
Data Layout from a Type-Theoretic Perspective

Frank Pfenning
Joint work with Henry DeYoung

Computer Science Department
Carnegie Mellon University

MFPS 2022
July 11, 2022
Invited Talk

1 / 50

Logic and Computation

One Important thread:

1 Propositions as types
2 Proofs as programs
3 Reduction as computation

Co-design programming language and reasoning principles

Provides some extensibility and robustness

(1) depends on logic and its vocabulary

(2,3) depend on details of presentation

(2,3) yield preservation and progress

This talk:

Fix the logic (= intuitionistic propositional logic)
Vary the judgmental principles of proof

2 / 50

Judgmental Principles of Proof (Examples)

Intuitionistic Logic Functional Programming

Axioms + MP [Hilbert’27] Combinators [Curry’35]

Natural Deduction [Gentzen’35] λ-Calculus [Howard’69]

Sequents with Stoop (LJT) Explicit Substitutions [Herbelin’94]

Semi-Axiomatic Seq Calc (SAX) Futures [DeYoung,Pf,Pruiksma’20]

SAX with Snip (SNAX) Data Layout [this talk]

3 / 50

Outline

From Natural Deduction (ND) to Semi-Axiomatic Sequent
Calculus (SAX)

Programming in SAX

Cut Elimination and Snips in SAX

Data Layout and SAX with Snips (SNAX)

Examples Revisited

4 / 50

Example: Disjunction in Natural Deduction

Γ ⊢ A

Γ ⊢ A ∨ B
∨I1

Γ ⊢ B

Γ ⊢ A ∨ B
∨I2

Γ ⊢ A ∨ B Γ,A ⊢ C Γ,B ⊢ C

Γ ⊢ C
∨E

Γ ⊢ M1 : A

Γ ⊢ l(M1) : A ∨ B
∨I1

Γ ⊢ M2 : B

Γ ⊢ r(M2) : A ∨ B
∨I2

Γ ⊢ M : A ∨ B Γ, x : A ⊢ N1 : C Γ, y : B ⊢ N2 : C

Γ ⊢ case M (l(x)⇒ N1 | r(y)⇒ N2) : C
∨E

case l(M1) (l(x)⇒ N1 | . . .) −→ [M1/x]N1

case r(M2) (. . . | r(y)⇒ N2) −→ [M2/y]N2

Fundamental operation underlying reduction
Substitution of proof for hypothesis (logic)
Substitution of term for variable (computation)

Derives from meaning of hypothetical judgments
5 / 50

Futures

Define futures with
x ← P ; Q

Allocate a fresh future for x
Compute P with destination x
In parallel, compute Q which may read from x
Q blocks if it tries to read from x before P has written to x

Scheduling

Futures: compute P and Q in parallel
Call-by-value: complete P before starting Q
Call-by-need: postpone P until Q needs x

6 / 50

Futures, Logically

Logically, futures are a cut from the sequent calculus

P
Γ ⊢ A

Q
Γ,A ⊢ C

Γ ⊢ C
cut

Γ ⊢ P :: (x : A) Γ, x : A ⊢ Q :: (w : C)

Γ ⊢ x ← P ; Q :: (w : C)
cut

Interpret sequents with addresses ai and w

a1 : A1, . . . , an : An︸ ︷︷ ︸
read from

⊢ P :: (w : C︸ ︷︷ ︸
write to

)

Types Ai and C represent types of value at address ai and w

7 / 50

Not Quite the Sequent Calculus

Writer terminates after writing to destination

Example: Disjunction / Sums

a : A ⊢ write c l(a) :: (c : A ∨ B)
∨X1

b : B ⊢ write c r(b) :: (c : A ∨ B)
∨X2

a, b, and c are addresses: values are small (l(a) and r(b))

Reader continues based on value read

Γ, x : A ⊢ Q :: (w : C) Γ, y : B ⊢ R :: (w : C)

Γ, c : A ∨ B ⊢ read c (l(x)⇒ Q | r(y)⇒ R) :: (w : C)
∨L

8 / 50

Specifying Dynamics as Multiset Rewriting

State of computation represented as a multiset of objects

Any subset can be rewritten by a transition rule

For shared memory dynamics

Ephemeral objects thread P represent running threads
Ephemeral objects cell c 2 were allocated but not yet written
Persistent objects !cell c V were allocated and written

Sample rules (disjunction/sums)

thread (write c l(a)), cell c 2 −→ !cell c l(a)
thread (write c r(b)), cell c 2 −→ !cell c r(b)

!cell c l(a), thread (read c (l(x)⇒ Q | . . .)) −→ thread [a/x]Q
!cell c r(b), thread (read c (. . . | r(y)⇒ R)) −→ thread [b/y]R

9 / 50

Semi-Axiomiatic Sequent Calculus (SAX)

Disjunction, purely logically

A ⊢ A ∨ B
∨X1

B ⊢ A ∨ B
∨X2

Γ,A ⊢ C Γ,B ⊢ C

Γ,A ∨ B ⊢ C
∨L

General rules

Γ ⊢ A Γ,A ⊢ C

Γ ⊢ C
cut

A ⊢ A
id

Leave weakening and contraction implicit, for conciseness

All positive right and negative left rules become axioms

[DeYoung, Pf, Pruiksma; FSCD 2020]

10 / 50

SAX, Positive Connectives

Positive connectives (∨, ⊗, 1)
Right rules are noninvertible∗, become axioms ∨Xi , ⊗X , 1X

Left rules are invertible, remain ∨L, ⊗L, 1L

A ⊢ A ∨ B
∨X1

B ⊢ A ∨ B
∨X2

Γ,A ⊢ C Γ,B ⊢ C

Γ,A ∨ B ⊢ C
∨L

A,B ⊢ A⊗ B
⊗X

Γ,A,B ⊢ C

Γ,A⊗ B ⊢ C
⊗L

· ⊢ 1
1X

Γ ⊢ C

Γ, 1 ⊢ C
1L

11 / 50

SAX, Negative Connectives

Negative connectives (⊃, ∧)
Right rules are invertible, remain ⊃R, ∧R
Left rules are noninvertible, become axioms ⊃X , ∧Xi

Γ,A ⊢ B

Γ ⊢ A ⊃ B
⊃R

A,A ⊃ B ⊢ B
⊃X

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B
∧R

A ∧ B ⊢ A
∧X1

A ∧ B ⊢ B
∧X2

12 / 50

Back to Futures

Generalize A ∨ B to
∑

ℓ∈L(ℓ : Aℓ), where A ∨ B = (l : A) + (r : B)

Generalize A ∧ B to Nℓ∈L(ℓ : Aℓ), where A ∧ B = (l : A) N (r : B)

Labels/Tags ℓ, k
Addresses a, b, c , d ,w ; x , y , z
Small values V ::= k(a) (

∑
ℓ(ℓ : Aℓ)) (Nℓ(ℓ : Aℓ))

| ⟨a, b⟩ (A⊗ B) (A ⊃ B)
| ⟨ ⟩ (1)

Continuations K ::= (ℓ(x)⇒ Pℓ)ℓ (
∑

ℓ(ℓ : Aℓ)) (Nℓ(ℓ : Aℓ))
| ⟨x , y⟩ ⇒ P (A⊗ B) (A ⊃ B)
| ⟨ ⟩ ⇒ P (1)

Processes P ::= write a V (
∑
,⊗, 1)

| read a K (
∑
,⊗, 1)

| write a K (N,⊃)
| read a V (N,⊃)
| x ← P ; Q (allocate x)
| copy a b (copy to a from b)

13 / 50

Cut/Allocate and Identity/Copy

Cut/Allocate: x ← P ; Q (only form of allocation)

P writes to x , Q may read from x

Γ ⊢ P :: (x : A) Γ, x : A ⊢ Q :: (w : C)

Γ ⊢ (x ← P ; Q) :: (w : C)
cut

thread (x ← P ; Q) −→ thread [a/x]P, cell a 2, thread [a/x]Q
(a fresh)

Id/Copy: copy a b

Copy to a from b

Γ, b : A ⊢ copy a b :: (a : A)
Id

!cell b V , thread (copy a b), cell a 2 −→ !cell a V

14 / 50

Write and Read

Generic over values and continuations

thread (write a V), cell a 2 −→ !cell a V
thread (read a K), cell a V −→ thread (V ▷ K)

thread (write a K), cell a 2 −→ !cell a K
thread (read a V), cell a K −→ thread (V ▷ K)

Passing values to continuations

k(a) ▷ (ℓ(x)⇒ Pℓ)ℓ∈L = [a/x]Pk

⟨a, b⟩ ▷ (⟨x , y⟩ ⇒ P) = [a/x , b/y]P
⟨ ⟩ ▷ (⟨ ⟩ ⇒ P) = P

15 / 50

Translation from Natural Deduction

JeK d = P where P computes the value of e with destination d

JxK d = copy d x

J⟨e1, e2⟩K d = x1 ← Je1K x1 ;
x2 ← Je2K x2 ;
write d ⟨x1, x2⟩

Jcase e (⟨x , y⟩ ⇒ e ′)K d = z ← JeK z ;
read z (⟨x , y⟩ ⇒ Je ′K d)

Je1 e2K d = x1 ← Je1K x1 ;
x2 ← Je2K x2 ;
read x1 ⟨x2, d⟩

Jλx . eK d = write d (⟨x , z⟩ ⇒ JeK z)

16 / 50

Outline

From Natural Deduction (ND) to Semi-Axiomatic Sequent
Calculus (SAX)

Programming in SAX

Cut Elimination and Snips in SAX

Data Layout and SAX with Snips (SNAX)

Examples Revisited

17 / 50

Let’s Program: Operations on Bits

Type definitions t = A
Cell definitions c : A = P (A positive)
Process definitions f w x1 . . . xn = P

Requires x1 : A1, . . . , xn : An ⊢ P :: (w : C)
First “argument” is always the destination

Unit : 1 = write Unit ⟨ ⟩
bool = (false : 1) + (true : 1)
False : bool = write False false(Unit)
True : bool = write True true(Unit)

b : bool ⊢ neg :: (c : bool)
neg c b =
read b (false(u)⇒ write c true(u)

| true(u)⇒ write c false(u))

b : bool, c : bool ⊢ or :: (d : bool)
or d b c =
read b (false(u)⇒ copy d c

| true(u)⇒ write d true(u))
18 / 50

Let’s Program: Binary Successor

Type and process definitions may be recursive (beyond logic)

bin = (b0 : bin) + (b1 : bin) + (e : 1)

Six : bin = x0 ← write x0 e(Unit) ; % !cell c0 e(Unit)
x1 ← write x1 b1(x0) ; % !cell c1 b1(c0)
x2 ← write x2 b1(x1) ; % !cell c2 b1(c1)
write Six b0(x2) % !cell Six b0(c2)

x : bin ⊢ succ :: (y : bin)
succ y x =
read x (b0(x ′)⇒ write y b1(x ′)

| b1(x ′)⇒ y ′ ← succ y ′ x ′ ; % allocate destination y ′ for succ
write y b0(y ′)

| e(u)⇒ write y e(u))

x : bin ⊢ plus2 :: (z : bin) % a trivial pipeline
plus2 z x =

y ← succ y x ;
succ z y

19 / 50

Example: Binary Tries

20 / 50

Let’s Program: Binary Tries

trie = (leaf : 1) + (node : bool⊗ (trie⊗ trie))

x : bin ⊢ singleton :: (t : trie)
singleton t x =

read x (b0(x ′)⇒ t0 ← singleton t0 x
′ ;

p ← write p ⟨t0, Leaf⟩ ;
n← write n ⟨False, p⟩ ;
write t node(n)

| b1(x ′)⇒ t1 ← singleton t1 x
′ ;

p ← write p ⟨Leaf, t1⟩ ;
n← write n ⟨False, p⟩ ;
write t node(n)

| e(u)⇒ p ← write p ⟨Leaf, Leaf⟩ ;
n← write n ⟨True, p⟩ ;
write t node(n))

21 / 50

Let’s Program: Union of Binary Tries

s : trie, t : trie ⊢ union :: (u : trie)
union u s t =

read s (leaf(_)⇒ copy u t
| node(m)⇒ read m (⟨b, p⟩ ⇒ read p (⟨s0, s1⟩ ⇒

read t (leaf(_)⇒ copy u s
| node(n)⇒ read n (⟨c , q⟩ ⇒ read q (⟨t0, t1⟩ ⇒

d ← or d b c ;
u0 ← union u0 s0 t0 ;
u1 ← union u1 s1 t1 ;
r ← write r ⟨u0, u1⟩ ;
o ← write o ⟨d , r⟩ ;
write u node(o)))))

x : bin, t : trie ⊢ insert :: (u : trie)
insert u x t =

s ← singleton s x ;
union u s t % pipeling possible here

22 / 50

Outline

From Natural Deduction (ND) to Semi-Axiomatic Sequent
Calculus (SAX)

Programming in SAX

Cut Elimination and Snips in SAX

Data Layout and SAX with Snips (SNAX)

Examples Revisited

23 / 50

What is the Layout of a Trie?

The standard “abstract” version requires many cells

trie = (leaf : 1) + (node : bool⊗ (trie⊗ trie))

!cell Unit ⟨ ⟩

!cell t leaf(Unit)
or
!cell t node(n)
!cell n ⟨b, p⟩
!cell b false(Unit) or !cell b true(Unit)
!cell p ⟨t0, t1⟩
Alternative “flat” layout (cell size as subscript)

!cell4 t [leaf]
or !cell4 t [node · false · t0 · t1]
or !cell4 t [node · true · t0 · t1]
How do we get there?

24 / 50

Return to Logic for Inspiration

In SAX, standard cut elimination fails

Example

B,C ⊢ B ⊗ C
⊗X

A,B ⊗ C ⊢ A⊗ (B ⊗ C)
⊗X

A,B,C ⊢ A⊗ (B ⊗ C)
cutB⊗C

In code

a : A, b : B, c : C ⊢ f :: (d : A⊗ (B ⊗ C))
f d a b c =
bc ← write bc ⟨b, c⟩
write d ⟨a, bc⟩

25 / 50

A New Cut-Free Form

Notice: B ⊗ C is a subformula of A⊗ (B ⊗ C)

Therefore, B ⊗ C is eligible for a cut that preserves the
subformula property

Special case of an analytic cut
Eligible formulas are underlined
A cut with an eligible formula is a snip

Example revisited

B,C ⊢ B ⊗ C
⊗X

A,B ⊗ C ⊢ A⊗ (B ⊗ C)
⊗X

A,B,C ⊢ A⊗ (B ⊗ C)
snipB⊗C

Theorem [DeYoung, Pf, Pruiksma’20] Cut-free SAX proofs
(possibly with snips) satisfy the subformula property

Theorem [DeYoung, Pf, Pruiksma’20] If Γ ⊢ A in SAX, then
there is a cut-free proof of Γ ⊢ A (possibly with snips).

26 / 50

Eligibility in SAX, Positive Connectives

We can (implicitly) ignore that a formula is eligible

We leave weakening and contraction implicit for conciseness

Positive connectives: right rules become axioms

A ⊢ A ∨ B
∨X1

B ⊢ A ∨ B
∨X2

Γ,A ⊢ C Γ,B ⊢ C

Γ,A ∨ B ⊢ C
∨L

A,B ⊢ A⊗ B
⊗X

Γ,A,B ⊢ C

Γ,A⊗ B ⊢ C
⊗L

· ⊢ 1
1X

Γ ⊢ C

Γ, 1 ⊢ C
1L

Γ ⊢ A Γ,A ⊢ C

Γ ⊢ C
snip+

27 / 50

Eligibility in SAX, Negative Connectives

Negative connectives (left rules become axioms)

Γ,A ⊢ B

Γ ⊢ A ⊃ B
⊃R

A,A ⊃ B ⊢ B
⊃X

Γ ⊢ A Γ ⊢ B

Γ ⊢ A ∧ B
∧R

A ∧ B ⊢ A
∧X1

A ∧ B ⊢ B
∧X2

Γ ⊢ A Γ,A ⊢ C

Γ ⊢ C
snip−

General rules

Γ ⊢ A Γ,A ⊢ C

Γ ⊢ C
cut

A ⊢ A
id

28 / 50

Outline

From Natural Deduction (ND) to Semi-Axiomatic Sequent
Calculus (SAX)

Programming in SAX

Cut Elimination and Snips in SAX

Data Layout and SAX with Snips (SNAX)

Examples Revisited

29 / 50

SNAX and Layout

Consider
Γ ⊢ A Γ,A ⊢ C

Γ ⊢ C
snip+

Because A is a subformula of C , it denotes an address at an
offset from the address of C

Snips do not allocate, but provide the location of A

Example, with |A| = |B| = 1 (where |A| = size of A)

(α+1 : B), (α+2 : C) ⊢ (α+1 : B ⊗ C)
⊗X

(α : A), (α+1 : B ⊗ C) ⊢ (α : A⊗ (B ⊗ C))
⊗X

(α : A), (α+1 : B), (α+2 : C) ⊢ (α : A⊗ (B ⊗ C))
snip

Drop eligibility from SAX rules for negative types because we
do not model layout of continuations

30 / 50

Pointer Values

Recall
trie = (leaf : 1) + (node : bool⊗ (trie⊗ trie))

Both sums and pairs are positive—size would be unbounded
Introduce positive ↓A representing pointers

Logically, ↓A ≡ A
Computationally, ↓a is small value of type ↓A
A is not eligible since a : A not at a fixed offset from b : ↓A.

A ⊢ ↓A
↓X

Γ,A ⊢ C

Γ, ↓A ⊢ C
↓L

We write and read small values ↓a

a : A ⊢ write b ↓a :: (b : ↓A)
↓X

Γ, x : A ⊢ P :: (w : C)

Γ, b : ↓A ⊢ read b (↓x ⇒ P) :: (w : C)
↓L

Recursion in type definitions must be guarded by a shift ↓.
↓ also includes negative types (⊃,∧) in positive ones

31 / 50

Examples Revisited

Pointer tag ↓ takes no space at runtime

celln means cell of size n

Nested pairs
Mapping from SAX layout

↓A⊗ ↓(↓B ⊗ ↓C) !cell2 c [↓cA · ↓d]
!cell2 d [↓cB · ↓cC]

Identical flat layouts in SNAX (where n = |A|+ |B|+ |C |)
A⊗ (B ⊗ C) !celln c [VA · VB · VC]
(A⊗ B)⊗ C !celln c [VA · VB · VC]

Unit and Booleans

!cell0 Unit []

bool = (false : 1) + (true : 1)
!cell1 False [false]
!cell1 True [true]

Note |1| = 0
32 / 50

Examples Revisited: Tries

Consider two different layout choices; others are possible

Pointers to subtries

trie = (leaf : 1) + (node : bool⊗ (↓trie⊗ ↓trie))
!cell4 t [leaf ·2 ·2 ·2]

or !cell4 t [node · false · ↓t0 · ↓t1]
or !cell4 t [node · true · ↓t0 · ↓t1]
Pointers to nodes

trie = (leaf : 1) + (node : ↓node)
node = bool⊗ (trie⊗ trie)

!cell2 t [leaf ·2]
or !cell2 t [node · ↓n]

!cell5 n [false · leaf ·2 · leaf ·2]
or !cell5 n [true · node · ↓n0 · node · ↓n1]
or . . .

Some space optimizations on sums may apply

33 / 50

Layout Rules without Process Terms (Positive Connectives)

(k ∈ L)

(a+1 : Ak) ⊢ a :
∑

ℓ∈L(ℓ : Aℓ)
+X

Γ, (a+1 : Aℓ) ⊢ w : C (for all ℓ ∈ L)

Γ, (a :
∑

ℓ∈L(ℓ : Aℓ)) ⊢ w : C
+L

(a : A), (a+|A| : B) ⊢ a : A⊗ B
⊗X

Γ, (a : A), (a+|A| : B) ⊢ w : C

Γ, (a : A⊗ B) ⊢ w : C
⊗L

· ⊢ a : 1
1X

Γ ⊢ w : C

Γ, a : 1 ⊢ w : C
1L

Γ, b : A ⊢ a : ↓A
↓X

Γ, y : A ⊢ w : C

Γ, a : ↓A ⊢ w : C
↓L

Γ ⊢ a : A Γ, (a : A) ⊢ w : C

Γ ⊢ w : C
snip

Γ ⊢ α : A Γ, α : A ⊢ w : C α fresh

Γ ⊢ w : C
cut

34 / 50

Cut, Snip, and Identity

Cut/allocate requires size or type

Γ ⊢ P :: (α : A) Γ, α : A ⊢ Q :: (c : C) (α fresh)

Γ ⊢ α|A| ← P ; Q :: (c : C)
cut

Snip no longer allocates memory

Γ ⊢ P :: (a : A) Γ, (a : A) ⊢ Q :: (c : C)

Γ ⊢ P ; Q :: (c : C)
snip

Identity/copy requires size or type

b : A ⊢ copy|A| a b :: (a : A)
id

Cut and snip can still be parallel, call-by-value, or call-by-need

35 / 50

Disappearing Act

Eligibility is sharpened

We can no longer silently drop or ignore it
Instead, we use snip with identity

b : A ⊢ copy|A| a b :: (a : A)
id

Γ, a : A ⊢ P :: (w : C)

Γ, b : A ⊢ copy|A| a b ; P :: (w : C)
snip

⊗X , ⊗L, 1X , and 1L just calculate addresses and have no
operational significance!

+X , +L, ↓X , ↓R remain

36 / 50

Outline

From Natural Deduction (ND) to Semi-Axiomatic Sequent
Calculus (SAX)

Programming in SAX

Cut Elimination and Snips in SAX

Data Layout and SAX with Snips (SNAX)

Examples Revisited

Conclusion

37 / 50

Example Revisited: Booleans

bool = (false : 1) + (true : 1)

b : bool ⊢ neg :: (c : bool)
neg c b =
read b (false⇒ write c true

| true⇒ write c false)

b : bool, c : bool ⊢ or :: (d : bool)
or d c b =
read b (false⇒ copy|bool| d c % |bool| = 1

| true⇒ write d true)

38 / 50

Size Calculation and Copying

For simplicity, tags and pointers all have size 1

|1| = 0
|A⊗ B| = |A|+ |B|
|
∑

ℓ∈L(ℓ : Aℓ)| = 1 +maxℓ(Aℓ)
|↓A| = 1

Type-directed definition of copying is shallow η-expansion

s : A ⊢ copyA :: (d : A)

copy1 d s = (noop)
copyA⊗B d s = copyA d s ; copyB (d + |A|) (s + |A|)
copy∑

ℓ∈L(ℓ:Aℓ)
d s = read s (ℓ⇒ write d ℓ ; copyAℓ

(d + 1) (s + 1))ℓ∈L

copy↓A d s = read s (↓x ⇒ write d ↓x)
May be implemented more efficiently

39 / 50

Example Revisited: Binary Numbers

bin = (b0 : ↓bin) + (b1 : ↓bin) + (e : 1)

Six : bin =
x0 ← write x0 e ;
x1 ← (write x1 b1 ; write (x1+1) ↓x0) ;
x2 ← (write x2 b1 ; write (x2+1) ↓x1) ;
write Six b0 ; write (Six+1) ↓x2

x : bin ⊢ succ :: (y : bin)
succ y x =

read x (b0⇒ write y b1 ;
copy|↓bin| (y+1) (x+1) % |↓bin| = 1

| b1⇒ read (x+1) (↓x ′ ⇒
y ′ ← succ y ′ x ′ ;
write y b0 ;
write (y+1) ↓y ′)

| e⇒ write y e)

40 / 50

Example Revisited: Tries

trie = (leaf : 1) + (node : bool⊗ (↓trie⊗ ↓trie))
x : ↓bin ⊢ singleton :: (t : ↓trie)
singleton t x =
read x (↓n⇒
read n (b0⇒ m← (write m node ;

write (m+1) false ;
singleton (m+2) (n+1) ;
write (m+3) Leaf) ;

write t ↓m
| b1⇒ m← (write m node ;

write (m+1) false ;
write (m+2) Leaf ;
singleton (m+3) (n+1)) ;

write t ↓m
| e⇒ m← (write m node ;

write (m+1) true ;
write (m+2) Leaf
write (m+3) Leaf) ;

write t ↓m))
41 / 50

Example Revisited: Union of Binary Tries

s : ↓trie, t : ↓true ⊢ union :: (u : ↓trie)
union u s t =

read s (↓s ′ ⇒ read s ′ (leaf⇒ copy|↓trie| u t % |↓_| = 1
| node⇒

read t (↓t ′ ⇒ read t ′ (leaf⇒ copy|↓trie| u s
| node⇒

d ← or d (s ′+1) (t ′+1) ;
u0 ← union u0 (s

′+2) (t ′+2) ;
u1 ← union u1 (s

′+3) (t ′+3) ;
u′ ← (write u′ node ;

write (u′+1) d ;
write (u′+2) u0 ;
write (u′+3) u1) ;

write u ↓u′))))

x : ↓bin, t : ↓trie ⊢ insert :: (u : ↓trie)
insert u x t =

s ← singleton s x ;
union u s t % pipelining possible here!

42 / 50

Dynamics Revisited

We can still give a parallel semantics

Synchronize only on sums and shifts (pairs and unit are silent)
Must be able to recognize an unwritten tag or pointer
Faithful to SAX since the straightforward translation inserts a
shift before every sub-type

Similarly for call-by-need schedule

Call-by-value schedule guarantees a cell is written before any
attempt to read from it

43 / 50

Layout Identities A ≡ B

In a functional language: A ≤ B if v : A implies v : B

Example:

nat = (z : 1) + (s : nat)
even = (z : 1) + (s : odd)
odd = (s : even)

even ≤ nat and odd ≤ nat

In SNAX, a final configuration F contains only
!cell a V and !cell b K .

In SNAX: A ≤ B if F :: (c : A) implies F :: (c : B).

Additional examples for A ≡ B (that is, A ≤ B and B ≤ A)

A⊗ (B ⊗ C) ≡ (A⊗ B)⊗ C
A⊗ 1 ≡ A ≡ 1⊗ A
((false : 1) + (true : 1))⊗ A ≡ (false : A) + (true : A)
(A+ B)⊗ C ≡ (A⊗ C) + (B ⊗ C) (if |A| = |B|)

44 / 50

Internal Pointers and Polymorphism

Internal pointers

a : A ⊢ self :: (p : A⊗ ↓A)
self p a =
copy|A| p a ;
write (p + |A|) p

Boxed vs. unboxed representations of polymorphism

list1 A = (nil : 1) + (cons : ↓A⊗ ↓list1 A) % |list1 A| = 3
list2 A = (nil : 1) + (cons : A⊗ ↓list2 A) % |list2 A| = |A|+ 2
list3 A = (nil : 1) + (cons : ↓node3 A) % |list3 A| = 2
node3 A = ↓A⊗ list3 A % |node3 A| = 3

45 / 50

Summary

Fix propositional intuitionistic logic

Natural deduction (ND)

Introduction and elimination rules
Computation by substitution
“Large” values v

Semi-axiomatic sequent calculus (SAX)

Axioms for non-invertible rules (⊗R, 1R,∨R,⊃L,∧L)
Cut elimination and subformula property via snips
Computation via futures (write-once shared memory with
concurrent threads)
Call-by-value and call-by-need as particular schedules

Semi-axiomatic sequent calculus with snips (SNAX)

Layout for positive types (⊗, 1,
∑
) is flat

Type ↓A, logically equivalent to A
Computationally, value of type ↓A is an address
Pairs (⊗) and unit (1) become computationally irrelevant
Admits futures, call-by-value, call-by-need

46 / 50

Further Related Work

[Morrisett; PhD 1995] Compiling with Types

Data layout is significant for performance
Not explicit in the type

[Tarditi, Morrisett, Cheng, Stone, Harper, Lee; PLDI 1996]
TIL: A Type-Directed Optimizing Compiler for ML

Importance of typed intermediate languages

[Morrisett, Walker, Crary, Glew; TOPLAS 1999]
From System F to Typed Assembly Language

Richer type system (e.g., polymorphism, closures)
Lower-level code (RISC-like instruction set)
Connection to high-level proof systems only via translation
Continuation-passing vs. destination-passing
No parallelism, layout not a point of emphasis

47 / 50

Further Related Work

[Petersen, Harper, Crary, Pf; POPL 2003] A Type Theory for
Memory Allocation and Data Layout

Approach based on ordered logic (no weakening, contraction,
exchange)
Worked well as far as it went
Limitation: adjacency is not an intrinsic property of ordered
logic

Many works on data description languages

48 / 50

Outlook

SNAX satisfies the usual preservation and progress
(in progress)

Logical/type-theoretic foundation enable generalizations

Indexed types to allow flat layouts (“array”)

seq A n = (nil : (n = 0)⊗ 1) + (cons : (n > 0)⊗ A⊗ seq A (n − 1))
sequence A = (n : nat)⊗ seq A n

Polymorphism

Concrete representation of values of negative type (“closures”)

49 / 50

Thanks

SNAX Joint work with Henry DeYoung

SAX joint work with Henry DeYoung and Klaas Pruiksma

Thanks to Stephanie Balzer, Lúıs Caires, Ankush Das,
Farzaneh Derakshan, Siva Somayyajula, Bernardo Toninho

50 / 50

