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As probabilistic computations play an increasing role in solving various problems, researchers have
designed probabilistic languages which treat probability distributions as primitive datatypes. Most
probabilistic languages, however, focus only on discrete distributions and have limited expressive
power. This paper presents a probabilistic language, called λ©, whose expressive power is be-
yond discrete distributions. Rich expressiveness of λ© is due to its use of sampling functions,
i.e., mappings from the unit interval (0.0, 1.0] to probability domains, in specifying probability
distributions. As such, λ© enables programmers to formally express and reason about sampling
methods developed in simulation theory. The use of λ© is demonstrated with three applications
in robotics: robot localization, people tracking, and robotic mapping. All experiments have been
carried out with real robots.

Categories and Subject Descriptors: D.3.2 [Language Classifications]: Specialized application
languages

General Terms: Languages, Experimentation

Additional Key Words and Phrases: Probabilistic language, Probability distribution, Sampling
function, Robotics

1. INTRODUCTION

A probabilistic computation is a computation that makes probabilistic choices or
whose result is a probability distribution. As an alternative paradigm to deter-
ministic computation, it has been used successfully in diverse fields of computer
science such as speech recognition [Rabiner 1989; Jelinek 1998], natural language
processing [Charniak 1993], computer vision [Isard and Blake 1998], randomized
algorithms [Motwani and Raghavan 1995], and robotics [Thrun 2000a]. Its success
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lies in the fact that probabilistic approaches often overcome the practical limitation
of deterministic approaches. A trivial example is the problem of testing whether a
multivariate polynomial given by a program without branch statements is identi-
cally zero or not. It is difficult to find a practical deterministic solution, but there
is a simple probabilistic solution: evaluate the polynomial on a randomly chosen
input and check if the result is zero.

As probabilistic computations play an increasing role in solving various problems,
researchers have also designed probabilistic languages to facilitate their implementa-
tion [Jones 1990; Koller et al. 1997; Gupta et al. 1999; Thrun 2000b; Pfeffer 2001;
Ramsey and Pfeffer 2002; Mogensen 2002; Park 2003]. A probabilistic language
treats probability distributions as built-in datatypes and thus abstracts from rep-
resentation schemes, i.e., specific data structures for representing probability dis-
tributions. As a result, it allows programmers to concentrate on how to formulate
probabilistic computations, or probabilistic algorithms, at the level of probability
distributions in the sense that no particular representation scheme is assumed. The
translation of such a formulation in a probabilistic language (by programmers) pro-
duces concise and elegant code implementing the target probabilistic computation,
which is typical of a probabilistic language. Then we can classify probabilistic lan-
guages according to their expressive power, i.e., the set of probability distributions
that can be encoded.

A typical probabilistic language supports at least discrete distributions, for which
there exists a representation scheme sufficient for all practical purposes: a set of
pairs consisting of a value from the probability domain and its probability. We
could use such a probabilistic language for those problems involving only discrete
distributions. If non-discrete distributions are involved, however, we usually use a
conventional language for the sake of efficiency, assuming a specific kind of probabil-
ity distributions (e.g., Gaussian distributions) or choosing a specific representation
scheme (e.g., a set of samples from the probability distribution). For this rea-
son, there has been little effort to develop probabilistic languages whose expressive
power is beyond discrete distributions.

This paper presents a probabilistic language, called λ©, which supports not only
discrete distributions but also continuous distributions and even those belonging to
neither group. The main contributions of this paper are summarized as follows:

— λ© uses sampling functions, i.e., mappings from the unit interval (0.0, 1.0] to
probability domains, to specify probability distributions. Sampling functions
serve as a mathematical basis for probabilistic languages whose expressive power
is beyond discrete distributions.

— λ© serves as a programming language in which sampling methods developed in
simulation theory [Bratley et al. 1996] can be formally expressed and reasoned
about.

— The use of λ© is demonstrated with three applications in robotics: robot local-
ization, people tracking, and robotic mapping. Thus λ© serves as an example
of high-level language applied to a problem domain where imperative languages
have been traditionally dominant.

We now describe the design of λ© at a conceptual level. Its implementation and
applications are also briefly discussed.
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, July 2008.
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Notation If a variable x ranges over the domain of a probability distribution P ,
then P (x) means, depending on the context, either the probability distribution itself
(as in “probability distribution P (x)”) or the probability of a particular value x (as
in “probability P (x)”). We write P (x) for probability distribution P when we want
to emphasize the use of variable x. If we do not need a specific name for a probability
distribution, we use Prob (as in “probability distribution Prob(x)”). Similarly
P (x|y) means either the conditional probability P itself or the probability of x
conditioned on y. We write Py or P (·|y) for the probability distribution conditioned
on y. We write U(0.0, 1.0] for a uniform distribution over the unit interval (0.0, 1.0].

Sampling functions as the mathematical basis

The expressive power of a probabilistic language, i.e., the set of probability dis-
tributions expressible in a probabilistic language, is determined to a large extent
by its mathematical basis. In the case of λ©, we intend to support all kinds of
probability distributions without drawing a syntactic or semantic distinction so as
to achieve a uniform framework for probabilistic computation. Consequently the
mathematical basis of λ© cannot be what is applicable only to a specific kind of
probability distributions. Examples are probability mass functions which are spe-
cific to discrete distributions, probability density functions which are specific to
continuous distributions, and cumulative distribution functions which assume an
ordering on each probability domain.

Probability measures [Rudin 1986] are a possibility because they are synonymous
with probability distributions. A probability measure µ over a domain D concep-
tually maps the set of subsets of D (or, the set of events on D) to probabilities in
[0.0, 1.0]. Probability measures are, however, not a practical choice as the mathe-
matical basis because they are difficult to represent in a data structure if the domain
is infinite. As an example, consider a continuous probability distribution P of the
position of a robot in a two-dimensional environment. (Since P is continuous, the
domain is infinite even if the environment is physically finite.) The probability
measure µ corresponding to P should be able to calculate a probability for any
given part of the environment (as opposed to a particular spot in the environment)
— whether it is a contiguous region or a collection of disjoint regions, or whether
it rectangular or oval-shaped. Thus finding a suitable data structure for µ involves
the problem of representing an arbitrary part of the environment, and is thus far
from a routine task.

The main idea behind the design of λ© is that we can specify a probability
distribution indirectly by answering “How can we generate samples from it?”, or
equivalently, by providing a sampling function for it. A sampling function is defined
as a mapping from the unit interval (0.0, 1.0] to a probability domain D. Given a
random number drawn from U(0.0, 1.0], it returns a sample inD, and thus specifies a
unique probability distribution. We choose sampling functions as the mathematical
basis of λ©.

In specifying how to generate samples, we wish to exploit sampling methods de-
veloped in simulation theory, most of which consume multiple (independent) ran-
dom numbers to produce a single sample. To this end, we use a generalized notion
of sampling function which maps (0.0, 1.0]∞ to D × (0.0, 1.0]∞ where (0.0, 1.0]∞

denotes an infinite product of (0.0, 1.0]. Operationally a sampling function now
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, July 2008.
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takes as input an infinite sequence of random numbers drawn independently from
U(0.0, 1.0], consumes zero or more random numbers, and returns a sample with the
remaining sequence. The use of generalized sampling functions as the mathematical
basis also allows programmers to transcribe correctness proofs of sampling methods
in simulation theory to correctness proofs of encodings in λ©.

Monte Carlo methods in λ©

In λ©, a sampling function is represented by a probabilistic computation that con-
sumes zero or more random numbers (rather than a single random number) drawn
from U(0.0, 1.0]. In the context of data abstraction, it means that a probability
distribution is constructed from such a probabilistic computation. The expressive
power of λ© allows programmers to construct (or encode) different kinds of proba-
bility distributions in a uniform way. Equally important is the question of how to
observe (or reason about) a given probability distribution, i.e., how to get infor-
mation out of it, through various queries.

Since a probabilistic computation in λ© only describes a procedure for generat-
ing samples, the only way to observe a probability distribution is by generating
samples from it. As a result, λ© is limited in its support for queries on probability
distributions. For example, it does not permit a precise implementation of such
queries as means, variances, and probabilities of specific events. λ© alleviates this
limitation by exploiting the Monte Carlo method [MacKay 1998], which approxi-
mately answers a query on a probability distribution by generating a large number
of samples and then analyzing them.

Due to the nature of the Monte Carlo method, the cost of answering a query is
proportional to the number of samples used in the analysis. The cost of generating
a single sample is determined by the specific procedure chosen by programmers,
rather than by the probability distribution itself from which to draw samples. For
example, a geometric distribution can be encoded either with a recursive proce-
dure that simulates coin tosses until a certain outcome is observed, or by a simple
transformation (called the inverse transform method) which requires only a single
random number. These two methods of encoding the same probability distribution
differ in the cost of generating a single sample and hence in the cost of answering
the same query by the Monte Carlo method. For a similar reason, the accuracy of
the result of the Monte Carlo method, which improves with the number of samples,
is also affected by the specific procedure chosen by programmers. As a program-
ming language to encode probability distributions, λ© itself does not provide a tool
to estimate the cost or accuracy associated with the Monte Carlo method.

Measure-theoretic view of sampling functions

While the accepted mathematical basis of probability theory is measure theory [Rudin
1986], we do not investigate measure-theoretic properties of sampling functions de-
finable in λ©. In fact, the presence of fixed point constructs in λ© (for recursive
computations which may consume an arbitrary number of random numbers) seems
to make it difficult even to define measurable spaces to which the unit interval is
mapped, since fixed point constructs require domain-theoretic structures in order
to solve recursive equations.

Every probabilistic computation expressed in λ© is easily translated into a gen-
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, July 2008.
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eralized sampling function (which takes (0.0, 1.0]∞ as input). We have not in-
vestigated if generalized sampling functions definable in λ© are all measurable.
Nevertheless generalized sampling functions definable in λ© are shown to be closely
connected with sampling methods from simulation theory, which are widely agreed
to be a form of probabilistic computation.

Implementation of λ©

Instead of implementing λ© as a complete programming language of its own, we
embed it in an existing functional language by building a translator. Specifically we
extend the syntax of Objective CAML1 to incorporate the syntax of λ©, and then
translate language constructs of λ© back into the original syntax. The translator
is sound and complete in the sense that both type and reducibility of any program
in λ©, whether well-typed/reducible or ill-typed/irreducible, are preserved when
translated in Objective CAML. Normal forms in λ© are also preserved thanks to
the use of an abstract datatype in the translation.

Applications to robotics

An important part of our work is to demonstrate the use of λ© by applying it
to real problems. As the main testbed, we choose robotics [Thrun 2000a]. It
offers a variety of real problems that necessitate probabilistic computations over
continuous distributions. We use λ© for three applications in robotics: robot lo-
calization [Thrun 2000a], people tracking [Montemerlo et al. 2002], and robotic
mapping [Thrun 2002]. In each case, the state of a robot is represented by a prob-
ability distribution, whose update equation is formulated at the level of probability
distributions and translated in λ©. All experiments in our work have been carried
out with real robots.

A comparison between our robot localizer and another written in C gives evi-
dence that the benefit of implementing probabilistic computations in λ©, such as
readability and conciseness of code, can outweigh its disadvantage in speed. Thus
λ© serves as another example of high-level language whose power is well exploited
in a problem domain where imperative languages have been traditionally dominant.

Organization of the paper

This paper is organized as follows. Section 2 presents an example that illustrates the
disadvantage of conventional languages in implementing probabilistic computations
and also motivates the development of λ©. Section 3 presents the type system and
the operational semantics of λ©. Section 4 shows how to encode various probability
distributions in λ© and demonstrates properties of λ©. Section 5 shows how to
prove the correctness of encodings, based on the operational semantics, and then
discusses an alternative approach based on measure theory. Section 6 demonstrates
the use of the Monte Carlo method in λ©. Section 7 describes the translation of λ©
into Objective CAML. Section 8 presents three applications of λ© in robotics and
discusses the benefit of implementing probabilistic computations in λ©. Section 9
discusses related work and Section 10 concludes.

1http://caml.inria.fr
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2. A MOTIVATING EXAMPLE

A Bayes filter [Jazwinski 1970] is a popular solution to a wide range of state esti-
mation problems. It estimates states of a dynamic system from a sequence of sensor
readings called actions and measurements, where an action a induces a change to
the current state and a measurement m gives information on the current state. At
its core, a Bayes filter computes a probability distribution Bel of the current state
according to the following update equations:

Bel(s) ←
∫
A(s|a, s′)Bel(s′)ds′ (1)

Bel(s) ← ηP(m|s)Bel(s) (2)

A(s|a, s′) is the probability that the system transitions to state s after taking action
a in another state s′, P(m|s) the probability of measurement m in state s, and η a
normalizing constant ensuring

∫
Bel(s)ds = 1.0. As ← denotes assignment rather

than equality, Bel can be thought of as a mutable variable governed by the two
update equations, rather than a fixed solution to a pair of recursive equations. The
order of applying the update equations is determined by the incoming sequence
of sensor readings: each action triggers the update equation (1), and each mea-
surement the update equation (2). In this way, the Bays filter maintains Bel to
estimate the current state of the system.

The update equations (1) and (2) are formulated at the level of probability dis-
tributions in the sense that they do not assume a particular representation scheme.
Unfortunately they are difficult to implement if Bel is allowed to be an arbitrary
probability distribution. When it comes to implementation, therefore, we usually
simplify the update equations by making additional assumptions on the system
or choosing a specific representation scheme. For example, with the assumption
that Bel is a Gaussian distribution, we obtain a variant of the Bayes filter called
a Kalman filter [Welch and Bishop 1995]. If Bel is approximated with a set of
samples, we obtain another variant called a particle filter [Doucet et al. 2001].

Even these variants of the Bayes filter are, however, not trivial to implement in
conventional languages. For example, a Kalman filter requires various matrix oper-
ations including matrix inversion. A particle filter manipulates weights associated
with individual samples, which often results in complicated code. Since conven-
tional languages do not treat probability distributions as primitive datatypes, it is
also difficult to figure out the intended meaning of the code, namely the update
equations for the Bayes filter.

An alternative approach is to use an existing probabilistic language after dis-
cretizing all probability distributions. This idea is appealing in theory, but imprac-
tical for two reasons. First, given a probability distribution, it may not be easy
to choose an appropriate subset of its support upon which discretization is per-
formed. For example, in order to discretize a Gaussian distribution (whose support
is (−∞,∞)), we need to choose a threshold for probabilities so that discretization
is confined to an interval of finite length; for an arbitrary probability distribution,
such a threshold can be computed only by examining its entire probability domain.
Even when the subset of its support is fixed in advance, the process of discretization
may incur a considerable amount of programming. For example, Fox et al. [Fox
et al. 1999] develop two non-trivial techniques (specific to their applications) for
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, July 2008.
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type A, B ::= A→A | A×A | ©A | real
term M, N ::= x | λx :A. M | M M | (M, M) | fst M | snd M |

fix x :A. M | prob E | r
expression E, F ::= M | sample x from M in E | S
value/sample V ::= λx :A. M | (V, V ) | prob E | r
real number r
sampling sequence ω ::= r1r2 · · · ri · · · where ri ∈ (0.0, 1.0]
typing context Γ ::= · | Γ, x : A

Fig. 1. Abstract syntax for λ©.

the sole purpose of efficiently manipulating discretized probability distributions.
Second some probability distributions cannot be discretized in any meaningful way.
An example is probability distributions over probability distributions or functions,
which do occur in real applications (Section 8 presents such an example).

If we had a probabilistic language that supports all kinds of probability distri-
butions without drawing a syntactic or semantic distinction, we could implement
the update equations with much less effort. λ© is a probabilistic language designed
with these goals in mind.

3. PROBABILISTIC LANGUAGE λ©

In this section, we develop our probabilistic language λ©. We exploit the fact
that generalized sampling functions, mapping (0.0, 1.0]∞ to D × (0.0, 1.0]∞ for a
probability domain D, form a state monad [Moggi 1989; 1991] whose set of states
is (0.0, 1.0]∞ [Ramsey and Pfeffer 2002], and use a monadic syntax for probabilistic
computations in λ©. The end result of using a monadic syntax for probabilistic
computations is that it is straightforward to interpret probabilistic computations
in terms of sampling functions.

3.1 Syntax and type system

As the linguistic framework of λ©, we use the monadic metalanguage of Pfenning
and Davies [Pfenning and Davies 2001]. It is a reformulation of Moggi’s monadic
metalanguage λml [Moggi 1991], following Martin-Löf’s methodology of distinguish-
ing judgments from propositions [Martin-Löf 1996]. It augments the lambda calcu-
lus, consisting of terms, with a separate syntactic category, consisting of expressions
in a monadic syntax. In the case of λ©, terms denote regular values and expressions
denote probabilistic computations in the sense that under its operational semantics,
a term reduces to a unique regular value and an expression reduces to a probabilis-
tically chosen sample. We say that a term evaluates to a value and an expression
computes to a sample.

Figure 1 shows the abstract syntax for λ©. We use x for variables. λx :A.M is
a lambda abstraction, and M N is an application term. (M,N) is a product term,
and fst M and snd M are projection terms; we include these terms to support joint
distributions. fix x :A.M is a fixed point construct for recursive evaluations. A
probability term prob E encapsulates expression E; it is a first-class value denoting
a probability distribution. r is a real number.

There are three kinds of expressions: term M , bind expression sample x from M in E,
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, July 2008.
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Γ, x : A ` x : A
Hyp

Γ, x : A ` M : B

Γ ` λx :A. M : A→B
Lam

Γ ` M1 : A→B Γ ` M2 : A

Γ ` M1 M2 : B
App

Γ ` M1 : A1 Γ ` M2 : A2

Γ ` (M1, M2) : A1 ×A2
Prod

Γ ` M : A1 ×A2

Γ ` fst M : A1
Fst

Γ ` M : A1 ×A2

Γ ` snd M : A2
Snd

Γ, x : A ` M : A

Γ ` fix x :A. M : A
Fix

Γ ` E ÷A

Γ ` prob E : ©A
Prob

Γ ` r : real
Real

Γ ` M : A
Γ ` M ÷A

Term
Γ ` M : ©A Γ, x : A ` E ÷B

Γ ` sample x from M in E ÷B
Bind

Γ ` S ÷ real
Sampling

Fig. 2. Typing rules of λ©.

and sampling expression S. As an expression, M denotes a (degenerate) probabilis-
tic computation that returns the result of evaluating M . sample x from M in E
sequences two probabilistic computations (if M evaluates to a probability term). S
consumes a random number in a sampling sequence, an infinite sequence of random
numbers drawn independently from U(0.0, 1.0].

The type system employs two kinds of typing judgments:

— term typing judgment Γ ` M : A, meaning that M evaluates to a value of type
A under typing context Γ.

— expression typing judgment Γ ` E ÷A, meaning that E computes to a sample
of type A under typing context Γ.

A typing context Γ is a set of bindings x : A. Figure 2 shows the typing rules of
λ©. The rule Prob is the introduction rule for the type constructor ©; it means
that type ©A denotes probability distributions over type A. The rule Bind is the
elimination rule for the type constructor ©. The rule Term means that every term
converts into a probabilistic computation that involves no probabilistic choice. The
rule Real shows that real is the type of real numbers. A sampling expression S has
also type real, as shown in the rule Sampling, because it computes to a real number.
All the remaining rules are standard.

3.2 Operational semantics

Since λ© draws a syntactic distinction between regular values and probabilistic
computations, its operational semantics needs two kinds of judgments:

— term evaluation judgment M ⇀ V , meaning that term M evaluates to value V .
— expression computation judgment E @ ω ⇁ V @ ω′, meaning that expression

E with sampling sequence ω computes to sample V with remaining sampling
sequence ω′. Conceptually E @ ω ⇁ V @ ω′ consumes random numbers in ω−ω′.

For term evaluations, we introduce a term reduction M 7→t N in a call-by-value
discipline. We could have equally chosen call-by-name or call-by-need, but λ©
is intended to be embedded in Objective CAML and hence we choose call-by-
value for pragmatic reasons. We identify M 7→∗

t V with M ⇀ V , where 7→∗
t is the

reflexive and transitive closure of 7→t. For expression computations, we introduce
an expression reduction E @ ω 7→e F @ ω′ such that E @ ω 7→∗

e V @ ω′ is identified
ACM Transactions on Programming Languages and Systems, Vol. V, No. N, July 2008.
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M 7→t M ′

M N 7→t M ′ N
TβL

N 7→t N ′

(λx :A. M) N 7→t (λx :A. M) N ′ TβR
(λx :A. M) V 7→t [V/x]M

TβV

M 7→t M ′

(M, N) 7→t (M ′, N)
TPL

N 7→t N ′

(V, N) 7→t (V, N ′)
TPR

M 7→t N

fst M 7→t fst N
TFst

fst (V, V ′) 7→t V
TFst′

M 7→t N

snd M 7→t snd N
TSnd

snd (V, V ′) 7→t V ′
TSnd′

fix x :A. M 7→t [fix x :A. M/x]M
TFix

M 7→t N

M @ ω 7→e N @ ω
ETerm

M 7→t N

sample x from M in F @ ω 7→e sample x from N in F @ ω
EBind

E @ ω 7→e E′ @ ω′

sample x from prob E in F @ ω 7→e sample x from prob E′ in F @ ω′
EBindR

sample x from prob V in F @ ω 7→e [V/x]F @ ω
EBindV S @ rω 7→e r @ ω

Sampling

Fig. 3. Operational semantics of λ©.

with E @ ω ⇁ V @ ω′, where 7→∗
e is the reflexive and transitive closure of 7→e. Both

reductions use capture-avoiding term substitutions [M/x]N and [M/x]E defined in
a standard way.

Figure 3 shows the reduction rules in the operational semantics of λ©. Expression
reductions may invoke term reductions (e.g., to reduce M in sample x from M in E).
The rules EBindR and EBindV mean that given a bind expression sample x from prob E in F ,
we finish computing E before substituting a value for x in F . Note that like a term
evaluation, an expression computation itself is deterministic; it is only when we
vary sampling sequences that an expression exhibits probabilistic behavior.

An expression computation E @ ω 7→∗
e V @ ω′ means that E takes a sampling

sequence ω, consumes a finite prefix of ω in order, and returns a sample V with the
remaining sampling sequence ω′:

Proposition 3.1. If E @ ω 7→∗
e V @ ω′, then ω = r1r2 · · · rnω′ (n ≥ 0) where

E @ ω 7→∗
e · · · 7→∗

e Ei @ ri+1 · · · rnω′ 7→∗
e · · · 7→∗

e En @ ω′ 7→∗
e V @ ω′

for a sequence of expressions E1, · · · , En.

Thus an expression computation coincides with the operational description of a
sampling function when applied to a sampling sequence, which implies that an
expression specifies a sampling function. (Here we use a generalized notion of
sampling function mapping (0.0, 1.0]∞ to A× (0.0, 1.0]∞ for a certain type A.)

The type safety of λ© consists of two properties: type preservation and progress.
The proof of type preservation requires a substitution lemma, and the proof of
progress requires a canonical forms lemma.

Lemma 3.2 Substitution.
If Γ ` M : A and Γ, x : A ` N : B, then Γ ` [M/x]N : B.
If Γ ` M : A and Γ, x : A ` E ÷B, then Γ ` [M/x]E ÷B.

Proof. By simultaneous induction on the structure of N and E.

Theorem 3.3 Type preservation.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, July 2008.
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If M 7→t N and · ` M : A, then · ` N : A.
If E @ ω 7→e F @ ω′ and · ` E ÷A, then · ` F ÷A.

Proof. By induction on the structure of M and E.

Lemma 3.4 Canonical forms. If · ` V : A, then:
(1) if A = A1→A2, then V = λx :A1.M .
(2) if A = A1 ×A2, then V = (V1, V2).
(3) if A = ©A′, then V = prob E.
(4) if A = real, then V = r.

Proof. By case analysis of A.

Theorem 3.5 Progress.
If · ` M : A, then either M is a value ( i.e., M = V ), or there exists a unique

term N such that M 7→t N .
If · ` E ÷A, then either E is a sample ( i.e., E = V ), or for any sampling

sequence ω, there exist a unique expression F and a unique sampling sequence ω′

such that E @ ω 7→e F @ ω′.

Proof. For the first clause, we show by induction on the structure of M . For
the second clause, we show by induction on the structure of E; we use the result
from the first clause.

Since terms are special cases of expressions, an expression computation may in-
volve smaller term evaluations by the rule ETerm . The converse is not the case,
however: there is no way for a term evaluation to initiate an expression computa-
tion or for an expression computation to return its result back to a term evaluation.
As a result, we can write terms of type ©A denoting probability distributions, but
never “observe” probabilistic computations (e.g., generating samples, calculating
means, or calculating the probability of an event) during term evaluations. Sec-
tion 6 develops two additional constructs, expectation (for the expectation query)
and bayes (for the Bayes operation), which enable us to “observe” probabilistic
computations during term evaluations, similarly to unsafePerformIO [Peyton Jones
and Wadler 1993] and runST [Launchbury and Peyton Jones 1995] of Haskell.

3.3 Fixed point construct for expressions

In λ©, expressions specify non-recursive sampling functions. In order to be able to
directly specify recursive sampling functions as well (which are useful in creating
such probability distributions as geometric distributions), we introduce an expres-
sion variable x and an expression fixed point construct efix x÷A.E; a new form of
binding x÷A for expression variables is used in typing contexts:

expression E ::= · · · | x | efix x÷A.E
typing context Γ ::= · · · | Γ,x÷A

New typing rules and reduction rule are as follows:

Γ,x÷A ` x÷A
Evar

Γ,x÷A ` E ÷A

Γ ` efix x÷A.E ÷A
Efix

efix x÷A.E @ ω 7→e [efix x÷A.E/x]E @ ω
Efix

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, July 2008.
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In the rule Efix , [efix x÷A.E/x]E denotes a capture-avoiding substitution of efix x÷A.E
for expression variable x. Thus efix x÷A.E behaves like term fixed point constructs
except that it unrolls itself by substituting an expression for an expression variable,
instead of a term for an ordinary variable.

Expression fixed point constructs are syntactic sugar as they can be simulated
with fixed point constructs for terms. The intuition is that we first build a term fixed
point construct M of type ©A and then convert it into an expression sample x from M in x,
which denotes a recursive computation. To simulate expression fixed point con-
structs, we define a function (·)? which translates (efix x÷A.E)? into:

sample yr from fix xp :©A. prob [sample yv from xp in yv/x]E? in yr

That is, we introduce a variable xp to encapsulate efix x÷A.E and expand x to
a bind expression sample yv from xp in yv. Using the syntactic sugar unprob M
defined as sample x from M in x (to be introduced in Section 4), we can rewrite
(efix x÷A.E)? as follows:

unprob fix xp :©A. prob [unprob xp/x]E?

The translation of other terms and expressions is structural:

x? = x
(λx :A.M)? = λx :A.M?

(M1 M2)
? = M1

? M2
?

(prob E)? = prob E?

(fix x :A.M)? = fix x :A.M?

(sample x from M in E)? = sample x from M? in E?

x? = x

Proposition 3.6 shows that when translated via the function (·)?, the typing rules
Evar and Efix are sound with respect to the original type system (without the rules
Evar and Efix). See Appendix A.1 for a proof.

Proposition 3.6.
If Γ ` M : A, then Γ ` M? : A.
If Γ ` E ÷A, then Γ ` E? ÷A.

Since M? and E? do not contain expression fixed point constructs, the rule Efix is
not used in Γ ` M? : A and Γ ` E? ÷A. Neither is the rule Evar used unless M
or E contains free expression variables. Therefore, given a term or expression with
no free expression variable, the function (·)? returns another term or expression of
the same type which does not need the rules Evar and Efix.

Propositions 3.7 and 3.8 show that the reduction rule Efix is sound and complete
with respect to the operational semantics of λ©. We use the fact that the compu-
tation of E? does not require the rule Efix . See Appendix A.2 for proofs and the
definition of an equivalence relation ≡e .

Proposition 3.7.
If E @ ω 7→e F @ ω′ with the rule Efix, then E? @ ω 7→e F ′ @ ω′ and F ′ ≡e F ?.

Proposition 3.8.
If E? @ ω 7→e F ′ @ ω′, then there exists F such that F ′ ≡e F ? and E @ ω 7→e F @ ω′.
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12 · Park, Pfenning, Thrun

3.4 Distinguishing terms and expressions

The decision to distinguish terms and expressions in λ© is a consequence of using
a monadic syntax for probabilistic computations, or equivalently, designing λ© as
a monadic language that regards probabilistic computations as a particular case of
computational effects. A typical monadic language, while disguised as a language
with a single syntactic category, actually has two sublanguages: a functional sub-
language and a monadic sublanguage. For example, Peyton Jones [Peyton Jones
2001] clarifies the distinction between the two with a semantics for Haskell which is
stratified into two levels: an inner (denotational) semantics for the functional sub-
language and an outer (transition) semantics for the monadic sublanguage. The
linguistic framework of λ© (namely the monadic metalanguage of Pfenning and
Davies [Pfenning and Davies 2001]) reformulates Moggi’s monadic metalanguage
λml [Moggi 1991] by making the distinction syntactically explicit.

The syntactic distinction between terms and expressions in λ© is optional in
that the grammar does not need to distinguish terms as a separate non-terminal;
see [Park 2003] for a probabilistic language in which sampling functions serve as
the mathematical basis, but no syntactic distinction is drawn between terms and
expressions, i.e., everything is an expression. On the other hand, the semantic
distinction in λ©, both statically (in the form of term and expression typing judg-
ments) and dynamically (in the form of evaluation and computation judgments),
appears to be desirable because of the dominant role of regular values in probabilis-
tic computations. (For example, we do not wish to use a point-mass probability
distribution for an integer index in a loop.) [Park 2003] uses a type system with
subtypes and intersection types to distinguish expressions denoting regular values
from expressions denoting probabilistic computations.

λ© is a conservative extension of a conventional language because terms constitute
a conventional language of their own. By Theorem 3.5, term evaluations are always
deterministic and we need only terms when writing deterministic programs. As
a separate syntactic category, expressions provide a framework for probabilistic
computations that abstracts from the definition of terms. In this regard, expressions
constitute a probabilistic language parameterized by a base language consisting of
terms, along the line of Leroy [Leroy 2000] who presents an implementation of
a module system parameterized by a base language and its typechecker. Thus
adding new term constructs does not change the definition of expressions; changing
the operational semantics for terms (e.g., from call-by-value to call-by-name) does
not affect type safety of λ© as long as type safety for terms is not violated.

When programming in λ©, the syntactic distinction between terms and expres-
sions aids us in deciding which of deterministic evaluations and probabilistic com-
putations we should focus on. In the next section, we show how to encode various
probability distributions and further investigate properties of λ©.

4. EXAMPLES

When encoding a probability distribution in λ©, we naturally concentrate on a
method of generating samples, rather than a method of calculating the probability
assigned to each event. If a process for generating samples is known, we simply
translate it in λ©. If, however, the probability distribution is defined in terms of a
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probability measure or an equivalent, we may not always derive a sampling function
in a mechanical manner. Instead we have to exploit its unique properties to devise
a sampling function.

Below we show examples of encoding various probability distributions in λ©.
These examples demonstrate three properties of λ©: a unified representation scheme
for probability distributions, rich expressiveness, and high versatility in encoding
probability distributions. The sampling methods used in the examples are all found
in simulation theory. Common sampling methods developed in simulation theory
are easy to translate in λ©, which thus serves as a programming language allowing
sampling methods developed in simulation theory to be formally expressed in a
concise and readable fashion. We refer the reader to the literature on simulation
theory for sampling methods (e.g., see Chapter 5 of [Bratley et al. 1996] for a
quick introduction to sampling methods and [Devroye 1986] for a comprehensive
introduction with detailed proofs); Section 5 shows how to transcribe correctness
proofs of sampling methods in simulation theory into correctness proofs of encodings
in λ©.

We assume primitive types int and bool (with boolean values True and False),
arithmetic and comparison operators, and a conditional term construct if M then N1 else N2.
We also assume standard let-binding, recursive let rec-binding, and pattern match-
ing when it is convenient for the examples.2 We use the following syntactic sugar
for expressions:

unprob M ≡ sample x from M in x
eif M then E1 else E2 ≡ unprob (if M then prob E1 else prob E2)

unprob M chooses a sample from the probability distribution denoted by M (we
choose the keyword unprob to suggest that it does the opposite of what prob does.)
eif M then E1 else E2 branches to either E1 or E2 depending on the result of
evaluating M .

Unified representation scheme

λ© provides a unified representation scheme for probability distributions. While
its type system distinguishes between different probability domains, its operational
semantics does not distinguish between different kinds of probability distributions,
such as discrete, continuous, or neither. We show examples for these three cases.

We encode a point-mass distribution centered on x (of type real) as follows:

let point mass = λx : real. prob x

We encode a Bernoulli distribution over type bool with parameter p as follows:

let bernoulli = λp : real. prob sample x from prob S in
x ≤ p

2If type inference and polymorphism are ignored, let-binding and recursive let rec-binding may be
interpreted as follows, where is a wildcard pattern for types:

let x = M in N ≡ (λx : . N) M
let rec x = M in N ≡ let x = fix x : . M in N
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bernoulli can be thought of as a binary choice construct. It is expressive enough to
specify any discrete distribution with finite support. In fact, bernoulli 0.5 suffices
to specify all such probability distributions, since it is capable of simulating a
binary choice construct [Gill 1977] (if the probability assigned to each element in
the domain is computable).

As an example of continuous distribution, we encode a uniform distribution over
a real interval (a, b] by exploiting the definition of the sampling expression:

let uniform = λa : real. λb : real. prob sample x from prob S in
a + x ∗ (b− a)

We also encode a combination of a point-mass distribution and a uniform distribu-
tion over the same domain, which is neither a discrete distribution nor a continuous
distribution:

let choice = λp : real. λx :©real. λy :©real. prob sample x from prob S in
eif x ≤ p then unprob x else unprob y

let point uniform = choice 0.5 (point mass 0.0) (uniform 0.5 1.0)

Here choice is a combinator generalizing a binary choice construct: choice p P1 P2

generates a sample from P1 with probability p and from P2 with probability 1.0−p.

Rich expressiveness

We have seen above that the expressive power of λ© covers discrete distributions
with finite support. It turns out that λ© allows us to encode discrete distributions
with countable support as well, which follows from the fact that λ© can express
the sum of a countable set of weighted probability distributions. Consider such a
countable set {(wi, prob Ei)|1 ≤ i} with

∑∞
i=1 wi = 1.0, which assigns a weight (or a

probability) wi to the probability distribution denoted by prob Ei. We represent it
as a function f of type int→(real×©A) such that f i ⇀ (wi, prob Ei), and encode
its sum as follows:

let countable sum = λf : int→(real×©A).
let rec scan = λn : int. λr : real.

if r − fst (f n) ≤ 0.0 then snd (f n) else scan (n + 1) (r − fst (f n))
in

prob sample x from prob S in
sample y from scan 1 x in
y

That is, we evaluate scan 1 x to locate a probability distribution corresponding to a
random number x, and then generate a sample y from it. In the special case where
each prob Ei denotes a point-mass distribution, we obtain a discrete distribution
with countable support.

The expressive power of λ© is further increased by various sampling methods
borrowed from simulation theory. All sampling methods developed in simulation
theory hinge on the ability to generate samples from uniform distributions over real
intervals, which is trivial to achieve in λ©. Here are a couple of general sampling
methods applicable to a wide range of probability distributions:
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—The inverse transform method uses the inverse of a cumulative distribution func-
tion as a sampling function. It is extensible to n-dimensional real space and
requires only as many random numbers as the dimension of the probability do-
main.

—The rejection method requires knowledge of a probability density function, and
generates a sample from a (continuous) probability distribution by repeatedly
generating samples from other probability distributions until they satisfy a cer-
tain condition. It is particularly useful when no cumulative distribution function
is known in closed form, but a probability density function is known (e.g., Gaus-
sian distributions).

We now demonstrate the expressive power of λ© with a number of examples.
We encode a binomial distribution with parameters p and n0 by exploiting prob-

ability terms:

let binomial = λp : real. λn0 : int.
let bernoullip = bernoulli p in
let rec binomialp = λn : int.

if n = 0 then prob 0
else prob sample x from binomialp (n− 1) in

sample b from bernoullip in
if b then 1 + x else x

in
binomialp n0

Here binomialp takes an integer n as input and returns a binomial distribution with
parameters p and n.

A recursive process for generating samples can be translated into a recursive term
in λ©. For example, we encode a geometric distribution with parameter p, which
is a discrete distribution with infinite support, as follows:

let geometric rec = λp : real.
let bernoullip = bernoulli p in
let rec geometric = prob sample b from bernoullip in

eif b then 0
else sample x from geometric in

1 + x
in

geometric

Here we use a recursive term geometric of type ©int. Equivalently we can use an
expression fixed point construct:

let geometric efix = λp : real. let bernoullip = bernoulli p in
prob efix geometric÷int.

sample b from bernoullip in
eif b then 0
else sample x from prob geometric in

1 + x
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We encode an exponential distribution by the inverse transform method:

let exponential1.0 = prob sample x from prob S in
−log x

The rejection method can be implemented with a recursive term. For example,
we encode a Gaussian distribution with mean m and variance σ2 by the rejection
method with respect to exponential distributions:

let bernoulli0.5 = bernoulli 0.5
let gaussian rejection = λm : real. λσ : real.

let rec gaussian = prob sample y1 from exponential1.0 in
sample y2 from exponential1.0 in
eif y2 ≥ (y1 − 1.0)2/2.0 then

sample b from bernoulli0.5 in
if b then m + σ ∗ y1 else m− σ ∗ y1

else unprob gaussian
in

gaussian

We encode the joint distribution between two independent probability distri-
butions using a product term. If MP denotes P (x) and MQ denotes Q(y), the
following term denotes the joint distribution Prob(x, y) ∝ P (x)Q(y):

prob sample x from MP in
sample y from MQ in
(x, y)

For the joint distribution between two interdependent probability distributions,
we use a conditional probability, which we represent as a lambda abstraction taking
a regular value and returning a probability distribution. If MP denotes P (x) and
MQ denotes a conditional probability Q(y|x), the following term denotes the joint
distribution Prob(x, y) ∝ P (x)Q(y|x):

prob sample x from MP in
sample y from MQ x in
(x, y)

By returning y instead of (x, y), we compute the integration Prob(y) =
∫

P (x)Q(y|x)dx:

prob sample x from MP in
sample y from MQ x in
y

Due to lack of semantic constraints on sampling functions, we can specify prob-
ability distributions over unusual domains such as infinite data structures (e.g.,
trees), function spaces, cyclic spaces (e.g., angular values), and even probability
distributions themselves. For example, it is straightforward to combine two proba-
bility distributions over angular values to compute the probability distribution over
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sums of their respective angular values:

let add angle = λa1 :©real. λa2 :©real. prob sample s1 from a1 in
sample s2 from a2 in
(s1 + s2) mod (2.0 ∗ π)

With the modulo operation mod, we take into account the fact that an angle θ is
identified with θ + 2π.

As a simple application, we implement a belief network [Russell and Norvig 1995]:

We assume that Palarm|burglary denotes the probability distribution that the alarm
goes off when a burglary happens; other variables of the form P·|· are interpreted
in a similar way.

let alarm = λ(burglary , earthquake) :bool× bool.
if burglary then Palarm|burglary
else if earthquake then Palarm|¬burglary∧earthquake

else Palarm|¬burglary∧¬earthquake

let john calls = λalarm :bool.
if alarm then PJohn calls|alarm
else PJohn calls|¬alarm

let mary calls = λalarm :bool.
if alarm then PMary calls|alarm
else PMary calls|¬alarm

The conditional probabilities alarm, john calls, and mary calls do not answer
any query on the belief network and only describe its structure. In order to answer
a specific query, we have to implement a corresponding probability distribution.
For example, in order to answer “What is the probability pMary calls|John calls that
Mary calls when John calls?”, we use QMary calls|John calls below, which essentially
implements logic sampling [Henrion 1988]:

let rec QMary calls|John calls = prob sample b from Pburglary in
sample e from Pearthquake in
sample a from alarm (b, e) in
sample j from john calls a in
sample m from mary calls a in
eif j then m else unprob QMary calls|John calls

in
QMary calls|John calls
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Pburglary denotes the probability distribution that a burglary happens, and Pearthquake

the probability distribution that an earthquake happens. Then the mean of
QMary calls|John calls gives pMary calls|John calls . We will see how to calculate
pMary calls|John calls in Section 6.

We can also implement most of the common operations on probability distribu-
tions. An exception is the Bayes operation ] (which is used in the second update
equation of the Bayes filter). For two independent probability distributions P and
Q, the Bayes operation P ] Q results in a probability distribution R such that
R(x) = ηP (x)Q(x) where η is a normalization constant ensuring

∫
R(x)dx = 1.0; if

P (x)Q(x) is zero for every x, then P ] Q is undefined. Since it is difficult to achieve
a general implementation of P ] Q, we usually make an additional assumption on P
or Q to achieve a specialized implementation. For example, assuming 1) a function
p and a constant c such that p(x) = kP (x) ≤ c for a certain (unknown) constant k
and 2) a probability term q denoting Q, we can implement P ] Q by the rejection
method:

let bayes rejection = λp :A→ real. λc : real. λq :©A.
let rec bayes = prob sample x from q in

sample u from prob S in
eif u < (p x)/c then x else unprob bayes

in
bayes

Note that we do not use k which only indicates that p(x) is proportional to P (x)
(and is unknown anyway). Thus we can implement P ] Q when In Section 6, we
will see another implementation that does not need even c.

High versatility

λ© allows high versatility in encoding probability distributions: given a probability
distribution, we can exploit its unique properties and encode it in many different
ways. For example, exponential1.0 uses a logarithm function to encode an expo-
nential distribution, but there is also an ingenious method (due to von Neumann)
that requires only addition and subtraction operations:

let exponential von Neumann1.0 =
let rec search = λk : real. λu : real. λu1 : real.

prob sample u′ from prob S in
eif u < u′ then k + u1

else
sample u from prob S in
eif u ≤ u′ then unprob (search k u u1)
else

sample u from prob S in
unprob (search (k + 1.0) u u)

in
prob sample u from prob S in

unprob (search 0.0 u u)

The recursive term in gaussian rejection consumes at least three random num-
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bers. We can encode a Gaussian distribution with only two random numbers:

let gaussian Box Muller = λm : real. λσ : real.
prob sample u from prob S in

sample v from prob S in
m + σ ∗

√
−2.0 ∗ log u ∗ cos (2.0 ∗ π ∗ v)

We can also approximate a Gaussian distribution by exploiting the central limit
theorem:

let gaussian central = λm : real. λσ : real.
prob sample x1 from prob S in

sample x2 from prob S in
· · ·

sample x12 from prob S in
m + σ ∗ (x1 + x2 + · · ·+ x12 − 6.0)

The three examples above serve as evidence of high versatility of λ©: the more
we know about a probability distribution, the better we can encode it.

All the examples in this section just rely on our intuition on sampling functions
and do not actually prove the correctness of encodings. For example, we still do
not know if bernoulli indeed encodes a Bernoulli distribution, or equivalently, if
the expression in it generates True with probability p. In the next section, we
investigate how to formally prove the correctness of encodings.

5. PROVING THE CORRECTNESS OF ENCODINGS

When programming in λ©, we often ask “What probability distribution characterizes
outcomes of computing a given expression?” The operational semantics of λ© does
not directly answer this question because an expression computation returns only
a single sample from a certain, yet unknown, probability distribution. Therefore
we need a different methodology for interpreting expressions in terms of probability
distributions.

We take a simple approach that appeals to our intuition on the meaning of ex-
pressions. We write E ∼ Prob if outcomes of computing E are distributed according
to Prob. To determine Prob from E, we supply an infinite sequence of independent
random variables from U(0.0, 1.0] and analyze the result of computing E in terms of
these random variables. If E ∼ Prob, then E denotes a probabilistic computation
for generating samples from Prob and we regard Prob as the denotation of prob E.

We illustrate the above approach with a few examples. In each example, Ri

means the i-th random variable and R∞
i means the infinite sequence of random

variables beginning from Ri (i.e., RiRi+1 · · ·). A random variable is regarded as a
value because it represents real numbers in (0.0, 1.0].

As a trivial example, consider prob S. The computation of S proceeds as follows:

S @ R∞
1 7→e R1 @ R∞

2

Since the outcome is a random variable from U(0.0, 1.0], we have S ∼ U(0.0, 1.0].
As an example of discrete distribution, consider bernoulli p. The expression in it
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computes as follows:

sample x from prob S in x ≤ p @ R∞
1

7→e sample x from prob R1 in x ≤ p @ R∞
2

7→e R1 ≤ p @ R∞
2

7→e True @ R∞
2 if R1 ≤ p;

False @ R∞
2 otherwise.

Since R1 is a random variable from U(0.0, 1.0], the probability of R1 ≤ p is p.
Thus the outcome is True with probability p and False with probability 1.0−p, and
bernoulli p denotes a Bernoulli distribution with parameter p.

As an example of continuous distribution, consider uniform a b. The expression
in it computes as follows:

sample x from prob S in a + x ∗ (b− a) @ R∞
1

7→∗
e a + R1 ∗ (b− a) @ R∞

2

Since we have

a + R1 ∗ (b− a) ∈ (a0, b0] iff R1 ∈ (
a0 − a

b− a
,
b0 − a

b− a
],

the probability that the outcome lies in (a0, b0] is

b0 − a

b− a
− a0 − a

b− a
=

b0 − a0

b− a
∝ b0 − a0

where we assume (a0, b0] ⊂ (a, b]. Thus uniform a b denotes a uniform distribution
over (a, b].

The following proposition shows that binomial p n denotes a binomial distribu-
tion with parameters p and n, which we write as Binomialp,n:

Proposition 5.1. If binomialp n 7→∗
t prob Ep,n, then Ep,n ∼ Binomialp,n.

Proof. By induction on n.
Base case n = 0. We have Ep,n = 0. Since Binomialp,n is a point-mass distribu-

tion centered on 0, we have Ep,n ∼ Binomialp,n.
Inductive case n > 0. The computation of Ep,n proceeds as follows:

sample x from binomialp (n− 1) in
sample b from bernoullip in
if b then 1 + x else x @ R∞

1

7→∗
e sample x from prob xp,n−1 in

sample b from bernoullip in
if b then 1 + x else x @ R∞

i

7→∗
e sample b from prob bp in

if b then 1 + xp,n−1 else xp,n−1 @ R∞
i+1

7→∗
e 1 + xp,n−1 @ R∞

i+1 if bp = True;
xp,n−1 @ R∞

i+1 otherwise.

By induction hypothesis, binomialp (n− 1) generates a sample xp,n−1 from Binomialp,n−1

after consuming R1 · · ·Ri−1 for some i (which is actually n). Since Ri is an inde-
pendent random variable, bernoullip generates a sample bp that is independent of
xp,n−1. Then we obtain an outcome k with the probability of
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bp = True and xp,n−1 = k − 1 or
bp = False and xp,n−1 = k,

which is equal to p∗Binomialp,n−1(k−1)+(1.0−p)∗Binomialp,n−1(k) = Binomialp,n(k).
Thus we have Ep,n ∼ Binomialp,n.

As a final example, we show that geometric rec p denotes a geometric distribution
with parameter p. Suppose geometric 7→∗

t prob E and E ∼ Prob. The computation
of E proceeds as follows:

E @ R∞
1

7→∗
e sample b from prob bp in

eif b then 0
else sample x from geometric in

1 + x
@ R∞

2

7→∗
e 0 @ R∞

2 if bp = True;
sample x from prob E in 1 + x @ R∞

2 otherwise.

The first case happens with probability p and we get Prob(0) = p. In the second
case, we compute the same expression E with R∞

2 . Since all random variables
are independent, R∞

2 can be thought of as a fresh sequence of random variables.
Therefore the computation of E with R∞

2 returns samples from the same probability
distribution Prob and we get Prob(1 + k) = (1.0 − p) ∗ Prob(k). Solving the two
equations, we get Prob(k) = p∗ (1.0−p)k−1, which is the probability mass function
for a geometric distribution with parameter p.

The above approach can be thought of as an adaption of the methodology es-
tablished in simulation theory and demonstrates how to connect simulation theory
and λ©. The proof of the correctness of a sampling method in simulation theory is
easily transcribed into a proof similar to those shown in this section by interpreting
random numbers in simulation theory as random variables in λ©. Thus λ© serves
as a programming language in which sampling methods developed in simulation
theory can be not only formally expressed but also formally reasoned about. All
this is possible in part because an expression computation in λ© is provided with
an infinite sequence of random numbers to consume, or equivalently, because of the
use of generalized sampling functions as the mathematical basis.

Measure-theoretic approach

As the accepted mathematical basis of probability theory is measure theory [Rudin
1986], an alternative approach would be to develop a denotational semantics based
on measure theory by translating expressions into a measure-theoretic structure.
The denotational semantics would be useful in answering such questions as:

— Does every expression in λ© result in a (partial or total) measurable sampling
function? Or is it possible to write a pathological expression that corresponds to
no measurable sampling function?

— Does every expression in λ© specify a probability distribution? Or is it possible
to write a pathological expression that specifies no probability distribution?

— Can we encode any probability distribution in λ©? If not, what kinds of proba-
bility distributions are impossible to encode in λ©?
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Measure theory allows certain (but not all) sampling functions to specify prob-
ability distributions. Consider a sampling function f from (0.0, 1.0] to D. If f is
a measurable function, then D is a measurable space and f determines a unique
probability measure µ such that µ(S) = ν(f−1(S)) where ν is Lebesgue measure
over the unit interval. The intuition is that S, as an event, is assigned a probability
equal to the size of its inverse image under f .

If we ignore fixed point constructs and disallow expressions of higher-order types,
it is straightforward to translate expressions into probability measures, since proba-
bility measures form a monad [Giry 1981; Ramsey and Pfeffer 2002] and expressions
already follow a monadic syntax. Let us write [M ]term for the denotation of term
M . Then we can translate each expression E into a probability measure [E]exp as
follows:

— [prob E]term = [E]exp.
— [M ]exp(S) = 1 if [M ]term is in S.

[M ]exp(S) = 0 if [M ]term is not in S.
— [sample x from M in E]exp =

∫
fd[M ]term where a function f is defined as f(x) = [E]exp

and
∫

fd[M ]term is an integral of f over probability measure [M ]term.
— [S]exp is Lebesgue measure over the unit interval (0.0, 1.0].

Note that the translation does not immediately reveal the probability measure
corresponding to a given expression because it returns a formula for the probability
measure rather than the probability measure itself. Hence, in order to obtain the
probability measure, we have to go through essentially the same analysis as in
the previous approach based on the methodology developed in simulation theory.
Ultimately we have to invert a sampling function specified by a given expression
(because an event is assigned a probability proportional to the size of its inverse
image under the sampling function), which may not be easy to do in a mechanical
way in the presence of various operators.

Once we add fixed point constructs to λ©, expressions should be translated into
a domain-theoretic structure because of recursive equations. Specifically a term
fix x :©A.M gives rise to a recursion equation on type ©A, and if a measure-
theoretic structure is used for the denotation of terms of type ©A, it is difficult to
solve the recursive equation; only with a domain-theoretic structure, the recursive
equation can be given a theoretical treatment. The work by Jones [Jones 1990]
shows how such a domain-theoretic structure can be constructed.

We close this section with a conjecture on the measurability of sampling functions
specifiable in λ©. For the sake of simplicity, we consider expressions of type real only.
For such an expression E, we define a sampling function fE such that fE(ω) = r if
and only if E @ ω ⇁ r @ ω′ for some sampling sequence ω′. Note that in general,
fE is a partial sampling function because the computation of E may not terminate.
Our conjecture is that any such partial sampling function is measurable:

Conjecture 5.2. If · ` E ÷ real, then the partial sampling function fE is mea-
surable. That is, for any measurable set S of real numbers, its inverse image f−1

E (S)
is also measurable.

Then the subprobability distribution induced by fE can be regarded as the denota-
tion of E. The key part of the proof will be to set up measurable structures for all
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valid types in λ©, including those for lambda abstractions and probability terms.

6. APPROXIMATE COMPUTATION IN λ©

In this section, we discuss approximate reasoning in λ© by the Monte Carlo method
[MacKay 1998]. It approximately answers a query on a probability distribution by
generating a large number of samples and then analyzing them. For example, we
can approximate pMary calls|John calls in the belief network example in Section 4,
which is equal to the proportion of True’s among an infinite number of samples
from QMary calls|John calls , by generating a large number of samples and counting
the number of True’s. Although the Monte Carlo method gives only an approximate
answer, its accuracy improves with the number of samples. Moreover it requires a
description of a method of generating samples from a probability distribution and is
therefore particularly suitable for λ©, in which an expression is such a description.

Below we use the Monte Carlo method to implement the expectation query and
the Bayes operation. Both implementations are provided as primitive constructs
of λ©. These primitive constructs are analogues of unsafePerformIO [Peyton Jones
and Wadler 1993] and runST [Launchbury and Peyton Jones 1995] of Haskell in
that they allow term evaluations (≈ effect-free evaluations in Haskell) to initiate
expression computations (≈ effectful computations in Haskell).

6.1 Expectation query

Among common queries on probability distributions, the most important is the
expectation query. The expectation of a function f with respect to a probability
distribution P is the mean of f over P , which we write as

∫
fdP . Other queries

may be derived as special cases of the expectation query. For example, the mean
of a probability distribution over real numbers is the expectation of an identity
function; the probability of an event Event under a probability distribution P is∫

IEventdP where IEvent(x) is 1 if x is in Event and 0 if not.
The Monte Carlo method states that we can approximate

∫
fdP with a set of

samples V1, · · · , Vn from P :

lim
n→∞

f(V1) + · · ·+ f(Vn)
n

=
∫

fdP

We introduce a term construct expectation which exploits the above equation:

term M ::= · · · | expectation Mf MP

Γ ` Mf : A→ real Γ ` MP : ©A

Γ ` expectation Mf MP : real
Exp

Mf 7→∗
t f MP 7→∗

t prob EP

for i = 1, · · · , n new sampling sequence ωi EP @ ωi 7→∗
e Vi @ ω′i f Vi 7→∗

t vi

expectation Mf MP 7→t

P
i vi

n

Exp

The rule Exp says that if Mf evaluates to a lambda abstraction denoting f and
MP evaluates to a probability term denoting P , then expectation Mf MP reduces
to an approximation of

∫
fdP . A run-time variable n, which can be chosen by
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programmers for each expectation query in the source program, specifies the number
of samples to generate from P . To evaluate expectation Mf MP , the run-time
system initializes sampling sequence ωi to generate sample Vi for i = 1, · · · , n (as
indicated by new sampling sequence ωi).

In the rule Exp, the convergence of samples Vi with respect to probability distri-
bution P and the accuracy of

P
i vi

n are controlled not by λ© but solely by program-
mers. That is, λ© is not responsible for choosing a value of n (e.g., by analyzing
EP ) to guarantee a certain level of accuracy in estimating

∫
fdP . Rather it is pro-

grammers that decide an expression EP for encoding P as well as a suitable value
of n to achieve a desired level of accuracy. We do not consider this as a weakness
of λ©, since EP itself (chosen by programmers) affects the accuracy of

P
i vi

n after
all.

Although λ© provides no concrete guidance in choosing a value of n in the rule
Exp, programmers can analytically or empirically determine, for each expectation
query, a suitable value of n that finishes the expectation query within a given
time constraint. (In general, a large value of n is better because it results in a
more faithful approximation of P by samples Vi and a smaller difference betweenP

i vi

n and the true expectation
∫

fdP .) Ideally the amount of time required to
evaluate expectation Mf MP should be directly proportional to n, but in practice,
the computation of the same expression EP may take a different amount of time,
especially if EP expresses a recursive computation. Therefore programmers can
try different values of n to find the largest one that finishes the expectation query
within a given time constraint.

Now we can calculate pMary calls|John calls from Section 4 as follows:

expectation (λx :bool. if x then 1.0 else 0.0) QMary calls|John calls

If we use parameters given on page 439 of [Russell and Norvig 1995] with Palarm|burglary
set to bernoulli 0.95, the closed-form solution of pMary calls|John calls yields 0.0400859927044.
The following table shows approximate values of pMary calls|John calls as the number
of samples increases:

number of samples pMary calls|John calls

100 0.04
1000 0.041
10000 0.0416
100000 0.04012
1000000 0.040064

Note that the accuracy in approximating pMary calls|John calls increases with the
number of samples. See Section 6.4 for the time required to generate samples.

6.2 Bayes operation

The previous implementation of the Bayes operation P ] Q assumes a function
p and a constant c such that p(x) = kP (x) ≤ c for a certain constant k. It is,
however, often difficult to find the optimal value of c (i.e., the maximum value of
p(x)) and we have to take a conservative estimate of c. The Monte Carlo method, in
conjunction with importance sampling [MacKay 1998], allows us to dispense with
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c by approximating Q with a set of samples and P ] Q with a set of weighted
samples. We introduce a term construct bayes for the Bayes operation and an
expression construct importance for importance sampling:

term M ::= · · · | bayes Mp MQ

expression E ::= · · · | importance {(Vi, wi)|1 ≤ i ≤ n}

In the spirit of data abstraction, importance represents only an internal data struc-
ture and is not directly available to programmers.

Γ ` Mp : A→ real Γ ` MQ : ©A

Γ ` bayes Mp MQ : ©A
Bayes

Γ ` Vi : A Γ ` wi : real 1 ≤ i ≤ n

Γ ` importance {(Vi, wi)|1 ≤ i ≤ n} ÷A
Imp

Mp 7→∗
t p MQ 7→∗

t prob EQ

for i = 1, · · · , n new sampling sequence ωi EQ @ ωi 7→∗
e Vi @ ω′i p Vi 7→∗

t wi

bayes Mp MQ 7→t prob importance {(Vi, wi)|1 ≤ i ≤ n}
Bayes

Pk−1
i=1 wi

S < r ≤
Pk

i=1 wi

S where S =
∑n

i=1 wi

importance {(Vi, wi)|1 ≤ i ≤ n} @ rω 7→e Vk @ ω
Imp

The rule Bayes uses sampling sequences ω1, · · · , ωn initialized by the run-time sys-
tem and approximates Q with n samples V1, · · · , Vn, where n is a run-time variable
as in the rule Exp. Then it applies p to each sample Vi to calculates its weight
wi and creates a set {(Vi, wi)|1 ≤ i ≤ n} of weighted samples as an argument
to importance. The rule Imp implements importance sampling: we use a random
number r to probabilistically select a sample Vk by taking into account the weights
associated with all the samples.

6.3 expectation and bayes as term constructs

A problem with the above definition is that although expectation and Bayes are
term constructs, their reduction is probabilistic because of sampling sequence ωi

in the rules Exp and Bayes. This violates the principle that a term evaluation is
always deterministic, and now the same term may evaluate to different values. For
pragmatic reasons, however, we still choose to define expectation and bayes as term
constructs rather than expression constructs. Consider a probability distribution
P (s) defined in terms of probability distributions Q(s) and R(u):

P (s) = ηQ(s)
∫

f(s, u)R(u)du

(A similar example is found in Section 8.3.) P (s) is obtained by the Bayes operation
between Q(s) and p(s) =

∫
f(s, u)R(u)du, and is encoded in λ© as

bayes (λs : . expectation (λu : .Mf (s, u)) MR) MQ

where MR and MQ are probability terms denoting R and Q, respectively, and Mf

is a lambda abstraction denoting f . If expectation was an expression construct, how-
ever, it would be difficult to encode P (s) because expression expectation (λu : .Mf (s, u)) MQ
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cannot be converted into a term. In essence, mathematically the expectation of a
function with respect to a probability distribution and the result of a Bayes opera-
tion are always unique (if they exist), which in turn implies that if expectation and
bayes are defined as expression constructs, we cannot write code involving expec-
tations and Bayes operations in the same manner that we reason mathematically.

In the actual implementation of λ© (to be presented in the next section), terms
are not protected from computational effects (such as input/output and mutable ref-
erences) and term evaluations do not always result in unique values anyway. Hence
non-deterministic term evaluations should not be regarded as a new problem, and
expressions are best interpreted as a syntactic category dedicated to probabilistic
computations only in the mathematical sense. Strict adherence at the implementa-
tion level to the semantic distinction between terms and expressions (e.g., defining
expectation and bayes as expression constructs) would cost code readability without
any apparent benefit.

6.4 Cost of generating random numbers

The essence of the Monte Carlo method is to trade accuracy for cost — it only
gives approximate answers, but relieves programmers of the cost of exact compu-
tation (which can be even impossible in certain problems). Since λ© relies on the
Monte Carlo method to reason about probability distributions, it is important for
programmers to be able to determine the cost of the Monte Carlo method.

We decide to define the cost of the Monte Carlo method as proportional to the
number of random numbers consumed. The decision is based on the assumption
that random number generation can account for a significant portion of the total
computation time. Under our implementation of λ©, random number generation
for the following examples from Section 4 accounts for an average of 74.85% of the
total computation time. The following table shows execution times in seconds and
percentages of random number generation when generating 100,000 samples (on a
Pentium III 500Mhz with 384 MBytes memory):

test case execution time random number generation (%)
uniform 0.0 1.0 0.25 78.57
binomial 0.25 16 4.65 64.84

geometric efix 0.25 1.21 63.16
gaussian rejection 2.5 5.0 1.13 77.78

exponential von Neumann1.0 1.09 80.76
gaussian Box Muller 2.0 4.0 0.57 77.27

gaussian central 0.0 1.0 2.79 83.87
QMary calls|John calls 21.35 72.57

In λ©, it is the programmers’ responsibility to reason about the cost of generating
random numbers, since for an expression computation judgment E @ ω ⇁ V @ ω′,
the length of the consumed sequence ω−ω′ is not observable. A analysis similar to
those in Section 5 can be used to estimate the cost of obtaining a sample in terms
of the number of random numbers consumed. In the case of geometric rec p, for
example, the expected number n of random numbers consumed is calculated by
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solving the equation

n = 1 + (1− p) ∗ n

where 1 accounts for the random number generated from the Bernoulli distribution
and (1 − p) is the probability that another attempt is made to generate a sam-
ple from the same probability distribution. The same technique applies equally to
the rejection method (e.g., gaussian rejection). In general, analyses in simulation
theory for calculating the expected number of random numbers consumed can be
transcribed to similar analyses for λ© in a straightforward way, since λ©, as a pro-
gramming language with formal semantics, allows us to express sampling methods
developed in simulation theory.

7. IMPLEMENTATION

This section describes the implementation of λ©. Instead of implementing λ© as
a complete programming language of its own, we choose to embed it in an exist-
ing functional language for two pragmatic reasons. First the conceptual basis of
probabilistic computations in λ© is simple enough that it is easy to simulate all lan-
guage constructs of λ© without any modification to the run-time system. Second
we intend to use λ© for real applications in robotics, for which we wish to exploit
advanced features such as a module system, an interface to foreign languages, and
a graphics library. Hence building a complete compiler for λ© is not justified when
extending an existing functional language is sufficient for examining the practicality
of λ©.

In our implementation, we use Objective CAML as the host language. Since
such constructs of λ© as probability terms and bind expressions are not available in
Objective CAML, we first extend the syntax of Objective CAML using CAMLP4,
a preprocessor for Objective CAML, so as to incorporate the syntax of λ©. The
extended syntax is then translated back in the original syntax of Objective CAML.

For the sake of simplicity, we assume that λ© uses floating point numbers in
place of real numbers, since the overhead of exact real arithmetic is not justified in
λ© where we work with samples and approximations. We formulate a sound and
complete translation of λ© in a simple call-by-value language which can be thought
of a sublanguage of Objective CAML.

7.1 Representation of sampling functions

Since a probability term denotes a probability distribution specified by a sampling
function, the implementation of λ© translates probability terms into representations
of sampling functions. We translate a probability term of type ©A into a value of
type A prob, where the type constructor prob is conceptually defined as follows:

type A prob = float∞ −> A ∗ float∞

float is the type of floating point numbers, and we use float∞ for the type of
infinite sequences of random numbers. The actual definition of prob dispenses with
infinite sequences of random numbers by using a global random number generator
whenever fresh random numbers are needed to compute sampling expressions:

type A prob = unit −> A
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type A, B ::= A→A | ©A | real
term M, N ::= x | λx :A. M | M M | prob E | r
expression E, F ::= M | sample x from M in E | S | x | efix x÷A. E
value/sample V ::= λx :A. M | prob E | r
floating point number r
sampling sequence ω ::= r1r2 · · · ri · · · where ri ∈ (0.0, 1.0]
typing context Γ ::= · | Γ, x : A | Γ,x÷A

Fig. 4. A fragment of λ© as the source language.

type A, B ::= A −> A | A prob | float | unit
expression e, f ::= x | fun x :A. e | e e | prb e | app e | r |

() | random | fix x :A. u
value v ::= fun x :A. e | prb v | r | ()
function u ::= fun x :A. e
floating point number r
sampling sequence ω ::= r1r2 · · · ri · · · where ri ∈ (0.0, 1.0]
typing context Γ ::= · | Γ, x : A

Fig. 5. A call-by-value language as the target language.

Here unit is the unit type which is inhabited only by a unit value ().
We use the type constructor prob as an abstract datatype. That is, the definition

of prob is not exposed to λ© and values of type A prob are accessed only via
member functions. We provide two member functions: prb and app. prb builds a
value of type A prob from a function of type unit −> A; it is actually defined as an
identity function. app generates a sample from a value of type A prob; it applies
its argument to a unit value. The interface and implementation of the abstract
datatype prob are given as follows:

type A prob type A prob = unit −> A
val prb : (unit −> A) −> A prob let prb = fun f :unit −> A. f
val app : A prob −> A let app = fun f :A prob. f ()

We use prb in translating probability terms and app in translating bind expres-
sions. In conjunction with the use of the type constructor prob as an abstract data
type, they provide a sound and complete translation of λ©, as shown in the next
subsection.

7.2 Translation of λ© in a call-by-value language

We translate a fragment of λ© shown in Figure 4 in a call-by-value language shown
in Figure 5. The source language excludes product types, which are straightforward
to translate if the target language is extended with product types. We directly
translate expression fixed point constructs without simulating them with fixed point
constructs for terms. As the target language supports only floating point numbers,
r in the source language is restricted to floating point numbers.

The target language is a call-by-value language extended with the abstract datatype
prob. It has a single syntactic category consisting of expressions (because it does
not distinguish between effect-free evaluations and effectful computations). As in
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Γ, x : A v̀ x : A
Hyp

Γ, x : A v̀ e : B

Γ v̀ fun x :A. e : A −> B
Lam

Γ v̀ e1 : A −> B Γ v̀ e2 : A

Γ v̀ e1 e2 : B
App

Γ v̀ e : unit −> A

Γ v̀ prb e : A prob
Prb

Γ v̀ e : A prob

Γ v̀ app e : A
Papp

Γ v̀ r : float
Float

Γ v̀ () : unit
Unit

Γ v̀ random : float
Random

Γ, x : A v̀ u : A

Γ v̀ fix x :A. u : A
Fix

Fig. 6. Typing rules of the target language.

e @ ω 7→v e′ @ ω′

e f @ ω 7→v e′ f @ ω′
EβL

f @ ω 7→v f ′ @ ω′

(fun x :A. e) f @ ω 7→v (fun x :A. e) f ′ @ ω′
EβR

(fun x :A. e) v @ ω 7→v [v/x]e @ ω
EβV

e @ ω 7→v e′ @ ω′

prb e @ ω 7→v prb e′ @ ω′
EPrb

e @ ω 7→v e′ @ ω′

app e @ ω 7→v app e′ @ ω′
EApp

app prb v @ ω 7→v v () @ ω
EAppPrb

random @ rω 7→v r @ ω
ERandom

fix x :A. u @ ω 7→v [fix x :A. u/x]u @ ω
EFix

Fig. 7. Operational semantics of the target language.

λ©, every expression denotes a probabilistic computation and we say that an ex-
pression computes to a value. Note that fixed point constructs fix x :A. u allow
recursive expressions only over function types.

The type system of the target language is shown in Figure 6. It employs a typing
judgment Γ v̀ e : A, meaning that expression e has type A under typing context
Γ. The rules Prb and Papp conform to the interface of the abstract datatype prob.

The operational semantics of the target language is shown in Figure 7. It employs
an expression reduction judgment e @ ω 7→v e′ @ ω′, meaning that the computation
of e with sampling sequence ω reduces to the computation of e′ with sampling
sequence ω′. A capture-avoiding substitution [e/x]f is defined in a standard way.
The rule EAppPrb is defined according to the implementation of the abstract datatype
prob. The rule ERandom shows that random, like sampling expressions in λ©, consumes
a random number in a given sampling sequence. We write 7→∗

v for the reflexive and
transitive closure of 7→v.

Figure 8 shows the translation of the source language in the target language.3

We overload the function [·]v for types, typing contexts, terms, and expressions.
Both terms and expressions of type A in the source language are translated into
expressions of type [A]v in the target language. [prob E]v suspends the computa-
tion of [E]v by building a function fun :unit. [E]v, just as prob E suspends the
computation of E. Since the target language allows recursive expressions only over
function types, an expression variable x of type A (i.e., x ÷ A) is translated into
xx () where xx is a special variable of type unit −> [A]v annotated with x; if the
target language allowed recursive expressions over any type, x and efix x÷A.E

3 is a wildcard pattern for variables and types.
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[A→B]v = [A]v −> [B]v
[©A]v = [A]v prob

[real]v = float

[·]v = ·
[Γ, x : A]v = [Γ]v, x : [A]v

[Γ,x÷A]v = [Γ]v, xx : unit −> [A]v

[x]v = x
[λx :A. M ]v = fun x : [A]v. [M ]v

[M N ]v = [M ]v [N ]v
[prob E]v = prb (fun :unit. [E]v)

[r]v = r
[sample x from M in E]v = (fun x : . [E]v) (app [M ]v)

[S]v = random

[x]v = xx ()
[efix x÷A. E]v = (fix xx :unit −> [A]v. fun :unit. [E]v) ()

Fig. 8. Translation of the source language.

could be translated into xx and fix xx : [A]v. [E]v, respectively.4

Propositions 7.1 and 7.2 show that the translation is faithful to the type system
of the source language. Proposition 7.1 proves the soundness of the translation:
a well-typed term or expression in the source language is translated into a well-
typed expression in the target language. Proposition 7.2 proves the completeness
of the translation: only a well-typed term or expression in the source language is
translated into a well-type expression in the target language. See Appendix A.3 for
a proof.

Proposition 7.1.
If Γ ` M : A, then [Γ]v v̀ [M ]v : [A]v.
If Γ ` E ÷A, then [Γ]v v̀ [E]v : [A]v.

Proof. By simultaneous induction on the structure of M and E.

Proposition 7.2.
If [Γ]v v̀ [M ]v : A, then there exists B such that A = [B]v and Γ ` M : B.
If [Γ]v v̀ [E]v : A, then there exists B such that A = [B]v and Γ ` E ÷B.

The translation is also faithful to the operational semantics of the source lan-
guage. We first show that the translation is sound: a term reduction in the source
language is translated into a corresponding expression reduction which consumes no
random number (Proposition 7.3); an expression reduction in the source language is
translated into a corresponding sequence of expression reductions which consumes
the same sequence of random numbers (Proposition 7.4). Note that in Proposi-
tion 7.4, [E]v does not reduce to [F ]v; instead it reduces to an expression e to which
[F ]v eventually reduces without consuming random numbers. See Appendix A.4
for proofs.

4In the Objective CAML syntax, [efix x÷A. E]v can be rewritten as
let rec xx () = [E]v in xx ().
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Proposition 7.3.
If M 7→t N , then [M ]v @ ω 7→v [N ]v @ ω for any sampling sequence ω.

Proposition 7.4.
If E @ ω 7→e F @ ω′, there exists e such that [E]v @ ω 7→∗

v e @ ω′ and [F ]v @ ω′ 7→∗
v

e @ ω′.

The completeness of the translation states that only a valid term or expression
reduction in the source language is translated into a corresponding sequence of
expression reductions in the target language. In other words, a term or expres-
sion that cannot be further reduced in the source language is translated into an
expression whose reduction eventually gets stuck. To simplify the presentation, we
introduce three judgments, all of which express that a term or expression does not
further reduces.

— M 7→t • means that there exists no term to which M reduces.
— E @ ω 7→e • means that there exists no expression to which E reduces.
— e @ ω 7→v • means that there exists no expression to which e reduces (in the

target language).

Corollary 7.6 proves the completeness of the translation for terms; Proposition 7.7
proves the completeness of the translation for expressions. See Appendix A.5 for
proofs.

Proposition 7.5. If [M ]v @ ω 7→v e @ ω′, then e = [N ]v, ω = ω′, and
M 7→t N .

Corollary 7.6. If M 7→t •, then [M ]v @ ω 7→v • for any sampling sequence ω.

Proposition 7.7.
If E @ ω 7→e •, then there exists e such that [E]v @ ω 7→∗

ve @ ω 7→v •.

The target language can be thought of as a sublanguage of Objective CAML
in which the abstract datatype prob is built-in and random is implemented as
Random.float 1.0.5 A sampling sequence ω in an expression reduction judgment
can be thought of as part of the state of the run-time system, namely the state of the
random number generator. Since Objective CAML also serves as the host language
for λ©, we extend the syntax of Objective CAML to incorporate the syntax of λ©
(using CAMLP4). The extended syntax is then translated back in the original
syntax of Objective CAML using the function [·]v.

7.3 Discussion

Although λ© is implemented indirectly via a translation in Objective CAML, both
its type system and its operational semantics are faithfully mirrored through the
use of an abstract datatype. Besides all existing features of Objective CAML are
available when programming in λ©, and we may think of the implementation of λ©
as a conservative extension of Objective CAML. The translation is easily general-
ized to any monadic language, thus complementing the well-established result that

5To be strict, random would be implemented as 1.0 -. Random.float 1.0.
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a call-by-value language is translated in a monadic language (e.g., see [Sabry and
Wadler 1997]).

The translator of λ© does not protect terms from computational effects already
available in Objective CAML such as input/output, mutable references, and even
direct uses of Random.float. Thus, for example, term M in a bind expression
sample x from M in E is supposed to produce no computational effect, but the
translator has no way to verify that the evaluation of M is effect-free. Therefore
the translator of λ© relies on programmers to ensure that every term denotes a
regular value.

We could directly implement λ© by extending the compiler and the run-time
system of Objective CAML. An immediate benefit is that type error messages
are more informative because type errors are detected at the level of λ©. (Our
implementation detects type errors in the translated code rather than in the source
code; hence programmers should analyze type error messages to locate type errors
in the source code.) As for execution speed, we conjecture that the gain is negligible,
since the only overhead incurred by the abstract datatype prob is to invoke two
tiny functions when its member functions are invoked: an identity function (for
prb) and a function applying its argument to a unit value (for app).

8. APPLICATIONS

This section presents three applications of λ© in robotics: robot localization, people
tracking, and robotic mapping, all of which are popular topics in robotics. Although
different in goal, all these applications share a common characteristic: the state of a
robot is estimated from sensor readings, where the definition of state differs in each
case. A key element of these applications is uncertainty in sensor readings, due
to limitations of sensors and noise from the environment. It makes the problem
of estimating the state of a robot both interesting and challenging: if all sensor
readings were accurate, the state of a robot could be accurately traced by a simple
(non-probabilistic) analysis of sensor readings. In order to cope with uncertainty
in sensor readings, we estimate the state of a robot with probability distributions.

As a computational framework, we use Bayes filters. In each case, we formu-
late the update equations at the level of probability distributions and translate
them in λ©. All implementations are tested using data collected with real robots.
Experimental results are found at http://www.cs.cmu.edu/~gla/toplas05/.

8.1 Sensor readings: action and measurement

To update the state of a robot, we use two kinds of sensor readings: action and
measurement. As in a Bayes filter, an action induces a state change whereas a
measurement gives information on the state:

— An action a is represented as an odometer reading which returns the pose (i.e.,
position (x, y) and orientation θ) of the robot relative to its initial pose. It is
given as a tuple (∆x,∆y, ∆θ).

— A measurement m consists of range readings which return distances to ob-
jects visible at certain angles. It is given as an array [d1; · · · ; dn] where each di,
1 ≤ i ≤ n, denotes the distance between the robot and the closest object visible
at a certain angle.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, July 2008.



A Probabilistic Language based upon Sampling Functions · 33

Odometers and range finders are prone to errors because of their mechanical
nature. An odometer usually tends to drift in one direction over time. Its ac-
cumulated error becomes manifest especially when the robot closes a loop after
taking a circular route. Range finders occasionally fail to recognize obstacles and
report the maximum distance measurable. In order to correct these errors, we use
a probabilistic approach by representing the state of the robot with a probability
distribution.

In the probabilistic approach, an action increases the set of possible states of
the robot because it induces a state change probabilistically. In contrast, a mea-
surement decreases the set of possible states of the robot because it gives negative
information on unlikely states (and positive information on likely states). We now
demonstrate how to probabilistically update the state of the robot in three different
applications.

8.2 Robot localization

Robot localization [Thrun 2000a] is the problem of estimating the pose of a robot
when a map of the environment is available. If the initial pose is given, the problem
becomes pose tracking which keeps track of the robot pose by compensating errors
in sensor readings. If the initial pose is not given, the problem becomes global local-
ization which begins with multiple hypotheses on the robot pose (and is therefore
more involved than pose tracking).

We consider robot localization under the assumption (called the Markov assump-
tion) that the past and the future are independent if the current pose is known,
or equivalently that the environment is static. This assumption allows us to use a
Bayes filter in estimating the robot pose. Specifically the state in the Bayes filter
is the robot pose s = (x, y, θ), and we estimate s with a probability distribution
Bel(s) over three-dimensional real space. We compute Bel(s) according to the
following update equations (which are the same as shown in Section 2):

Bel(s) ←
∫
A(s|a, s′)Bel(s′)ds′ (3)

Bel(s) ← ηP(m|s)Bel(s) (4)

η a normalizing constant ensuring
∫

Bel(s)ds = 1.0. We use the following interpre-
tation of A(s|a, s′) and P(m|s):

— A(s|a, s′) is the probability that the robot moves to pose s after taking action a
at another pose s′. A is called an action model.

— P(m|s) is the probability that measurement m is taken at pose s. P is called a
perception model.

Given an action a and a pose s′, we can generate a new pose s from A(·|a, s′) by
adding a noise to a and applying it to s′. Given a measurement m and a pose s, we
can also compute κP(m|s) where κ is an unknown constant: the map determines a
unique (accurate) measurement ms for pose s, and the squared distance between m
and ms is assumed to be proportional to P(m|s). Then, if MA denotes conditional
probability A and MP m returns a function f(s) = κP(m|s), we implement update
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equations (3) and (4) as follows:

let Belnew = prob sample s′ from Bel in
sample s from MA (a, s′) in
s

 (3)

let Belnew = bayes (MP m) Bel } (4)

Both pose tracking and global localization are achieved by specifying an appropriate
initial probability distribution of robot pose. For pose tracking, we use a point-mass
distribution or a Gaussian distribution; for global localization, we use a uniform
distribution over the open space in the map.

8.3 People tracking

People tracking [Montemerlo et al. 2002] is an extension of robot localization in
that it estimates not only the robot pose but also positions of people (or unmapped
objects). As in robot localization, the robot takes an action to change its pose.
Unlike in robot localization, however, the robot categorizes sensor readings in a
measurement by deciding whether they correspond with objects in the map or with
people. Those sensor readings that correspond with objects in the map are used to
update the robot pose; the rest of sensor readings are used to update positions of
people.

A simple approach is to maintain a probability distribution Bel(s, ~u) of robot
pose s and positions ~u of people. Although it works well for pose tracking, this
approach is not a general solution for global localization. The reason is that sensor
readings from people are correctly interpreted only with a correct hypothesis on
the robot pose, but during global localization, there may be incorrect hypotheses
that lead to incorrect interpretation of sensor readings. In other words, during
global localization, there exists a dependence between the robot pose and positions
of people, which is not captured by Bel(s, ~u).

Hence we maintain a probability distribution Bel(s, Ps(~u)) of robot pose s and
probability distribution Ps(~u) of positions ~u of people conditioned on robot pose s.
Ps(~u) captures the dependence between the robot pose and positions of people.
Bel(s, Ps(~u)) can be thought of as a probability distribution over probability dis-
tributions.

As in robot localization, we update Bel(s, Ps(~u)) with a Bayes filter. The dif-
ference from robot localization is that the state is a pair of s and Ps(~u) and that
the action model takes as input both an action a and a measurement m. We use
update equations (5) and (6) in Figure 9 (which are obtained by replacing s by
s, Ps(~u) and a by a,m in update equations (1) and (2)).

The action model A(s, Ps(~u)|a,m, s′, Ps′(~u′)) generates s, Ps(~u) from s′, Ps′(~u′)
utilizing action a and measurement m. We first generate s and then Ps(~u) ac-
cording to equation (7) in Figure 9. We write the first Prob in equation (7) as
Arobot(s|a,m, s′, Ps′(~u′)). The second Prob in equation (7) indicates that we gen-
erate Ps(~u) from Ps′(~u′) utilizing action a and measurement m, which is exactly
a situation where we can use another Bayes filter. For this inner Bayes filter, we
use update equations (8) and (9) in Figure 9. We write Prob in equation (8) as
Apeople(~u|a, ~u′, s, s′); we simplify Prob in equation (9) into Prob(m|~u, s) because m
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Bel(s, Ps(~u)) ←
R
A(s, Ps(~u)|a, m, s′, Ps′ (~u′))Bel(s′, Ps′ (~u′))d(s′, Ps′ (~u′)) (5)

Bel(s, Ps(~u)) ← ηP(m|s, Ps(~u))Bel(s, Ps(~u)) (6)

= ηBel(s, Ps(~u))
R
Ppeople(m|~u, s)Ps(~u)d~u

A(s, Ps(~u)|a, m, s′, Ps′ (~u′)) = Prob(s|a, m, s′, Ps′ (~u′)) Prob(Ps(~u)|a, m, s′, Ps′ (~u′), s) (7)

= Arobot(s|a, m, s′, Ps′ (~u′)) Prob(Ps(~u)|a, m, s′, Ps′ (~u′), s)

Ps(~u) ←
R
Prob(~u|a, ~u′, s, s′)Ps′ (~u′)d~u′ (8)

=
R
Apeople(~u|a, ~u′, s, s′)Ps′ (~u′)d~u′

Ps(~u) ← η′Prob(m|~u, s, s′)Ps(~u) (9)

= η′Ppeople(m|~u, s)Ps(~u)

Fig. 9. Equations used in people tracking. (5) and (6) for the Bayes filter computing Bel(s, Ps(~u)).
(7) for decomposing the action model. (8) and (9) for the inner Bayes filter computing Ps(~u).

let Belnew =

prob sample (s′, Ps′ (~u′)) from Bel in

sample s from MArobot
(a, m, s′, Ps′ (~u′)) in

let Ps(~u) = prob sample ~u′ from Ps′ (~u′) in

sample ~u from MApeople
(a, ~u′, s, s′) in

~u

9>=>; (8)

in
let Ps(~u) = bayes (MPpeople

m s) Ps(~u) in } (9)

(s, Ps(~u))

9>>>>>>>>>=>>>>>>>>>;
(7)

9>>>>>>>>>>>>>=>>>>>>>>>>>>>;
(5)

let Belnew =
bayes λ(s, Ps(~u)) : . (expectation (MPpeople

m s) Ps(~u)) Bel
} (6)

Fig. 10. Implementation of people tracking in λ©. Numbers on the right-hand side show corre-
sponding equations in Figure 9.

does not depend on s′ if s is given, and write it as Ppeople(m|~u, s).
Figure 10 shows the implementation of people tracking in λ©. MArobot

and MApeople

denote conditional probabilities Arobot and Apeople, respectively. MPpeople
m s re-

turns a function f(~u) = κPpeople(m|~u, s) for a constant κ. Since both m and s
are fixed when computing f(~u), we consider only those range readings in m that
correspond with people. In implementing update equation (6), we use the fact that
P(m|s, Ps(~u)) is the expectation of a function g(~u) = Ppeople(m|~u, s) with respect
to Ps(~u):

P(m|s, Ps(~u)) =
∫
Ppeople(m|~u, s)Ps(~u)d~u (10)

Our implementation further simplifies the models used in the update equations.
We use Arobot(s|a, s′) instead of Arobot(s|a,m, s′, Ps′(~u′)) as in robot localization.
That is, we ignore the interaction between the robot and people when generating
new poses of the robot. Similarly we use Apeople(~u|~u′) instead of Apeople(~u|a, ~u′, s, s′)
on the assumption that positions of people are not affected by the robot pose; ~u
is obtained by adding a random noise to ~u′. We also simplify P(m|s, Ps(~u)) in
update equation (6) into P(m|s), which is computed in the same way as in robot
localization; hence equation (10) is not actually exploited in our implementation.
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let Belnew =

prob sample (s′, Ps′ (~u′)) from Bel in
sample s from

bayes λs : . (expectation (MPlandmark
m s) Ps′ (~u′))

(MArobot
(a, s′)) in

9=; (11)

let Ps(~u) = bayes (MPlandmark
m s) Ps′ (~u′) in } (9)

(s, Ps(~u))

9>>>>=>>>>; (7)

9>>>>>>>>>=>>>>>>>>>;
(5)

let Belnew = bayes λ(s, Ps(~u)) : . (expectation (MPlandmark
m s) Ps(~u)) Bel } (6)

Fig. 11. Implementation of robotic mapping in λ©.

8.4 Robotic mapping

Robotic mapping [Thrun 2002] is the problem of building a map (or a spatial model)
of the environment from sensor readings. Since measurements are a sequence of
inaccurate local snapshots of the environment, a robot simultaneously localizes
itself as it explores the environment so that it corrects and aligns local snapshots
to construct a global map. For this reason, robotic mapping is also referred to as
simultaneous localization and mapping (or SLAM).

Here we assume that the environment consists of an unknown number of sta-
tionary landmarks. Then the goal is to estimate positions of landmarks as well as
the robot pose. The key observation is that we may think of landmarks as people
who never move in an empty environment. It means that the problem is a special
case of people tracking and we can use all the equations in Figure 9. Below we use
subscript landmark instead of people for the sake of clarity.

As in people tracking, we maintain a probability distribution Bel(s, Ps(~u)) of
robot pose s and probability distribution Ps(~u) of positions ~u of landmarks condi-
tioned on robot pose s. Since landmarks are stationary and Alandmark(~u|a, ~u′, s, s′)
is non-zero if and only if ~u = ~u′, we skip update equation (8) in implementing
update equation (5). Arobot in equation (7) uses Plandmark(m|~u′, s) to test the likeli-
hood of each new robot pose s with respect to old positions ~u′ of landmarks, as in
FastSLAM 2.0 [Montemerlo 2003]:

Arobot(s|a,m, s′, Ps′(~u′)) (11)

=
∫
Prob(s|a,m, s′, u′)Ps′(~u′)d~u′

=
∫

Prob(s|a, ~u′)Prob(m, s′|s, a, ~u′)

Prob(m, s′|a, ~u′)
Ps′(~u′)d~u′

=
∫

η′′Prob(m, s′|s, a, ~u′)Ps′(~u′)d~u′ where η′′ =
Prob(s|a, ~u′)

Prob(m, s′|a, ~u′)

=
∫

η′′Prob(s′|s, a, ~u′,m)Prob(m|s, a, ~u′)Ps′(~u′)d~u′

=
∫

η′′Prob(s′|s, a)Prob(m|s, ~u′)Ps′(~u′)d~u′

= η′′Arobot(s|a, s′)
∫
Plandmark(m|~u′, s)Ps′(~u′)d~u′

Given a and s′, we implement equation (11) with a Bayes operation onArobot(·|a, s′).
Figure 11 shows the implementation of robotic mapping in λ©. Compared with

the implementation of people tracking in Figure 10, it omits update equation (8)
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and incorporates equation (11). MArobot
and MPlandmark

denote conditional probabil-
ities Arobot and Plandmark, respectively, as in people tracking. Since landmarks are
stationary, we no longer need MAlandmark

. If we approximate Bel(s, Ps(~u)) with a
single sample (i.e., with one most likely robot pose and an associated map), update
equation (6) becomes unnecessary.

8.5 Discussion

We find that the benefit of implementing probabilistic computations in λ©, such
as improved readability and conciseness of code, can outweigh its disadvantage in
speed. For example, our robot localizer is 1307 lines long (826 lines of Objective
CAML/λ© code for probabilistic computations and 481 lines of C code for inter-
facing with CARMEN [Montemerlo et al. ]) whereas the CARMEN robot localizer,
which uses particle filters and is written in C, is 3397 lines long. (Our robot local-
izer also uses the translator of λ© which is 306 lines long: 53 lines of CAMLP4 code
and 253 lines of Objective CAML code.) The comparison is, however, not conclu-
sive because not every piece of code in CARMEN contributes to robot localization.
Moreover the reduction in code size is also attributed to the use of Objective CAML
as the host language. Hence the comparison should not be taken as indicative of
reduction in code size due to λ© alone. The speed loss is also not significant. For
example, while the CARMEN robot localizer processes 100.0 sensor readings, our
robot localizer processes on average 54.6 sensor readings (and nevertheless shows
comparable accuracy).

On the other hand, λ© is not suitable for an application that achieves high scala-
bility by exploiting a particular representation scheme for probability distributions.
In the robotic mapping problem, for example, one may choose to approximate the
position of each landmark with a Gaussian distribution. As the cost of represent-
ing a Gaussian distribution is relatively low, the approximation makes it possible
to build a highly scalable mapper. For example, Montemerlo [Montemerlo 2003]
presents a FastSLAM 2.0 mapper which handles maps with over 1,000,000 land-
marks. For such a problem, λ© would be useful for quickly building a prototype
implementation to test the correctness of a probabilistic computation.

9. RELATED WORK

There are a number of probabilistic languages that focus on discrete distribu-
tions. Such a language usually provides a probabilistic construct that is equiva-
lent to a binary choice construct. Saheb-Djahromi [Saheb-Djahromi 1978] presents
a probabilistic language with a binary choice construct (p1 → e1, p2 → e2) where
p1+p2 = 1.0. Koller, McAllester, and Pfeffer [Koller et al. 1997] present a first order
functional language with a coin toss construct flip(p). Pfeffer [Pfeffer 2001] gener-
alizes the coin toss construct to a multiple choice construct dist [p1 : e1, · · · , pn : en]
where

∑
i pi = 1.0. Gupta, Jagadeesan, and Panangaden [Gupta et al. 1999] present

a stochastic concurrent constraint language with a probabilistic choice construct
choose x from Dom in e where Dom is a finite set of real numbers. All these con-
structs, although in different forms, are equivalent to a binary choice construct and
have the same expressive power.

An easy way to compute a binary choice construct (or an equivalent) is to gen-
erate a sample from the probability distribution it denotes, as in the above prob-
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abilistic languages. Another way is to return an accurate representation of the
probability distribution itself, by enumerating all elements in its support along
with their probabilities. Pless and Luger [Pless and Luger 2001] present an ex-
tended lambda calculus which uses a probabilistic construct of the form

∑
i ei : pi

where
∑

i pi = 1.0. An expression denoting a probability distribution computes
to a normal form

∑
i vi : pi, which is an accurate representation of the probabil-

ity distribution. Jones [Jones 1990] presents a metalanguage with a binary choice
construct e1 orp e2. Its operational semantics uses a judgment e ⇒

∑
pivi. Mo-

gensen [Mogensen 2002] presents a language for specifying die-rolls. Its denotation
semantics (called probability semantics) is formulated in a similar style, in terms of
probability measures.

Jones and Mogensen also provide an equivalent of a fixed point construct which
enables programmers to specify discrete distributions with infinite support (e.g.,
geometric distribution). Jones assumes

∑
pi ≤ 1.0 in the judgment e ⇒

∑
pivi

and Mogensen uses partial probability distributions in which the sum of probabilities
may be less than 1.0. The intuition is that we allow only a finite recursion depth
so that some elements can be omitted in the enumeration.

There are a few probabilistic languages supporting continuous distributions.
Kozen [Kozen 1981] investigates the semantics of probabilistic while programs. A
random assignment x := random assigns a random number to variable x. Since it
does not assume a specific probability distribution for the random number genera-
tor, the language serves only as a framework for probabilistic languages. The third
author [Thrun 2000b] extends C++ with probabilistic data types which are created
from a template prob<type>. Although the language supports common continuous
distributions, its semantics is not formally defined. The first author [Park 2003]
presents a probabilistic calculus whose mathematical basis is sampling functions. In
order to encode sampling functions directly, the calculus uses a sampling construct
γ�e where γ is a formal argument and e denotes the body of a sampling function.
As in λ©, the computation of γ�e proceeds by generating a random number from
U(0.0, 1.0] and substituting it for γ in e.

The idea of using a monadic syntax in λ© was inspired by Ramsey and Pfef-
fer [Ramsey and Pfeffer 2002]. They present a stochastic lambda calculus (with
a binary choice construct choose p e1 e2) whose denotational semantics is based
upon the monad of probability measures, or the probability monad [Giry 1981;
Jones 1990]. In implementing a query for generating samples from probability dis-
tributions, they note that the probability monad can also be interpreted in terms of
sampling functions, both denotationally and operationally. In designing λ©, we take
the opposite approach: first we use a monadic syntax for probabilistic computa-
tions and relate it to sampling functions; then we interpret it in terms of probability
distributions.

10. CONCLUSION

We have presented a probabilistic language λ© whose mathematical basis is sam-
pling functions. λ© supports discrete distributions, continuous distributions, and
even those belonging to neither group, without drawing a syntactic or semantic
distinction. To the best of our knowledge, λ© is the only probabilistic language
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with a formal semantics that has been applied to real problems involving contin-
uous distributions. There are a few other probabilistic languages that are capable
of simulating continuous distributions (by combining an infinite number of discrete
distributions), but they require a special treatment such as the lazy evaluation
strategy in [Koller et al. 1997; Pfeffer 2001] and the limiting process in [Gupta
et al. 1999].

λ© does not support precise reasoning about probability distributions in the
sense that it is incapable of automatically inferring closed-form analytic solutions
to queries on probability distributions encoded by arbitrary expressions. Note,
however, that this is not an inherent limitation of λ© due to its use of sampling
functions as the mathematical basis; rather this is a necessary feature of λ© be-
cause precise reasoning about probability distributions in our sense is impossible
in general. In other words, if λ© supported precise reasoning, it would support a
much smaller set of probability distributions and operations.

The utility of a probabilistic language depends on each problem to which it is
applied. λ© is a good choice for those problems in which non-discrete distributions
are used or precise reasoning is unnecessary. Robotics is a good example, since
non-discrete distributions are used (even those probability distributions similar to
point uniform in Section 4 are used in modeling laser range finders) and also precise
reasoning is unnecessary (sensor readings are inaccurate at any rate). On the other
hand, λ© may not be the best choice for those problems involving only discrete
distributions, since its rich expressiveness is not fully exploited and approximate
reasoning may be too weak for discrete distributions.
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A. APPENDIX

A.1 Proof of Proposition 3.6

Lemma A.1.
If Γ ` F ÷A and Γ,x÷A ` M : B, then Γ ` [F/x]M : B.
If Γ ` F ÷A and Γ,x÷A ` E ÷B, then Γ ` [F/x]E ÷B.

Proof. By simultaneous induction on the structure of M and E.

Proof of Proposition 3.6. By simultaneous induction on the structure of
the derivation of Γ ` M : A and Γ ` E ÷A. An interesting case is when E =
efix x÷A.F .
Case E = efix x÷A.F :
Γ,x÷A ` F ÷A by Efix

Γ,x÷A ` F ? ÷A by induction hypothesis
Γ, xp : ©A,x÷A ` F ? ÷A by weakening

Γ, xp : ©A ` sample yv from xp in yv ÷A (typing derivation)
Γ, xp : ©A ` [sample yv from xp in yv/x]F ? ÷A by Lemma A.1

Γ ` sample yr from fix xp :©A. prob [sample yv from xp in yv/x]F ? in yr ÷A
(typing derivation)
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Γ ` (efix x÷A.F )? ÷A by the definition of (·)?

A.2 Proof of Propositions 3.7 and 3.8

Proposition A.2.
For any term N , we have ([N/x]M)? = [N?/x]M? and ([N/x]E)? = [N?/x]E?.
For any expression F , we have ([F/x]M)? = [F ?/x]M? and ([F/x]E)? = [F ?/x]E?.

Proof. By simultaneous induction on the structure of M and E.

Lemma A.3. If M 7→t N , then M? 7→t N?.

Proof. By induction on the structure of the derivation of M 7→t N .

Lemma A.4.
If M? 7→t N ′, then there exists N such that N ′ = N? and M 7→t N .

Proof. By induction on the structure of the derivation of M? 7→t N ′.

We introduce an equivalence relation ≡e on expressions to state that two ex-
pressions compute to the same value.

Definition A.5.
E ≡e F if and only if E @ ω 7→∗

e V @ ω′ implies F @ ω 7→∗
e V @ ω′, and vice

versa.

The following equivalences are used in proofs below:

sample x from prob E in x ≡e E
sample x from prob E in F ≡e sample x from prob E′ in F where E ≡e E′

(efix x÷A.E)? ≡e [(efix x÷A.E)?
/x]E?

The third equivalence follows from an expression reduction

(efix x÷A.E)? @ ω 7→e sample yr from prob [(efix x÷A.E)?
/x]E? in yr @ ω.

Proof of Proposition 3.7. By induction on the structure of the derivation
of E @ ω 7→e F @ ω′. We consider the case E = sample x from M in E0 where
M 6= prob E′.

If sample x from M in E0 @ ω 7→e sample x from N in E0 @ ω by the rule EBind ,
then M 7→t N .

By Lemma A.3, M? 7→t N?.
Since

(sample x from M in E0)
? = sample x from M? in E0

?

and

(sample x from N in E0)
? = sample x from N? in E0

?,

we have (sample x from M in E0)
? @ ω 7→e (sample x from N in E0)

? @ ω.
Then we let F ′ = (sample x from N in E0)

?.

Proof of Proposition 3.8. By induction on the structure of the derivation
of E? @ ω 7→e F ′ @ ω′. An interesting case is when the rule EBind is applied last
in a given derivation.
If E = sample x from M in E0, then E? = sample x from M? in E0

?.
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By Lemma A.4, there exists N such that M 7→t N and M? 7→t N?.
Hence we have

E @ ω 7→e sample x from N in E0 @ ω′

and

E? @ ω 7→e sample x from N? in E0
? @ ω′

(where ω = ω′).
Then we let F = sample x from N in E0.

If E = efix x÷A.E0, then F ′ ≡e ([efix x÷A.E0/x]E0)
? (and ω = ω′)

because (efix x÷A.E0)
? ≡e [(efix x÷A.E0)

?
/x]E0

? = ([efix x÷A.E0/x]E0)
?.

Then we let F = [efix x÷A.E0/x]E0.

A.3 Proof of Proposition 7.2

Proof of Proposition 7.2. By simultaneous induction on the structure of M
and E. The conclusion in the first clause also implies Γ ` M ÷B. An interesting
case is when E = x.
Case E = x:

[Γ]v v̀ [x]v : A by assumption
[Γ]v v̀ xx () : A because [x]v = xx ()
xx : unit −> A ∈ [Γ]v by App and Unit

Since xx is a special variable annotated with expression variable x,
xx ÷B ∈ Γ and A = [B]v for some B.
A = [B]v and Γ ` E ÷B.

A.4 Proof of Propositions 7.3 and 7.4

Lemma A.6. [[M/x]N ]v = [[M ]v/x][N ]v and [[M/x]E]v = [[M ]v/x][E]v.

Proof. By simultaneous induction on the structure of N and E.

Lemma A.7.
[[efix x÷A.E/x]M ]v = [(fix xx :unit −> [A]v. fun :unit. [E]v)/xx][M ]v.
[[efix x÷A.E/x]F ]v = [(fix xx :unit −> [A]v. fun :unit. [E]v)/xx][F ]v.

Proof. By simultaneous induction on the structure of M and F .

Corollary A.8.
[[efix x÷A.E/x]E]v = [(fix xx :unit −> [A]v. fun :unit. [E]v)/xx][E]v.

Proof of Proposition 7.3. By induction on the structure of the derivation
of M 7→t N .

Case
M 7→t M ′

M N 7→t M ′ N
TβL :

[M ]v @ ω 7→v [M ′]v @ ω by induction hypothesis
[M N ]v = [M ]v [N ]v
[M ]v [N ]v @ ω 7→v [M ′]v [N ]v @ ω by EβL

[M ′]v [N ]v = [M ′ N ]v

Case
N 7→t N ′

(λx :A.M) N 7→t (λx :A.M) N ′ TβR :

[N ]v @ ω 7→v [N ′]v @ ω by induction hypothesis
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[(λx :A.M) N ]v = (fun x : [A]v. [M ]v) [N ]v
(fun x : [A]v. [M ]v) [N ]v @ ω 7→v (fun x : [A]v. [M ]v) [N ′]v @ ω by EβR

(fun x : [A]v. [M ]v) [N ′]v = [(λx :A.M) N ′]v
Case (λx :A.M) V 7→t [V/x]M

TβV :
[(λx :A.M) V ]v = (fun x : [A]v. [M ]v) [V ]v
(fun x : [A]v. [M ]v) [V ]v @ ω 7→v [[V ]v/x][M ]v @ ω by EβV

[[V ]v/x][M ]v = [[V/x]M ]v by Lemma A.6

Proof of Proposition 7.4. By induction on the structure of the derivation
of E @ ω 7→e F @ ω′. We consider two interesting cases.

Case
E @ ω 7→e E′ @ ω′

sample x from prob E in F @ ω 7→e sample x from prob E′ in F @ ω′
EBindR :

[E]v @ ω 7→∗
v e @ ω′ where [E′]v @ ω′ 7→∗

v e @ ω′ by induction hypothesis
[sample x from prob E in F ]v = (fun x : . [F ]v) (app (prb (fun :unit. [E]v)))
(fun x : . [F ]v) (app (prb (fun :unit. [E]v))) @ ω
7→v (fun x : . [F ]v) ((fun :unit. [E]v) ()) @ ω by EAppPrb
7→v (fun x : . [F ]v) [E]v @ ω by EβV

7→∗
v (fun x : . [F ]v) e @ ω′ by [E]v @ ω 7→∗

v e @ ω′

[sample x from prob E′ in F ]v = (fun x : . [F ]v) (app (prb (fun :unit. [E′]v)))
(fun x : . [F ]v) (app (prb (fun :unit. [E′]v))) @ ω′

7→∗
v (fun x : . [F ]v) [E′]v @ ω′ by EAppPrb and EβV

7→∗
v (fun x : . [F ]v) e @ ω′ by [E′]v @ ω′ 7→∗

v e @ ω′

Case efix x÷A.E @ ω 7→e [efix x÷A.E/x]E @ ω
Efix :

[efix x÷A.E]v = (fix xx :unit −> [A]v. fun :unit. [E]v) ()
(fix xx :unit −> [A]v. fun :unit. [E]v) () @ ω
7→v (fun :unit. [fix xx :unit −> [A]v. fun :unit. [E]v/xx][E]v) () @ ω

by EFix
7→∗

v [fix xx :unit −> [A]v. fun :unit. [E]v/xx][E]v @ ω by EβV

[[efix x÷A.E/x]E]v = [fix xx :unit −> [A]v. fun :unit. [E]v/xx][E]v
by Corollary A.8

A.5 Proof of Propositions 7.5 and 7.7

Proof of Proposition 7.5. By induction on the structure of M . We only
need to consider the case M = M1 M2. There are three cases of the structure of
[M1 M2]v @ ω 7→v e @ ω′ (corresponding to the rules EβL

, EβR
, and EβV

). The case
for the rule EβV

uses Lemma A.6.

Proof of Proposition 7.7. By induction on the structure of E. We consider
two cases E = M and E = sample x from M in F ; the remaining cases are all
trivial.
Case E = M , [E]v = [M ]v:

M 7→t • by ETerm

[M ]v @ ω 7→v • by Corollary 7.6
We let e = [M ]v.

Case E = sample x from M in F , [E]v = (fun x : . [F ]v) app [M ]v:
If M 6= prob ·,

M 7→t • by EBind
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[M ]v @ ω 7→v • by Corollary 7.6
The rule EApp does not apply to [E]v.
The rule EAppPrb does not apply to [E]v. [M ]v 6= prb ·
We let e = [E]v.

If M = prob E′, E′ 6= V ,
E′ @ ω 7→e • by EBindR

There exists e′ such that [E′]v @ ω 7→∗
ve
′ @ ω 7→v • by induction hypothesis.

[E]v @ ω
7→∗

v (fun x : . [F ]v) [E′]v @ ω [M ]v = prb fun :unit. [E′]v
7→∗

v (fun x : . [F ]v) e′ @ ω [E′]v @ ω 7→∗
v e′ @ ω

7→v • e′ @ ω 7→v •
We let e = (fun x : . [F ]v) e′.

If M = prob V , then E @ ω 7→e • does not hold because of the rule EBindV .
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Peyton Jones, S. L. and Wadler, P. 1993. Imperative functional programming. In Proceedings
of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
ACM Press, 71–84.

Pfeffer, A. 2001. IBAL: A probabilistic rational programming language. In Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence (IJCAI-01), B. Nebel,
Ed. Morgan Kaufmann Publishers, Inc., 733–740.

Pfenning, F. and Davies, R. 2001. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science 11, 4, 511–540.

Pless, D. and Luger, G. 2001. Toward general analysis of recursive probability models. In
Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI-01),
J. Breese and D. Koller, Eds. Morgan Kaufmann Publishers, 429–436.

Rabiner, L. R. 1989. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE 77, 2 (Feb.), 257–285.

Ramsey, N. and Pfeffer, A. 2002. Stochastic lambda calculus and monads of probability
distributions. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. ACM Press, 154–165.

Rudin, W. 1986. Real and Complex Analysis, 3 ed. McGraw-Hill, New York.

Russell, S. and Norvig, P. 1995. Artificial Intelligence: A Modern Approach. Prentice Hall.

Sabry, A. and Wadler, P. 1997. A reflection on call-by-value. ACM Transactions on Program-
ming Languages and Systems 19, 6, 916–941.

Saheb-Djahromi, N. 1978. Probabilistic LCF. In Proceedings of the 7th Symposium on Mathe-
matical Foundations of Computer Science, J. Winkowski, Ed. LNCS, vol. 64. Springer, 442–451.

Thrun, S. 2000a. Probabilistic algorithms in robotics. AI Magazine 21, 4, 93–109.

Thrun, S. 2000b. Towards programming tools for robots that integrate probabilistic computation
and learning. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA). IEEE.

Thrun, S. 2002. Robotic mapping: A survey. In Exploring Artificial Intelligence in the New
Millenium, G. Lakemeyer and B. Nebel, Eds. Morgan Kaufmann.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, July 2008.



A Probabilistic Language based upon Sampling Functions · 45

Welch, G. and Bishop, G. 1995. An introduction to the Kalman filter. Tech. Rep. TR95-041,
Department of Computer Science, University of North Carolina - Chapel Hill.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, July 2008.


