response}\}
 \]

 \[
 \text{buffer_response} = \oplus\{\text{Some} : \langle !\text{int} ; \text{buffer} \rangle, \text{None} : \langle \rangle\}
 \]

- Internal to the process, use a sequential imperative queue.
choice buffer {
 <!int ; ?choice buffer> Ins;
 <!choice buffer_response> Del;
};
choice buffer_response {
 <!int ; ?choice buffer> Some;
 < > None;
};
typedef struct queue* queue_t;
queue_t new_queue(int capacity)
//@requires 1 <= capacity && capacity < (1<<20);
//@ensures \result != NULL;
;
bool is_empty(queue_t q)
//@requires q != NULL;
;
bool is_full(queue_t q)
//@requires q != NULL;
;
/* enqueing will drop x if q full */
void enq(queue_t q, int x)
//@requires q != NULL;
;
/* dequeing will return 0 if q empty */
int deq(queue_t q)
//@requires q != NULL;
;
buffer b new_buffer(int capacity) {
 queue_t q = new_queue(capacity);
 while (true) {
 switch (b) {
 case Ins: { /* b : ![int ; buffer> */
 int x = recv(b); /* b : buffer */
 enq(q, x);
 break;
 }
 case Del: { /* b : ![choice buffer_response > */
 if (is_empty(q)) {
 b.None; close(b);
 } else {
 int x = deq(q);
 b.Some; send(b, x);
 }
 break;
 }
 }
 }
}
Takeaways

- Local process state may be complex
- Responsive systems rely on interaction between external and internal choice
- Processes offering an external choice have a concurrent object-oriented flavor
```c
int main () {
    buffer $b = new_buffer(10);
    $b.Ins; send($b,1);
    // $b.Ins; send($b,7);
    $b.Del;
    switch ($b) {
        case None: error("bad!");
        case Some: {
            assert(1 == recv($b));
            break;
        }
    }
    $b.Del;
    switch ($b) {
        case None: {
            wait($b);
            break;
        }
        case Some: error("very bad!");
    }
    print("Yes!\n");
    return 0;
}
```
Tutorial Outline

- **Part I: Programming in Concurrent C0**
 - Message streams (prime number sieve)
 - Concurrent data structure (queue)
- **Part II: Substructural Logics**
 - Linear sequent calculus
 - Correspondence with message-passing concurrency
- **Part III: Sharing**
 - Stratified session types
 - Manifest sharing via adjunctions
What Does This Have To Do With Substructural Logic?
Linear Sequent Calculus

- Linear sequent: from antecedents Δ prove succedent C

$A_1, \ldots, A_n \vdash C$

- Substructural: each antecedent must be used exactly once in proof (no weakening or contraction)
Judgmental Rules

- **Identity**: From antecedent A we can prove succedent A

 $\Gamma \vdash A \quad \text{id}_A$

- **Cut**: If we can prove succedent A we are allowed to assume antecedent A

 $\Delta \vdash A, \Delta', A \vdash C \quad \text{cut}_A$

 $\Delta', \Delta \vdash C$

- **Harmony**: identity* and cut are admissible
Each antecedent and the succedent represent a channel for communication

\[
x_1 : A_1, \ldots, x_n : A_n \vdash P :: (z : C)
\]

- Process \(P \) represents the proof of \(\Delta \vdash C \)
- Process \(P \) provides channel \(z : C \)
- Process \(P \) uses channels \(x_i : A_i \)
Annotate rule with process expressions

\[\Delta \vdash P :: (x : A) \quad \Delta', x : A \vdash Q :: (z : C) \]

\[\Delta', \Delta \vdash (x = P ; Q) :: (z : C) \] cut

Spawned process \(P \) provides along fresh channel \(x \)

Continuation \(Q \) is client of \(P \), using \(x \)

Other available channels (in \(\Delta', \Delta \)) are distributed between \(P \) and \(Q \).

Example (from prime sieve):

```plaintext
stream $nats = count(100);
stream $primes = primes($nats);
```
Identity as Forward

- Annotate rule with process expressions

\[
y : A \vdash (x = y) :: (x : A)
\]

- Forwarding process \((x = y)\) identifies \(x\) and \(y\)

- Example (stream constructor):

```plaintext
stream $l$ cons(int $x$, stream $k$) {
    $l$.Next;  /* $k : stream \vdash \downarrow$ $l : <!int ; stream> */
    send($l, $x);  /* $k : stream \vdash \downarrow$ $l : stream */
    $l = $k
}
```
Aside: π-Calculus

- Spawn $x = P ; Q$ corresponds to parallel composition with a private channel
 \[(\nu x)(P \mid Q)\]

- But the π-calculus does not express threads of control
- Identification $x = y$ does not have a direct analogue
As right and left rules of the sequent calculus

\[
\frac{\Delta \vdash A}{\Delta \vdash A \oplus B} \quad \lor R_1 \quad \frac{\Delta \vdash B}{\Delta \vdash A \oplus B} \quad \lor R_2
\]

\[
\frac{\Delta', A \vdash C \quad \Delta', B \vdash C}{\Delta', A \oplus B \vdash C} \quad \lor L
\]
Key step in showing harmony is cut reduction

Replaces a cut at a compound proposition by cut(s) at smaller propositions

For example:

\[\frac{D}{\Delta \vdash A} \quad \frac{E_1}{\Delta', A \vdash C} \quad \frac{E_2}{\Delta', B \vdash C} \implies \frac{\Delta', A \lor B \vdash C}{\Delta', \Delta \vdash C} \]

\[\frac{D}{\Delta \vdash A} \quad \frac{E_1}{\Delta', A \vdash C} \implies \frac{\Delta', \Delta \vdash C}{\Delta', \Delta \vdash C} \]

\[\frac{\Delta \vdash A \quad \Delta', A \vdash C}{\Delta', \Delta \vdash C} \]

\[\frac{\Delta \vdash A \quad \Delta', A \vdash C}{\Delta', \Delta \vdash C} \]
Cut Reduction as the Engine of Computation

- Cut reduction is sequent calculus counterpart of substitution
- Cut reduction is more fine-grained than substitution
- Cut reduction is communication
- One premise of the cut has information to impart to the other premise

\[
\begin{align*}
\Delta \vdash A & \quad \Delta \vdash A \lor B \\
\Delta \vdash A \lor B & \quad \Delta', A \vdash C \\
\Delta', A \lor B \vdash C & \quad \Delta', B \vdash C \\
\Delta', A \lor B \vdash C & \quad \Delta', A \lor B \vdash C \\
\Delta', A \lor B \vdash C & \quad \Delta', A \lor B \vdash C
\end{align*}
\]

\[
\begin{align*}
\Delta \vdash A & \quad \Delta' \vdash A \\
\Delta, A \vdash C & \quad \Delta, A \vdash C \\
\Delta, A \vdash C & \quad \Delta, A \vdash C
\end{align*}
\]
Internal Choice as Sending a Label

- As right and left rules of the sequent calculus
 \[
 \begin{align*}
 \Delta \vdash P :: (x : A) & \quad \forall R_1 \quad \Delta \vdash P :: (x : B) \quad \forall R_2 \\
 \Delta \vdash (x.\pi_1 ; P) :: (x : A \oplus B) & \quad \Delta \vdash (x.\pi_2 ; P) :: (x : A \oplus B)
 \end{align*}
 \]

 \[
 \begin{align*}
 \Delta', x : A \vdash Q_1 :: (z : C) & \quad \Delta', x : B \vdash Q_2 :: (z : C) \quad \forall L \\
 \Delta', x : A \oplus B \vdash \text{case } x (\pi_1 \Rightarrow Q_1 | \pi_2 \Rightarrow Q_2) :: (z : C)
 \end{align*}
 \]

- Observe how the type of the channel \(x\) changes

- Cut reduction as communication

 \[
 \begin{align*}
 (x.\pi_1 ; P) | (\text{case } x (\pi_1 \Rightarrow Q_1 | \pi_2 \Rightarrow Q_2)) \quad \rightarrow \quad P | Q_1 \\
 (x.\pi_2 ; P) | (\text{case } x (\pi_1 \Rightarrow Q_1 | \pi_2 \Rightarrow Q_2)) \quad \rightarrow \quad P | Q_2
 \end{align*}
 \]

- Concrete syntax in CC0 uses switch
Generalize to Labeled Internal Choice

- \(A \oplus B \triangleq \oplus\{\pi_1 : A, \pi_2 : B\} \)
- Generalized left and right rules

\[
\begin{align*}
\Delta \vdash (k \in L) \quad & \quad \Delta \vdash P :: (x : A_k) \quad \lor R_k \\
\Delta \vdash (x.k ; P) :: (x : \oplus\{\ell : A_\ell\}_{\ell \in L})
\end{align*}
\]

\[
\begin{align*}
(\forall \ell \in L) \quad & \quad \Delta', x : A_\ell \vdash Q_\ell :: (z : C) \quad \lor L \\
\Delta', x : \oplus\{\ell : A_\ell\}_{\ell \in L} \vdash \text{case } x (\ell \Rightarrow Q_\ell)_{\ell \in L} :: (z : C)
\end{align*}
\]

- Generalized cut reduction

\[
(x.k ; P) \mid (\text{case } x (\ell \Rightarrow Q_\ell)_{\ell \in L}) \quad \rightarrow \quad P \mid Q_k
\]
External Choice

- Switches role of succedent (provider) and antecedent (client)
- As right and left rules of the sequent calculus

\[
\begin{align*}
\Delta &\vdash A & \Delta &\vdash B \\
&\quad \implies \quad & \Delta &\vdash A \land B & \quad \&R
\end{align*}
\]

\[
\begin{align*}
\Delta, A &\vdash C \\
&\quad \implies \quad & \Delta, A \land B &\vdash C & \quad \&L_1
\end{align*}
\]

\[
\begin{align*}
\Delta, B &\vdash C \\
&\quad \implies \quad & \Delta, A \land B &\vdash C & \quad \&L_2
\end{align*}
\]

- This time, the left rule has the information
External Choice as Receiving a Label

- Generalize to labeled external choice
- \(A \& B \triangleq \&\{\pi_1 : A, \pi_2 : B\}\)
- Generalized left and right rules

\[
\begin{align*}
(\forall \ell \in L) & \quad \Delta \vdash P_\ell :: (x : A_\ell) & & \& R \\
\Delta \vdash \text{case } x (\ell \Rightarrow P_\ell)_{\ell \in L} :: (x : \&\{\ell : A_\ell\}_{\ell \in L})& & \& R \\
(k \in L) & \quad \Delta, x : A_k \vdash Q :: (z : C) & & \& L_k \\
\Delta, x : \&\{\ell : A_\ell\}_{\ell \in L} \vdash (x.k ; Q) :: (z : C) & & \& L_k
\end{align*}
\]

- Same reduction!

\[
(\text{case } x (\ell \Rightarrow P_\ell)_{\ell \in L}) \mid (x.k ; Q) \quad \rightarrow \quad P_k \mid Q
\]

- Sending from client to provider
Multiplicative Unit

■ In sequent calculus

\[
\frac{}{1 \vdash 1_R} \quad \frac{\Delta' \vdash C}{\Delta', 1 \vdash C} 1_L
\]

■ Cut reduction

\[
\frac{1 \vdash 1_R \quad \Delta' \vdash C}{\Delta', 1 \vdash C} \quad \frac{\Delta', 1 \vdash C}{\Delta' \vdash C} \quad \Delta' \vdash C
\]

\[
\frac{1 \vdash 1_R \quad \Delta' \vdash C}{\Delta', 1 \vdash C} \quad \frac{\Delta', 1 \vdash C}{\Delta' \vdash C} \quad \Delta' \vdash C
\]
Process assignment to proofs

\[
\begin{align*}
\Delta' & \vdash Q :: (z : C) \\
\Delta', x : 1 & \vdash (\text{wait}(x) ; Q) :: (z : C)
\end{align*}
\]

\[1R\]

\[1L\]

Cut reduction to close channel and terminate process

\[
\text{close}(x) \mid (\text{wait}(x) ; Q) \rightarrow Q
\]
Existential Quantification

- In sequent calculus, for data types τ

\[
\frac{\nu : \tau \quad \Delta \vdash A(\nu) \quad \exists R \quad \Delta' \quad A(c) \vdash C \quad \exists L_c}{\Delta \vdash \exists n : \tau. A(n) \quad \Delta', \exists n : \tau. A(n) \vdash C}
\]

- The $\exists R$ rule has information and sends

\[
\frac{\nu : \tau \quad \Delta \vdash P :: (x : A(\nu)) \quad \exists R \quad \Delta' \quad x : A(c) \vdash Q :: (z : C)}{\Delta \vdash (\text{send}(x, \nu) ; P) :: (x : \exists n : \tau. A(n)) \quad \Delta', x : \exists n : \tau. A(n) \vdash (c = \text{recv}(x) ; Q) :: (z : C) \quad \exists L_c}
\]

- Straightforward reduction

\[(\text{send}(x, \nu) ; P) \mid (c = \text{recv}(x) ; Q) \rightarrow P \mid [\nu/c]Q\]
Universal Quantification

- Dual to existential quantification
- Provider will receive a basic value
- Client will send a basic value
- In CC0, neither $\exists x: \tau. A$ nor $\forall x: \tau. A$ supports type dependence, that is, occurrence of x in A
Summary of Correspondence

- Curry-Howard Isomorphism

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Session Type</th>
<th>Action</th>
<th>Cont</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \oplus B$</td>
<td>(\oplus { l : A_l }_{l \in L})</td>
<td>send a label (k \in L)</td>
<td>(A_k)</td>
</tr>
<tr>
<td>$A & B$</td>
<td>(& { l : A_l }_{l \in L})</td>
<td>branch on received (k \in L)</td>
<td>(A_k)</td>
</tr>
<tr>
<td>1</td>
<td>(\langle \rangle)</td>
<td>end session</td>
<td>–</td>
</tr>
<tr>
<td>$\exists x : \tau. A$</td>
<td>$\langle !\tau ; A \rangle$</td>
<td>send a value (v : \tau)</td>
<td>A</td>
</tr>
<tr>
<td>$\forall x : \tau. A$</td>
<td>$\langle ?\tau ; A \rangle$</td>
<td>receive a value (v : \tau)</td>
<td>A</td>
</tr>
</tbody>
</table>

- Cut is spawn (parallel composition)
- Identity is forward (channel identification)
- Logical connectives, from the provider point of view
Delegation: Sending Channels along Channels

- Extend Curry-Howard interpretation of multiplicative linear connectives $A \otimes B$ and $A \multimap B$

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Session Type</th>
<th>Action</th>
<th>Cont</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \otimes B$</td>
<td>$\langle !A ; B \rangle$</td>
<td>send a channel $y : A$</td>
<td>B</td>
</tr>
<tr>
<td>$A \multimap B$</td>
<td>$\langle ?A ; B \rangle$</td>
<td>receive a channel $y : A$</td>
<td>B</td>
</tr>
<tr>
<td>$A \oplus B$</td>
<td>$\oplus { \ell : A_\ell }_{\ell \in L}$</td>
<td>send a label $k \in L$</td>
<td>A_k</td>
</tr>
<tr>
<td>$A & B$</td>
<td>$& { \ell : A_\ell }_{\ell \in L}$</td>
<td>branch on received $k \in L$</td>
<td>A_k</td>
</tr>
<tr>
<td>1</td>
<td>$\langle \rangle$</td>
<td>end session</td>
<td>$-$</td>
</tr>
<tr>
<td>$\exists x : \tau. \ A$</td>
<td>$\langle !\tau ; A \rangle$</td>
<td>send a value $v : \tau$</td>
<td>A</td>
</tr>
<tr>
<td>$\forall x : \tau. \ A$</td>
<td>$\langle ?\tau ; A \rangle$</td>
<td>receive a value $v : \tau$</td>
<td>A</td>
</tr>
</tbody>
</table>
Theorem: (session fidelity / type preservation) All processes in a configuration remain well-typed and agree on the types of the channels connecting them.

Theorem: (deadlock freedom / global progress) If all linear processes are blocked then the computation is complete.

Conjecture: (local progress) [ongoing work] If all recursive types are inductive or coinductive

(i) communication along channels of inductive type will terminate, and

(ii) communication along channels of coinductive type will be productive
Part I: Programming in Concurrent C0
- Message streams (prime number sieve)
- Concurrent data structure (queue)

Part II: Substructural Logics
- Linear sequent calculus
- Correspondence with message-passing concurrency

Part III: Sharing
- Stratified session types
- Manifest sharing via adjunctions
Missing so far, logically: !A

Missing so far, operationally: sharing

Could we have a shared buffer with multiple producers and consumers?

So far all channels are linear: one provider, one client

Examples abound: key/value store, database, output device, input device, . . .
Stratification

- Stratify session types into **linear** and **shared**

```
ongoing research

Shared S ::= \( \uparrow A \mid S_1 \rightarrow S_2 \mid S_1 \times S_2 \mid \ldots \)

Linear A ::= \( \bigoplus \{ \ell : A_\ell \}_{\ell \in L} \mid \& \{ \ell : A_\ell \}_{\ell \in L} \mid \langle !\tau ; A \rangle \mid \langle ?\tau ; A \rangle \mid \langle !A ; B \rangle \mid \langle ?A ; B \rangle \mid \downarrow S \)
```

- Distinguish linear and shared channels
- Modeled on LNL [Benton’94]
- Traditional linear logic \(!A = \downarrow \uparrow A \)
Shared Buffer Interface

- Sharing is manifest in the type!
- The **linear** buffer interface:
 \[
 \text{buffer} = \&\{\text{Ins} : \langle ?\text{int} ; \text{buffer} \rangle, \text{Del} : \text{buffer_response} \}
 \]
 \[
 \text{buffer_response} = \oplus\{\text{Some} : \langle !\text{int} ; \text{buffer} \rangle, \text{None} : \langle \rangle \}
 \]
- The **shared** buffer interface:
 \[
 \text{sbuffer} = \uparrow\&\{\text{Ins} : \langle ?\text{int} ; \downarrow\text{sbuffer} \rangle, \text{Del} : \text{buffer_response} \}
 \]
 \[
 \text{buffer_response} = \oplus\{\text{Some} : \langle !\text{int} ; \downarrow\text{sbuffer} \rangle, \text{None} : \downarrow\text{sbuffer} \} \]
Operational Interpretation of Shifts (Provider)

- Process and channels go through shared and linear phases

$$x_S : \uparrow A$$, from the provider perspective
 - Multiple clients along shared channel $$x_S$$
 - Accept request to be acquired by one client along $$x_S$$
 - Interact exclusively according to linear session $$x_L : A$$

$$x_L : \downarrow S$$, from provider perspective
 - Detach from single client
 - Provide along resulting shared channel $$x_S : S$$

- The linear protocol between $$X = \uparrow \ldots \downarrow X$$ models a critical region with exclusive access to a shared resource
Operational Interpretation of Shifts (Client)

- Client performs matching interactions
- $x_S : \uparrow A$, from client perspective
 - Acquire exclusive access along x_S
 - Interact exclusively according to linear session $x_L : A$
- $x_L : \downarrow S$, from client perspective
 - Release provider
 - Revert to becoming one of many clients of $x_S : S$
choice buffer {
 <!int ; #; ?choice buffer> Ins;
 <!choice buffer_response> Del;
};

choice buffer_response {
 <!int ; #; ?choice buffer> Some;
 <# ; ?choice buffer> None;
};

typedef <!choice buffer> lbuffer;
typedef <# ; ?choice buffer> sbuffer;
• In concrete syntax, we only articulate $\uparrow A$ as `<# ; A>`
• $\downarrow S$ is implicit
sbuffer #b new_buffer(int capacity) {
 queue_t q = new_queue(capacity);
 while (true) {
 lbuffer $b = (lbuffer)#b; /* accept */
 switch ($b) {
 case Ins: { /* $b : <?int ; buffer> */
 int x = recv($b); /* $b : buffer */
 enq(q, x);
 #b = (sbuffer)$b; /* detach */
 break;
 }
 case Del: { /* $b : !choice buffer_response */
 if (is_empty(q)) {
 $b.None;
 #b = (sbuffer)$b; /* detach */
 } else {
 int x = deq(q);
 $b.Some; send($b, x); /* detach */
 #b = (sbuffer)$b;
 }
 break;
 }
 }
 }
}
Takeaways

- Shared channels have form #<ch>
- **Accept** is implemented as a cast $<ch> = (<tp>)#<ch>;
- **Detach** is implemented as a cast #<ch> = (<tp>)$<ch>;}
/* producer, from init to limit by step */
<> $c producer(int init, int step, int limit, sbuffer #b) {
 for (int i = init; i < limit; i = i+step)
 //invariant #b : sbuffer
 {
 lbuffer $b = (lbuffer)#b; /* acquire */
 $b.Ins; send($b, i);
 #b = (sbuffer)$b; /* release */
 }
 close($c);
}
/* consumer, of n messages */
<> $c consumer(int n, sbuffer #b) {
 while (n > 0)
 //invariant #b : sbuffer
 {
 lbuffer $b = (lbuffer)#b;
 $b.Del;
 switch ($b) {
 case None: {
 print("."); flush();
 #b = (sbuffer)$b;
 break;
 }
 case Some: {
 int x = recv($b);
 print("<"); printint(x); flush();
 n = n-1;
 #b = (sbuffer)$b;
 break;
 }
 }
 }
 print("\n"); close($c);
int main() {
 sbuffer #b = new_buffer(1000);
 <> $p1 = producer(0, 3, 30, #b);
 /* next line to sequentialize producers/consumers */
 // wait($p1);
 <> $p2 = producer(1, 3, 30, #b);
 // wait($p2);
 <> $p3 = producer(2, 3, 30, #b);
 // wait($p3);
 <> $c = consumer(30, #b);
 // wait($c);
 wait($p1);
 wait($p2);
 wait($p3);
 wait($c);
 return 0;
}
Takeaways

- Shared buffers are not treated linearly
- For session fidelity (type safety), type must be **equisynchronizing**
 - If released, must be at the same type at which it was acquired
 - Otherwise, waiting clients and provider may disagree on the shared channels type
- Could relax the restriction, with runtime type checking
Logical Interpretation

- \uparrow and \downarrow form an adjunction [Benton’94]
- $\downarrow\uparrow A$ is a comonad ($!A$)
- $\uparrow\downarrow S$ is a strong monad ($\bigcirc A$)
- Generalized in adjoint logic [Reed’09][Chargin et al.’17]
 - Adjoint propositions as stratified session types
 - Adjoint proofs as concurrent program
 - But: computation is not just proof reduction
Proof Construction and Deconstruction

- Matching accept/acquire is seen as constructing a proof by cut
- This proof will be reduced with cut reduction until . . .
- Matching detach/release is seen as deconstructing a cut into two separate proofs
- Shared channels limit nondeterminism in proof construction
- Shared processes are garbage-collected (reference counting clients)
- Deadlock is now possible!
Theorem: (session fidelity / type preservation) All processes in a configuration remain well-typed and agree on the types of the channels connecting them.

Theorem: (characterizing deadlocks / “progress”) If all linear processes are blocked then
 (i) either computation is complete, or
 (ii) all linear processes are waiting for a response to an acquire request (deadlock)
Dining Philosophers (files: dining_philosophers*.c1)
Summary: Linear Logic and Message-Passing

- Curry-Howard interpretation of intuitionistic linear logic [Caires & Pf’10]
 - Cut as parallel composition with private channel (spawn)
 - Identity as channel identification (forward)
 - Linear propositions as session types
 - Sequent proofs as process expressions
 - Cut reduction as communication
 - Guarantees session fidelity (preservation), local progress, and termination

- Extend to recursive types and processes [Toninho et al.’13]
 - Guarantee session fidelity and deadlock freedom (global progress)
 - Inductive and coinductive types [ongoing work]
Extend further to permit sharing [Balzer & Pf’17]
- Many more practical programs
- Interleave proof construction, reduction, deconstruction
- Proof construction may fail (deadlock)
Summary: Concurrent C0

- C0: type-safe and memory-safe subset of C
 - Extended with a layer of contracts
 - Using in first-year imperative programming course at CMU
 - Complemented by functional programming course in ML
 - See http://c0.typesafety.net

- Concurrent C0: session-type message-passing concurrency [Willsey et al.'16]
 - Examples from this tutorial
 - Many more examples, plus others in progress
 - svn co https://svn.concert.cs.cmu.edu/c0
 - User guest, pwd c0coffee
 - See c0/cc0-concur/README-concur.txt
 - Requires Standard ML (SML/NJ or mlton)

- Compiles to C (or Go)
Other Ongoing Research

- SILL: functional instantiation of ideas [Toninho et al.’13] [Toninho’15] [Griffith & Pf’15]
 - Includes polymorphism and subtyping, not yet sharing
- Adjoint logic [Reed’09]
 - Allows linear, affine, strict, and structural modes
 - Uniform concurrent semantics without sharing [Chargin et al.’17]
- Concurrent contracts [Gommerstadt et al.’18]
- Concurrent type theory [Caires et al.’12]
- A new foundation of object-oriented programming [Balzer & Pf’15]
- Automata and transducers in subsingleton fragment [DeYoung & Pf’16]
- Fault tolerance
Related Work (Small Sample)

- Seminal work on session types
 [Honda’93] [Honda, Vasconcelos & Kubo’98]
- Subtyping [Gay & Hole’05]
- Refinement types [Griffith & Gunter’13]
- Classical linear logic and session types [Wadler’12]
 [Toninho et al.’16]
- Links language [Lindley et al.’06–]
- Multiparty session types [Honda,Yoshida et al.’07–]
- Scribble protocol language [Yoshida et al.’09–]
- ABCD project [Gay, Wadler & Yoshida’13–’18]
Conclusion

- From (linear) logical origins to a new foundation for statically typed message-passing concurrency
- Primitives are not quite those of the π-calculus
- Simple, expressive, elegant, easy to use
- Robust across paradigms
 - Functional (SILL, Links)
 - Imperative (Concurrent C0)
 - Object-oriented (Mungo)
 - Language agnostic (Scribble)