Proof Theory and Its Role in Programming Language Research

Frank Pfenning
Carnegie Mellon University
How Do We Write Correct Programs

• We rarely do, but ...

• In practice, programming and informal reasoning go hand in hand
 – Operational: how does the program execute
 – Logical: what does it accomplish

• Decompose into parts (e.g., functions, modules) so we can reason locally
Coherence

• Operational and logical views should be coherent
• And both should be as simple as possible
• Composed of parts we can reason about separately as much as possible
 — Not just for programs, but for the language itself
• Logic is inevitable — why wait?
Codesign of Computation and Logic

- Fortunately, logic is computational
- Key: creating a mutual fit — requires considerable ingenuity, persistence, luck
 - Runtime code generation and ??
 - Partial evaluation and ??
 - Dead code elimination and ??
 - Distributed computation and ??
 - Message-passing concurrency and ??
 - ?? and lax logic
 - ?? and temporal logic
 - ?? and epistemic logic
 - ?? and ordered logic
Key Ingredients

• Judgments, leading to propositions
• Basic style of proof system
 – Natural deduction
 – Sequent calculus
 – Axiomatic proof system
 – Binary entailment
• Proof reduction and equality
Example: Hypothetical Judgments

• Basic judgment: A true, for a proposition A
• Hypothetical judgment \(A_1 \text{ true, } \ldots, A_n \text{ true } \vdash A \text{ true} \)
• Defined via substitution property (not rule)

\[
\begin{align*}
\Gamma \vdash A \text{ true} & \quad \Gamma, A \text{ true } \vdash C \text{ true} \\
\hline
\Gamma \vdash C \text{ true} & \text{ subst}
\end{align*}
\]

• Which entails hypothesis rule

\[
\Gamma, A \text{ true } \vdash A \text{ true} \quad \text{ hyp}
\]
With Proof Terms

• Basic judgment: \(M : A \)

• Hypothetical judgment = typing judgment

\[
\frac{x_1:A_1, \ldots, x_n:A_n}{\Gamma \vdash M : A}
\]

• Defined via substitution property (dashed line), which entails the hypothesis rule

\[
\frac{\Gamma \vdash M : A \quad \Gamma, x:A \vdash N : C}{\Gamma \vdash [M/x]N : C \quad \text{subst}}
\]

\[
\frac{\Gamma, x:A \vdash x : A}{\quad \Gamma, x:A \vdash x : A \quad \text{hyp}}
\]
Internalize Hypothetical Judgment

• Form a proposition whose definition (via an introduction rule) reflects the judgment

\[
\Gamma, A \text{ true} \vdash B \text{ true} \\
\Gamma \vdash A \supset B \text{ true} \quad \supset I
\]

• Use the definition of the judgment, to determine the elimination rule

\[
\Gamma \vdash A \supset B \text{ true} \quad \Gamma \vdash A \text{ true} \\
\Gamma \vdash B \text{ true} \quad \supset E
\]
Terms Construct and Apply Functions

• Logical rules become familiar typing rules

 \[\frac{\Gamma, x : A \vdash N : B}{\Gamma \vdash \lambda x. N : A \supset B} \quad \supset I \quad \frac{\Gamma \vdash N : A \supset B \quad \Gamma \vdash M : A}{\Gamma \vdash N M : B} \quad \supset E \]

• Introduction rules construct terms
• Elimination rules destruct term
• Computation arises when a destructor is applied to a constructor
Harmony in Natural Deduction

• Introduction rules construct proofs that verify
• Elimination rules construct proofs that use
• Harmony between intro and elim rules
 – Any introduction of A followed an elimination of A can be reduced (local reduction)
 – Any proposition A can be proved by an introduction (local expansion)
Proof Reduction is Computation

• On proofs

\[
\begin{align*}
\frac{\mathcal{D}}{
\frac{\Gamma, A \vdash B}{\Gamma \vdash A \supset B} \quad \supset I \\
\frac{\Gamma \vdash A \supset B \quad \mathcal{E}}{
\Gamma \vdash B \quad \supset E}
\end{align*}
\Rightarrow \quad \text{subst. } \mathcal{E} \text{ in } \mathcal{D}
\]

• On proof terms

\[
\begin{align*}
\frac{\Gamma, x:A \vdash N : B}{\Gamma \vdash (\lambda x. N) : A \supset B} \quad \supset I \\
\frac{\Gamma \vdash M : A \quad \mathcal{E}}{
\Gamma \vdash (\lambda x. N) M : B \quad \supset E}
\end{align*}
\Rightarrow \quad \Gamma \vdash [M/x]N : B
\]
Example: Runtime Code Generation

• Key computational idea: we have a quoted source expression available at runtime

• Distinguish
 – Ordinary variables, bound to values
 – Expression variables, bound to source code

• Need to quote and evaluate expressions
 – In a logically correct way
Categorical Judgment

• Judgment form, with variables

\[
\underbrace{u_1 : B_1, \ldots, u_k : B_k}_{\text{expression variables}} ; \underbrace{x_1 : A_1, \ldots, x_n : A_n}_{\text{value variables}} \vdash M : A
\]

• We can only substitute an expression without reference to value vars for an expression var

\[
\Delta ; \bullet \vdash M : A \quad \Delta, u : A ; \Gamma \vdash N : C
\]

\[
\frac{\Delta ; \Gamma \vdash [M/u]N : C}{\text{esubst}}
\]
Quotation Continued

• We also have a new hypothesis rule

\[\Delta, u:A \ ; \ \Gamma \vdash u : A \]^{\text{ehyp}}

• We would like to internalize “A stands for a source expression” as a proposition
Internalizing a Categorical Judgment

• Judgment u:A means A is valid

\[
\begin{align*}
\Delta ; \bullet \vdash M : A \\
\Delta ; \Gamma \vdash \text{quote } M : \square A & \quad \square I \\
\Delta ; \Gamma \vdash M : \square A \quad \Delta, u : A ; \Gamma \vdash N : C & \\
\Delta ; \Gamma \vdash (\text{let quote } u = M \text{ in } N) : C & \quad \square E
\end{align*}
\]

• One can check harmony

\[
(\text{let quote } u = \text{quote } M \text{ in } N) \implies [M/u]N
\]
Which Logic is This?

• Axiomatically, we find

\[
\begin{align*}
\vdash \Box(A \supset B) & \supset (\Box A \supset \Box B) \\
\vdash \Box A & \supset \Box \Box A \\
\vdash \Box A & \supset A \\
\vdash A & \\
\vdash \Box A & \text{nec}
\end{align*}
\]

• This defines the intuitionistic modal logic S4
• Conservatively extends intuitionistic logic
• We can have a type theory with quote/eval
Validity and Necessity

• Expression variables correspond to assumptions of validity (u:A ⇔ A valid)

• The box modality internalizes this as a proposition (A valid ⇔ □A true)

• Judgmentally, we only need hypothetical and categorical judgments
 – Natural deduction and harmony do the rest
 – Generally, very little “new” is needed
Codesign Revisited

- Runtime code generation and IS4 (A valid)
- Partial evaluation and temporal logic (A @ t)
- Dead code elimination and modal logic IT (A irr)
- Distributed computation and IS5 (A @ w)
- Concurrency and (intuitionistic) linear logic (linear hypothetical judgment)
- Generic effects and lax logic (A lax)
- ? and epistemic logic (K knows A)
- ?? and ordered logic (ordered hyp. Judgment)
Summary

• Codesign of programming language and its logic can be powerful
 – You’ll know when it is right
 – But it is hard

• There are many parameters
 – Style of system (ND, SEQ, HIL, ...)
 – Judgments (hypothetical, categorical, linear, ...)
 – Relating proof reduction to computation
 – Equality, for a full type theory
Some Advice

• Focus on what you can express, not what you can’t
• Measure success by the constructs omitted, not those included
• Design, program and reason, iterate
• Syntax is important
• Semantics is even more important, both operational and logical
• Know when to give up