
How to think about types:

Insights from a personal journey

Frank Pfenning

Department of Computer Science
Carnegie Mellon University

Programming Languages Mentoring Workshop
Lisbon, Portugal, January 15, 2019

1 / 47

“Type” is the most common word in the
abstracts for all papers submitted to,
accepted at, and rejected from POPL this
year

2 / 47

Once Upon a Time . . .

1980–1986 Working on TPS, a theorem prover for
higher-order logic, in Common Lisp

1986 Dana Scott and Bill Scherlis hire me as a postdoc
for the ERGO project on semantically based programming

1986 Gérard Huet, Thierry Coquand, Christine Paulin
visit CMU

Gérard Huet gives course on Computation & Deduction
using CAML as a metalanguage

Discovered the joy of static typing!

3 / 47

Once Upon a Time . . .

1980–1986 Working on TPS, a theorem prover for
higher-order logic, in Common Lisp

1986 Dana Scott and Bill Scherlis hire me as a postdoc
for the ERGO project on semantically based programming

1986 Gérard Huet, Thierry Coquand, Christine Paulin
visit CMU

Gérard Huet gives course on Computation & Deduction
using CAML as a metalanguage

Discovered the joy of static typing!

3 / 47

The Joy of Static Typing

Transition from Lisp to ML

Productivity++
Bugs--

Some reasons

Clearly express data representations
Elegant pattern matching
Avoiding gross latent bugs under program evolution
Enforced module boundaries (not just name spaces)

4 / 47

Evaluation axis: How much dynamic

checking is required

Lesson: Types should be statically checked

5 / 47

Simple Types

Types τ ::= τ1 → τ2 | . . .
Expressions e ::= x | λx . e | e1 e2 | . . .
Contexts Γ ::= · | Γ, x : τ

x : τ ∈ Γ

Γ ` x : τ
hyp

Γ, x : τ1 ` e : τ2

Γ ` λx . e : τ1 → τ2
→I

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1
→E

Dynamics: computation rules e 7→ e ′ and values v

Should λ-expressions be λx :τ. e?

6 / 47

Simple Types

Types τ ::= τ1 → τ2 | . . .
Expressions e ::= x | λx . e | e1 e2 | . . .
Contexts Γ ::= · | Γ, x : τ

x : τ ∈ Γ

Γ ` x : τ
hyp

Γ, x : τ1 ` e : τ2

Γ ` λx . e : τ1 → τ2
→I

Γ ` e1 : τ2 → τ1 Γ ` e2 : τ2

Γ ` e1 e2 : τ1
→E

Dynamics: computation rules e 7→ e ′ and values v

Should λ-expressions be λx :τ. e?

6 / 47

Theorem [Preservation]: If e : τ and e 7→ e ′

then e ′ : τ

Theorem [Progress]: If e : τ then either e is

a value or e 7→ e ′ for some e ′

7 / 47

Running Example: Binary Numbers

“Little Endian” representation

datatype bin =

E (* E = 0 *)

| B0 of bin (* B0(x) = 2*x *)

| B1 of bin (* B1(x) = 2*x+1 *)

val zero = E

fun succ E = B1(E)

| succ (B0(x)) = B1(x)

| succ (B1(x)) = B0(succ x)

8 / 47

Lesson: Strive for simplicity and elegance

9 / 47

Issue: Missing Branches

(* pred(x+1) = x *)

fun pred (B0(x)) = B1(pred x)

| pred (B1(x)) = B0(x)

(*

binary.sml:11.5-12.25 Warning: match nonexhaustive

*)

For larger pieces of code, a pervasive occurrence

Either a genuine oversight (missing branch)
Or a reflection of an invariant outside the type system

A significant source of bugs!

10 / 47

Refinement Types

Express more program properties

Increase precision

Rule out more programs

Do not increase generality

Layered architecture

Simple types for approximate checking
Refinement types (here: sorts) for further precision
Dependent refinements (indexed types) are another story

11 / 47

Example: Positive Binary Numbers

datatype bin = E | B0 of bin | B1 of bin

datasort pos = B0 of pos | B1 of bin

val zero : bin

val zero = E

val succ : bin -> pos

fun succ E = B1(E)

| succ (B0(x)) = B1(x)

| succ (B1(x)) = B0(succ x)

val pred : pos -> bin

fun pred (B0(x)) = B1(pred x)

| pred (B1(x)) = B0(x)

12 / 47

Subsorting

Subsorting is a derived concept

τ ≤ σ if a value of type τ is also a value of type σ

Infer for base sorts via tree automata inclusion

pos ≤ bin

Every positive number is also a binary number

Extend to compound types “the usual way”

bin→ pos ≤ bin→ bin

bin→ bin ≤ pos→ bin

13 / 47

A Surprise: We Need Intersections

datatype bin = E | B0 of bin | B1 of bin

datasort pos = B0 of pos | B1 of bin

val E : bin

val B0 : bin -> bin /\ pos -> pos

val B1 : bin -> bin /\ bin -> pos (* = bin -> pos *)

Need intersection types!

Type checking undecidable in general

Refinement restriction makes inference decidable

Algorithm is abstract interpretation

14 / 47

A Surprise: We Need Intersections

datatype bin = E | B0 of bin | B1 of bin

datasort pos = B0 of pos | B1 of bin

val E : bin

val B0 : bin -> bin /\ pos -> pos

val B1 : bin -> bin /\ bin -> pos (* = bin -> pos *)

Need intersection types!

Type checking undecidable in general

Refinement restriction makes inference decidable

Algorithm is abstract interpretation

14 / 47

Key Rules

Γ ` e : τ Γ ` e : σ

Γ ` e : τ ∧ σ ∧I

Γ ` e : τ ∧ σ
Γ ` e : τ

∧E1
Γ ` e : τ ∧ σ

Γ ` e : σ
∧E2

Combine properties of the same expression e

Follows a similar style of introduction and eliminations

Can infer subsorting for intersection types

τ ∧ σ ≤ τ
τ ∧ σ ≤ σ

15 / 47

Evaluation axis: How precise is the type

system?

Lesson: Precision can be more important

than generality

16 / 47

Evaluation axis: How precise is the type

system?

Lesson: Precision can be more important

than generality

16 / 47

Lesson: Sometimes it is beneficial to extend

a system further than anticipated

Lesson: Look around (intersections, tree

automata, abstract interpretation)

Lesson: Program, program, program

17 / 47

Lesson: Sometimes it is beneficial to extend

a system further than anticipated

Lesson: Look around (intersections, tree

automata, abstract interpretation)

Lesson: Program, program, program

17 / 47

Lesson: Sometimes it is beneficial to extend

a system further than anticipated

Lesson: Look around (intersections, tree

automata, abstract interpretation)

Lesson: Program, program, program

17 / 47

A Fly the Ointment

Surprise: sort inference after type inference is practical!

Surprise: results of inference are difficult to understand
and use

Why?

Distance between location and source of error
Inference captures accidental properties of code

18 / 47

A Fly the Ointment

Surprise: sort inference after type inference is practical!

Surprise: results of inference are difficult to understand
and use

Why?

Distance between location and source of error
Inference captures accidental properties of code

18 / 47

A Fly the Ointment

Surprise: sort inference after type inference is practical!

Surprise: results of inference are difficult to understand
and use

Why?

Distance between location and source of error
Inference captures accidental properties of code

18 / 47

Trivialized Example

datatype bin = E | B0 of bin | B1 of bin

datasort pos = B0 of pos | B1 of bin

fun pred (B0(x)) = B1(pred x)

| pred (B1(x)) = B0(x)

| pred E = diverge

Infer pred : bin→ bin ∧ pos → bin

Might want to specify pred : pos → bin

Should be a sort error to write (pred e) unless e : pos

19 / 47

Bidirectional Type Checking

How to live without full type inference

Propagate type information bottom-up and top-down

But not haphazardly!

Judgments

Γ ` e ⇐ τ (check e against τ)
Γ ` e ⇒ τ (e synthesizes τ)

Introduction rules (constructors) are checked

Elimination rules (destructors) synthesize

20 / 47

Bidirectional Type Checking

x ⇒ σ ∈ Γ

Γ ` x ⇒ σ
hyp

Γ, x ⇒ σ ` e ⇐ τ

Γ ` λx . e ⇐ σ → τ
→I

Γ ` e1 ⇒ σ → τ Γ ` e2 ⇐ σ

Γ ` e1 e2 ⇒ τ
→E

Γ ` e ⇒ τ ′ τ ′ = τ

Γ ` e ⇐ τ
⇒⇐

No type annotations in λ-abstractions

With these rules, we can exactly type normal forms!

Normal N ::= λx .N | R
Neutral R ::= x | R N

21 / 47

Bidirectional Type Checking

x ⇒ σ ∈ Γ

Γ ` x ⇒ σ
hyp

Γ, x ⇒ σ ` e ⇐ τ

Γ ` λx . e ⇐ σ → τ
→I

Γ ` e1 ⇒ σ → τ Γ ` e2 ⇐ σ

Γ ` e1 e2 ⇒ τ
→E

Γ ` e ⇒ τ ′ τ ′ = τ

Γ ` e ⇐ τ
⇒⇐

No type annotations in λ-abstractions

With these rules, we can exactly type normal forms!

Normal N ::= λx .N | R
Neutral R ::= x | R N

21 / 47

Bidirectional Type Checking

x ⇒ σ ∈ Γ

Γ ` x ⇒ σ
hyp

Γ, x ⇒ σ ` e ⇐ τ

Γ ` λx . e ⇐ σ → τ
→I

Γ ` e1 ⇒ σ → τ Γ ` e2 ⇐ σ

Γ ` e1 e2 ⇒ τ
→E

Γ ` e ⇒ τ ′ τ ′ = τ

Γ ` e ⇐ τ
⇒⇐

No type annotations in λ-abstractions

With these rules, we can exactly type normal forms!

Normal N ::= λx .N | R
Neutral R ::= x | R N

21 / 47

Bidirectional Type Checking

Add let form or type annotations

Γ ` e ⇐ τ Γ, x ⇒ τ ` e ′ ⇐ τ ′

Γ ` let x : τ = e in e ′ ⇐ τ ′
let

Properties

Concise (mostly annotating top level functions)
Increases compositionality by through stated types
Improves locality of error messages
Highly robust

22 / 47

Bidirectional Subtyping and Intersections

Γ ` e ⇒ τ ′ τ ′ ≤ τ

Γ ` e ⇐ τ
⇒⇐

Γ ` e ⇐ τ Γ ` e ⇐ σ

Γ ` e ⇐ τ ∧ σ ∧I

Γ ` e ⇒ τ ∧ σ
Γ ` e ⇒ τ

∧E1
Γ ` e ⇒ τ ∧ σ

Γ ` e ⇒ σ
∧E2

23 / 47

Bidirectional Subtyping and Intersections

Γ ` e ⇒ τ ′ τ ′ ≤ τ

Γ ` e ⇐ τ
⇒⇐

Γ ` e ⇐ τ Γ ` e ⇐ σ

Γ ` e ⇐ τ ∧ σ ∧I

Γ ` e ⇒ τ ∧ σ
Γ ` e ⇒ τ

∧E1
Γ ` e ⇒ τ ∧ σ

Γ ` e ⇒ σ
∧E2

23 / 47

Robustness

How easily can type system features be extended or
combined with other features?

Example

Hindley-Milner type inference is extremely terse but
relatively fragile
Pure type synthesis is verbose but robust
Bidirectional checking is concise and robust

We don’t know of another reasonable option for datasort
refinements

Bidirectional type checking is based on the logical notion
of verification

24 / 47

Evaluation axis: How verbose are programs?

Evaluation axis: How robust are principles

underlying the type system?

25 / 47

Lesson: Pay attention to usability in the

software development and maintenance cycle

Lesson: Strive for using robust principles

26 / 47

Predictability

Can we confidently predict if a program we write should
type-check?

Predict yes, failure leads to debugging
Predict no, should reconsider or use dynamic techniques

27 / 47

Example: Standard Binary Numbers

Binary numbers in standard form have no leading 0s

Type checking for B0(x) fails! x ⇒ std , but std 6≤ pos

Indeed: pred (B1(E)) = B0(E) is not standard!

datatype bin = E | B0 of bin | B1 of bin

datasort std = E | B0 of pos | B1 of std

datasort pos = B0 of pos | B1 of std

val zero : std

val succ : std -> pos

val pred : pos -> std

fun pred (B0(x)) = B1(pred x)

| pred (B1(x)) = B0(x)

28 / 47

Example: Standard Binary Numbers

Binary numbers in standard form have no leading 0s

Type checking for B0(x) fails! x ⇒ std , but std 6≤ pos

Indeed: pred (B1(E)) = B0(E) is not standard!

datatype bin = E | B0 of bin | B1 of bin

datasort std = E | B0 of pos | B1 of std

datasort pos = B0 of pos | B1 of std

val zero : std

val succ : std -> pos

val pred : pos -> std

fun pred (B0(x)) = B1(pred x)

| pred (B1(x)) = B0(x)

28 / 47

Predictability

Data sorts can express exactly the properties of data
types recognizable by finite tree automata

Programs should check if the structure of the program
follows the structure of sorts (which is often)

Sometimes we need to introduce additional sorts
Sometimes we need to ascribe additional sorts to have a
fixed point

Use dynamic coercions (partial and total) where
information is not available

29 / 47

Sample Coercions

val std2pos : std -> pos (* partial *)

fun std2pos E = error

| std2pos (B0(x)) = B0(std2pos x)

| std2pos (B1(x)) = B1(std2pos x)

val dbl : std -> std

fun dbl E = E

| dbl x = B0(x)

val stdize : bin -> std (* total *)

fun stdize E = E

| stdize (B0(x)) = dbl (stdize x)

| stdize (B1(x)) = B1 (stdize x)

30 / 47

Evaluation axis: How predictable is the type

system?

Lesson: Type systems should be predictable,

which comes from simplicity and uniformity

31 / 47

So Far . . .

Simply-typed λ-calculus, ML

Refinement types, including intersections

Bidirectional type checking

Next: capturing intensional properties of programs

32 / 47

So Far . . .

Simply-typed λ-calculus, ML

Refinement types, including intersections

Bidirectional type checking

Next: capturing intensional properties of programs

32 / 47

Runtime Code Generation

Runtime code generation may improve efficiency, e.g.,

From standard to sparse matrix multiplication
From interpretation to compilation (∼ partial evaluation)

Language embeddings (∼ macros)

Problem: It often doesn’t work, e.g.,

mvmult : mat -> (vec -> vec) could just build a
closure

Program must be properly staged

33 / 47

A Type for Quoted Expressions

To compile at runtime we need source code

Postulate a new type �τ for source expressions of type τ

A function
eval : (�α)→ α

compiles a quoted expression and then executes it

Key idea: distinguish two kinds of variables

x : τ , bound to values at runtime
u : τ , bound to source expressions at runtime

New expression context

∆ ::= · | ∆, u : τ

34 / 47

Modal Typing

Judgment ∆ ; Γ ` e : τ

∆ ; · ` e : τ

∆ ; Γ ` box e : �τ
�I

∆ ; Γ ` e : �τ ∆, u : τ ; Γ ` e ′ : τ ′

∆ ; Γ ` (let box u = e in e ′) : τ ′
�E

u : τ ∈ ∆

∆ ; Γ ` u : τ
evar

A source expression cannot depend on value variables!

Example

eval : �α→ α
eval = λx . let box u = x in u

35 / 47

Example: Exponentiation

Specify exp x b = bx

Exploit b2x = (b ∗ b)x , b2x+1 = b ∗ b2x

Partial application just builds closure exp x = λb. . . .

val exp : bin -> bin -> bin

fun exp E b = B1(E)

| exp (B0(x)) b = exp x (b * b)

| exp (B1(x)) b = b * exp x (b * b)

36 / 47

Restage

val exp : bin -> [](bin -> bin)

fun exp E = box (fn b => B1(E))

| exp (B0(x)) = let box u = exp x

in box (fn b => u (b * b))

| exp (B1(x)) = let box u = exp x

in box (fn b => b * u (b * b))

exp 1 = box (λb. b ∗ (λb′. 1) (b ∗ b))
' box (λb.b ∗ 1)

exp 2 ' box (λb.(b ∗ 1) ∗ (b ∗ 1))
' box (λb.b ∗ b)

37 / 47

More Examples

6` (λx .box x) : α→ �α

But, for every strictly positive type τ+ we can define

liftτ+ : τ+ → �τ+

Strictly positive types (but not functions or lazy pairs)

τ+ ::= 1 | τ+1 × τ+2 | 0 | τ+1 + τ+2 | µα+. τ+ | α+

Also

lift� : �α→ ��α
lift� (box u) = box (box u)

38 / 47

Intuitionistic Modal Logic S4

Axiomatically characterized by

` A

` �A
Nec

` �(A→ B)→ (�A→ �B) Normal
` �A→ A Reflexivity
` �A→ ��A Transitivity

Coincides exactly with �A for quoted expressions!

Here: natural deduction rather than axiomatic proofs

Quotation was one of the motivations for the
development of modal logic in philosophy

39 / 47

Types as Propositions

Example of the Curry-Howard correspondence

Propositions are types
Proofs are programs
Proof reduction is computation

Helpful reference point in the design of type systems

Existence of a (good!) logic confirms validity of the
abstraction
Helps with independence of operators from each other
(robustness/modularity)
Metatheorems cleaner and simpler

40 / 47

More Generally . . .

Co-develop type system and reasoning principles for
programs in the language

A type system is not a goal in an of itself
The goal is to give the programmer the tools to express
programs simply and correctly with the help of the type
system

We reason whenever we program!

hd (sort A)

41 / 47

Lesson: Type systems are most effective if
they reflect and validate the informal and
intuitive reasoning that programmers do
anyway

or they introduce a new way to think
about programs

42 / 47

Lesson: Type systems are most effective if
they reflect and validate the informal and
intuitive reasoning that programmers do
anyway or they introduce a new way to think
about programs

42 / 47

Connecting Logic and Programming

logic computation
intuitionistic logic functional programming
modal logic S4 staged computation
modal logic S5 distributed computation
lax logic monadic programming
discrete temporal logic partial evaluation
singleton logic linear communicating machines
linear logic message-passing concurrency
temporal linear logic timed concurrency

43 / 47

Connecting Proof Theory with PL Theory

proof theory programming language theory
verifications bidirectional type-checking
polarity values vs. computations
polarity sending vs. receiving
judgments vs. propositions modes of computation
combinatory logic combinatory reduction

44 / 47

Evaluation axis: Proximity between type

system and logic

Lesson: Co-develop type system and

reasoning principles

Lesson: Look for logical connections

45 / 47

Be relentless in your search for the simplest,
most elegant abstractions that capture a
phenomenon of interest

46 / 47

A Few Selected References

Refinement types (data sorts)
[Freeman & Pf, PLDI 1991] [Davies, AMAST 1997]
[Dunfield & Pf, FoSSaCS 2003]

Bidirectional type checking
[Xi & Pf, POPL 1999] [Pf, ICFP 2007]
[Dunfield & Krishnaswami, ICFP 2013]

Staged computation
[Davies & Pf, JACM 2001] [Pf & Davies, MSCS 2001]

47 / 47

