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Abstract

We review progress in a recent line of research that provides a con-
current computational interpretation of (intuitionistic) linear logic.
Propositions are interpreted as session types, sequent proofs as
processes in the 7-calculus, cut reductions as process reductions,
and vice versa. The strong proof-theoretic foundation of this type
system provides immediate opportunities for uniform generaliza-
tion, specifically, to embed terms from a functional type theory.
The resulting system satisfies the properties of type preservation,
progress, and termination, as expected from a language derived via
a Curry-Howard isomorphism. While very expressive, the language
is strictly stratified so that dependent types for functional terms can
be enforced during communication, but neither processes nor chan-
nels can appear in functional terms. We briefly speculate on how
this limitation might be overcome to arrive at a fully dependent
concurrent type theory.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory

General Terms languages, theory, verification

Keywords type theory, dependent types, session types, w-calculus

1. Introduction

Church and Rosser [1936] developed the A-calculus as a pure cal-
culus of functional computation. As such it has been tremendously
successful and has remained essentially unchanged since its incep-
tion. Yet if viewed as a logic it is inconsistent, so Church [1940]
turned to types. His simply-typed A-calculus supports a higher-
order logic, suitable for the formalization of much of classical
mathematics. Both syntax and computational mechanisms of the
original untyped A-calculus and its simply-typed version are the
same, confirming its fundamental nature. Howard [1969] estab-
lished a tight correspondence between proofs in natural deduc-
tion and Church’s simply-typed A-calculus.! But the analogy does
not end there. Proof reductions as defined by Prawitz [1965] cor-
respond to the computational reductions of the typed A-calculus.

I'A related correspondence between combinators and axiomatic proofs had
been noted earlier by Curry [1934], whence the name “Curry-Howard
isomorphism”.
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This isomorphism has been the source of an incredibly rich va-
riety of type structures that simultaneously have a logical and an
operational meaning. One important benefit is that a language de-
signed around logical principles provides intrinsic means for rea-
soning about its programs, an idea crystalized in constructive type
theory [Martin-Lof 1980].

At present, there is no similarly compelling story for concur-
rent computation. Milner et al. [1992] developed the m-calculus
as an untyped, foundational calculus for concurrent computation
analogous to the untyped A-calculus for functional computation.
But defining a typed version intimately related to logic via a
propositions-as-types/proofs-as-programs interpretation has been
elusive. In a series of recent papers [Caires and Pfenning 2010;
Toninho et al. 2011a; Pfenning et al. 2011; Toninho et al. 2011b;
Pérez et al. 2011], we have explored just such a connection from
a variety of angles. In this paper, we provide an introduction to
our approach and discuss where it succeeds, and where it still falls
short of the goal of a constructive concurrent type theory.

Given the line of research on linear logic [Girard 1987], the
geometry of interaction [Girard 1989], and game semantics [Hy-
land and Ong 1995], it should not come as a surprise that linear
logic plays a crucial role in our endeavor. Unlike in functional pro-
gramming, the isomorphism is not with natural deduction but with
sequent calculus. This is because we need to decompose substi-
tution, the workhorse of the A-calculus, into the name-passing in-
teractions of the mw-calculus. Like the step from the untyped to the
typed A-calculus, we have to be prepared to give up a lot, such as
the possibility to express processes that may deadlock or have non-
terminating interactions. As in functional programming, some ex-
pressive power can be recovered in a principled way in a full type
theory using inductive and coinductive types, but we will not ad-
dress practical language design here. It turns out that a concurrent
interpretation of linear sequent calculus provides a logical recon-
struction of session types [Honda 1993; Honda et al. 1998]. As in
functional programming, a logical foundation provides an immedi-
ate and rich opportunity for extension and generalization. One of
these directions points towards type theories in which functional
and concurrent computation can co-exist harmoniously.

2. Judgmental Principles

In a functional setting, the basic judgment is generally of the form
M : A, meaning either that M is a proof of A, or M is a
term of type A. In the setting of communicating processes, it is
unclear what it would mean to say that “P is a process of type
A”. Processes communicate with their environment, so we write
instead P :: = : A, meaning P is a process offering service A along
channel x. The channel here is considered a variable with scope P,
so we can rename it as P{y/x} :: y : A if y is not already used
in P. As is customary, we will perform such renamings silently as
appropriate.
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Processes are uninteresting unless they are placed in a context
where they not only offer services, but also use services offered by
other processes. We write a sequent

r1:A1, . o Ap =Pz A

to express that process P offers service A along  when composed
with processes P; providing A; along x; for 1 < i < n. All the
variables x; must be distinct. We denote contexts of the form above
by A.

Offering and using services are counterparts, but they are not
the same. Therefore, formally, the judgment x: A on the right of the
sequent and the judgment x;:A; on the left should be considered
different. Since we can always tell by position which one is meant,
we use the same notation for both.

Processes evolve through interactions along channels. Interact-
ing on a channel z; therefore engenders a change of state, and the
same channel cannot be used again with the same type. There-
fore the sequent arrow “=-" denotes a linear hypothetical judg-
ment [Chang et al. 2003] where each antecedent must be used ex-
actly once. Therefore the context is not subject to weakening or
contraction, but reordering is permitted since antecedents are iden-
tified by unique names.

Even without defining any particular kinds of services, some
principles should hold for the judgments in general. We discuss
these first, because they are an important guide to the rest of the
development.

2.1 Cut as Composition

When a process P offers service A along x, and another process
Q uses a service A along x, the two can be composed so that they
communicate along x.

A=Puz:A AN xoA=Q:z:C
AA = (wr)(P|Q)z:C

The process expression for the composition puts P and @ in par-
allel, sharing x as a private channel, as indicated by the name re-
striction (vx). Note that this rule entails some implicit renaming,
because the channel along which P offers A must be equated with
the channel along which @ uses A.

Viewed from the purely logical perspective, this is simply the
rule of cut in linear logic:

A=A N, A=C
AN = C

It is a little unusual that we use an intuitionistic version of linear
logic [Barber 1997] with a singleton right-hand side in a sequent
formulation. This is not absolutely essential (see Abramsky [1993]
for a related classical counterpart), but it streamlines the judgmen-
tal justification of the system. It also reflects an intrinsic asymmetry
between offering and using a service, even though we will see they
are strongly related. It will also be beneficial in developing a depen-
dent type theory. Finally, as discussed briefly in prior work [Caires
and Pfenning 2010] it enforces locality of shared names [Merro and
Sangiorgi 2004] as desired for our process interpretation.

cut

cut

2.2 Identity as Forwarding

One way to fulfill the promise of A along z is to just use a channel y
that in turn promises A. This just corresponds to an initial sequent,
which we call the identity rule.

yA=>yezluac: A id

There is no standard notation for forwarding in the w-calculus, so
we write [y <> ] to forward between y and x. We can implement
the forwarding behavior in the untyped calculus. For example,
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if service A were to require an input along z, we could define
[y + z] = z(w).y(w).0. In order to make the correspondence
between proofs and processes as direct as possible, we prefer to
use the new notation.

In accordance with the linear hypothetical judgment, the an-
tecedent y: A must be the only one. In purely logical form:

e

In summary, cut and identity connect offers and uses of services.
Cut composes a process P that offers A along x with a process
that uses A along x, making « a private channel (vz)(P | Q).
Identity uses a channel y supplying A to satisfy its own offer of
x along A, [y <> z]. These general principles are not connected
to any particular types of services, which will be associated with
particular logical connectives.

2.3 Composing Cut and Identity

Cut and identity are two ways to relate the judgments on the left
and right of a sequent. They should be inverses of each other in
the sense that composition with the identity should have no effect.
We show the compositions directly with the process terms, where
{y/x} is our notation for capture-avoiding name substitution.

yA=>lyezlaz: A id AxA=Q:uz:C
AyA= )y 2] |Q)=2z:C
—
Ay A= Qly/z}iz: C

cut

A=Puz:A A=z 2]z A
A= wz)(Pllzez])z: A
H
A= P{z/z}2z: A

cut

So composition with identity results in renaming. Logically, this
transformation takes place at the level of the judgments: no par-
ticular propositions are involved. They are therefore of a somewhat
different character than the computational reductions in the remain-
der and might be considered “structural reductions”. If we don’t
have the exact typing premises, we need some conditions on free
names of processes, denoted by fn(—).

(va)(y e 2| Q) — Qly/z}
(wx)(P|[x <+ 2]) — P{z/z}

y & fn(Q)
z & fn(P)

2.4 Composing Cuts

Multiple parallel compositions should be required to synchro-
nize only to the extent that their interactions require it. Proof-
theoretically, this means that the order of consecutive cuts should
be insignificant. The corresponding laws have no inherent orien-
tation as rewrite rules, so we think of them as structural proof
equivalences. We leave it to the reader to write out the simple proof
figures. On the process calculus we obtain a corresponding struc-
tural equivalences.

(wz)((vy)(P | Q)| R) = (vy)(P | (v2)(Q | R))
provided z ¢ fn(P), y & fn(R)

(va)(P | (vy)(Q | R)) = (vy)(Q | (vz)(P | R))
provided x ¢ fn(Q), y & fn(P)

These can be derived from more fundamental structural equiva-
lences of associativity of parallel composition and scope extrusion.
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3. Input

We approach the individual logical connectives by thinking of their
meaning as defined by their right rules in the sequent calculus.
In their process interpretation, we have to analyze what it means
to offer a particular service along a channel. Linear implication
A — B is true if B is true under the (linear) assumption A.
AJA= B
A=A—-B °

Reading the premise under the process interpretation
Ay A= P:xz:B

it says that P offers B along z if provided with the opportunity to
use A along y. So a process offering A — B must input an A and
then offer B.

AyA=P:z:B
A=z(y).Pu2z:A—B -

R

Note that we use the same channel name z for the service A — B
and then the service B. This is possible because channels are linear.
Once we input an A along x, we can not input another along .
Instead, the channel x changes state. This is the origin of the term
session types (or, more broadly, behavioral types) for this kind of
system. The type A —o B describes the type of a session that inputs
an A and then behaves like B.

Under this definition, how can we use a channel x of type
A — B? We have to output an A along x. In return, we assume
that « now offers B. But what precisely does it mean to “output an
A”? In the 7-calculus we do not pass processes, we pass names that
provide access to processes. So we must have a process P offering
A along y and then output that y along x.

A=P:y:A ANxB=Q:z:C
AA 1A — B= (vy)z{y).(P| Q) z:C

—o L

Note that each channel in the context must be used either in P or in
@, but not both. This is essential to maintain the linearity in the use
of channels. Also, the channel y along which P must offer A must
be bound in the conclusion, so that there cannot be confusion with
any other channel. In the mw-calculus this is called a bound output,
which always outputs a fresh name. Note also that P and @ do
not share any names, so they do not communicate with each other
directly.

If we strip the process expressions, we obtain just the usual left
rule for linear implication in the linear sequent calculus.

A=A AN,B=C
AN, A—-B=C

—o

3.1 Reduction

We can define right and left rules in the sequent calculus at will,
but to form a coherent logical system they must match appropri-
ately. As a global theorem about a logic, the theorems witnessing
such coherence are cut elimination and identity. These decompose
into two local properties, separately for each connective, namely
cut reduction and identity expansion. Cut reduction corresponds
to process reduction, while identity expansion shows how to re-
duce channel forwarding at complex types to forwarding at simpler
types.

We first consider cut reduction in the sequent calculus. We want
to show that the right and left rules match. This means that if we
have a cut where the cut formula was just introduced by its left and
right rules, then we can reduce it to cuts on subformulas. For linear
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implication we have

A,A:>B A=A AQ,B:>C

A=A—oB 'V AL,AyAwB=C °
AALAs = C cut
—
A=A AJA=B
AAM=B M A,B=C
AALA = C cut

To obtain a process interpretation of this reduction, we first assign
names and processes to the three premises:

AyA= P z: B

Ai=>Prw: A

Ag,x:B=Q:z:C

The annotated conclusions before and after the reduction then are:
A A A = (ve)(z(y).Pr | (vw)(z(w).(P | Q))) =z:C
N
A AL Ay = (ve)(vw)(Pe | Pi{w/y}) | Q) :2:C

In order to read this more easily, we can apply the structural con-
gruences of the m-calculus, extruding the bindings on = and w and
exchanging P; and P»:

A, AL A = (ve)(vw)(z(y).PL | z(w). (P | Q) = z: C
—
A AL A = (ve)(vw)(Pi{w/y} | P2 | Q) :2: C

We see that in the presence of the structural rules, the cut reduc-
tion is mirrored by a process reduction, matching an input with a
corresponding output. In general, it is an instance of the reduction

(2(y)-P | 2(w).Q) — (P{w/y} | Q)
3.2 Expansion

The local reduction discussed above shows the interaction between
an offer and a matching use of a service, in this case an input
typed as A — B. Conversely, when we forward a channel along
another one, we should be able to decompose this into forwarding
of channels of the component types. First, in the pure sequent
calculus:

A=A id B=1B id
1B A=B L
— A wB=A-=wB

A—-oB=A-—-oB id

With processes:

2:A—-oB=[z<z]:2:A—-B id

=

y:Ai[wa]::w:Aid id
z:A — B,y:A = (vw)z(w).([y < w] | [z <> 2]) 1 2: B
2:A — B = z(y).(vw)z{w).(ly < w] | [x <> 2]) 1 2: A — B

x:B=[x<z]u2z:B

—oL
—R

In words: we can either forward z : A — B directlytoz : A —o
B, or, equivalently, we can input a y : A along z and output a new
w to x, where w mimics y at type A and z now mimics x at type B.
This kind of interpretation appears inherently typed and difficult to
explain or realize in the untyped 7-calculus.

4. Output

We have already seen that A — B, offering an input, also requires
output in order to use the offer. But how do we offer an output? A
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natural candidate is A ® B, which is true if we can prove A and B
separately, each using a portion of the available linear hypotheses.
A=A A'=B

R
AN = AR B ©

At first glance, it would appear process offer A ® B along x should
output two channels, one offering A and another offering B.
A=P:y:A AN=Q:2:B
AAN=P?7Q:z:A®B

QR?

But we see that this doesn’t quite work: P offers along y and Q
offers along z, but neither y nor z are even mentioned in the final
sequent. Looking at the pattern of —o R we see that we need to
exploit the linearity of the channel x along which A ® B is offered.
So we output only a single new channel of type A along x and then
offer B, again along x. We could equally well output a new channel
of type B and then behave as A, but it seems more natural if the
continuation is on the right of the connective.

A=P:y:A N=Q:z:B
AN = (wyay).(P|Q) e A®B

QR

Again, this is a form of bound output, but this time as part of an
offer.

Conversely, to communicate with a process offering A ® B
along x we have to input an A along z, after which we still have to
communicate with  now of type B.

Ay Ajz:B=Q:z:C

Az AR B=2(y).Q::z:C oL

When we remove the process we recognize the usual left rule.

AJAB=C I
AAdpB=C ®

4.1 Reduction

We should verify the cut reduction property and see which form of
process reduction it suggests. First, on bare sequents:

A=A Ay=B AAB=C
ALAs > AR B AdeBoc oL
AALA S C cut
—
Ai=A AAB=C
Ay = B A7A1,B:>C
A,Al,A2:>C

cut

cut

We assign names and processes to the open premises:

Ai= Py A
No =P, :z:B
AwAzB=Q:z:C

With this process assignment, the reduction viewed on processes
becomes:

A AL Ay = (va)(vy)x(y). (P | P2) | 2(w).Q) = 2: C
H
A AL A = (w2)(Ps | (w9) (P | Qy/w}) = 2 C

Again, this is a simple instance of the usual input/output reduction
of the 7-calculus, modulo some structural congruences.
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4.2 Expansion
The identity expansion for A ® B:

A#AId B#BMR
A B=A®B ®
id ————— QL

A®B=A®B
If we annotate the sequents with names and processes as
rTAQB=[z<>z]u2z2:A®B

— AQB=AQ®B

we obtain the an expansion symmetric to A — B, just reversing
the roles of x and z, with input along = and output along z:

[z & 2] = z(y).-(vw) (z(w).[y & w] | [z < 2])
4.3 On Asymmetry

A process offering A ® B along x outputs a fresh y offering A and
then offers B along x. This asymmetry may seem puzzling, but in
fact, A ® B and B ® A are isomorphic in that we can use one to
realize the other. In analogy with the expansion, we construct:
2:A® B = z(y).(vw)z(w).(z < w] | [y« 2]) 1 2: B A

In functional languages we have a similar situation: a product Ax B
is different from a product B x A, but the two types are isomorphic.
Here, too, we can establish an isomorphism, not just a mutual linear
entailment [Pérez et al. 2011].

5. Termination

The logical constant 1 means we have no antecedents. Conse-
quently, the linear antecedent 1 is just replaced by the empty col-
lection of antecedents, which means it is just erased.

A=C
~:>11R A,1:>CIL

5.1 A Faithful Interpretation

A fruitful way to think of this is as the nullary version of ®,
since it is in fact its unit. We would output nothing and have no
continuation:

=>z().0ux:1 LR

Conversely, we can expect nothing from an offer of 1 along =z,
except to terminate the connection.

A=Q:z:C 1
Azl=z()Q:z:C

The two match perfectly, with the following cut reduction.

L

A=C
NS ol
A=C cut
_)
A=C

On process expressions, labeling the open premise as A = Q
z:C:

(va)(z().0 | 2().Q) — Q
This can be seen as an interaction in the polyadic w-calculus. For
completeness, the expansion for 1:

2011/11/30



And on proof terms:

[z < 2] = z().2().0 for z:1 and 2:1

5.2 Enabling More Parallelism

Even though the assignment above would perfectly fulfill our goal
of a Curry-Howard isomorphism, we have proposed an alternative
in order to achieve more parallelism in the composition of inde-
pendent processes. In general, a process P that does not offer any-
thing is typed as A = P :: z : 1. Once composed with appropri-
ate processes as required by A, it should be a closed process that
evolves by internal actions only. If we have a second such process,
A’ = Q :: z : 1 each should be able to evolve independently,
without interaction. We could achieve this by adding z:1 to A’ and
then using cut.

A=Q:z:1
A=Puz:1 Ajzl=20)Q:z:1
AA = (wr)(Plx().Q)mz:1

1L
cut

However, because of the action prefix z() guarding @, this cor-
responds to a sequential composition (P before Q) rather than a
parallel composition. If we cut the other way, we have () before P.
In other words, we can not compose noninteracting processes in a
truly parallel manner.

In order to achieve independent parallel composition we could
allow some reductions under prefixes. In the inference above,
z does not occur in @, so reducing underneath the z() prefix
never creates any difficulties. Going back to, say, inputs, a pre-
fix z(y).a(b).P where x, y, a and b are all distinct could safely
input on zx first or on a first. In proof theory, this phenomenon
is well understood. An exchange of the two prefixes would corre-
spond to an exchange between two consective ® L rules, a so-called
commuting conversion. These commuting conversions can be an-
alyzed as observational equivalences on session-typed 7-calculus
processes [Pérez et al. 2011], thus justifying their use here. How-
ever, it represents a significant departure from the operational read-
ing of the m-calculus, so we will not pursue this idea further here.

We could also write z().0 | @ as the proof term for 1L, recov-
ering parallelism, but we would still need a commuting conversion
in the proof theory to justify reduction. There is yet another alter-
native for recovering additional parallelism, at least for the 1L and
1R rules, which we have proposed in previous work [Caires and
Pfenning 2010]. Instead of maintaining a full isomorphism between
proofs and processes, we contract proofs to processes, making the
1L rule silent. We never use a channel z:1 from the context in a
process expression but eliminate it with the 1L rule. This must be
matched by the right rule, whose process no longer has an action
prefix but is simply O.

A=Q:z:C
Axl=Q:uz:C

(1R) (1L)

-=0:xx:1

Then cut reduction is just a structural congruence on the 7-calculus
side.

vo)(0]Q)=Q ¢ f(Q)
We can now derive a symmetric independent composition rule,
using the structural congruence (vx)P = P, provided x & fn(P).
AN=Q:z:1
A=P:uz:1 Axl=Q:z:1
AA = (P|Q)uz:1

(L)
cut
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The expansion

a5 (R

+=>0::2z:1
—— (1)

zl=rzezluz:l=21=0:2:1

yields [z <+ z] = 0 for x:1, 2:1.

5.3 An Example

We now illustrate the fragment of our system we have presented
thus far through a simple example. We will further develop the ex-
ample throughout the presentation, as we incrementally introduce
the connectives that make up the full system.

Our example consists of a simple PDF indexing service. The
high-level concept is a server that receives a PDF file from its client
and then returns an indexed version of the file (a file containing a
word index for searches). The system we have developed up to this
point allows us to model such a server with the following type:

Indexer £ file —o (file ® 1)

We abstract away the details of what constitutes a proper PDF file
with the type file. The type Indexer describes the communication
behavior that is expected of the server: it will first perform an
input (of the file), followed by an output of a file, after which it
terminates. A process that implements such a service along channel
x is:

Srv 2 z(f).(vy)z{y).(P | 0) :: x : Indexer

We abstract away the details of the actual indexing of the file in the
process P. A possible client for the server is given below (where
the process () represents the clients use of the indexed files):

Client £ (vpdf)z{pdf).z(idz).(Q | 0)
and we can compose the server and the client as follows:

- = Srv :: x : Indexer =z :Indexer = Client :: 2 : 1
- = (vz)(Srv | Client) :: z: 1

cut

6. Taking Stock, Part I

Let’s look at the fragment of the logic so far. If we take the faithful
interpretation of 1, we have on the process side:

Types A,B,C == A—B input
A® B output
1 termination
Processes P, Q = [z 2] forwarding
(P|Q parallel composition
(vx)P name restriction
z(y).P input
(vy)z(y).P bound output
z().P (suspension)
z().0 (termination)

We also have the following reductions on well-typed processes,
mimicking cut reductions. The typing requirement implies some
straightforward conditions on the occurrences of bound variables
which we do not detail separately.

Structural (vz)(ly < 2] | Q) — Q{y/x}
(wx)(P | [x ¢ 2]) — P{z/z}
Interaction (vx)(z(y).P | (vw)z{w).Q

)
— (va)(vw)(P{w/y} | Q)
(Termination) (vz)(z().0 | z().Q) — Q
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and the following structural congruences, in addition to standard
a-conversion:

PIQIR)=(P|Q)IR

PlQ=Q|P

P|(vz)Q = (vx)(P | Q) forx & fn(P)
(vx)(vy)P = (vy)(vx)P

If we use the optimized form of 1, we replace x().P and z().0 just
by 0 and remove fermination as a form of interaction. We need to
add the congruences P | 0 = P and (vz)0 = 0.

In both versions we have relatively standard constructs of the 7-
calculus, where forwarding can be implemented as sketched earlier
using a new channel. We can also obtain regular (not bound) output
using forwarding. The following is a deduction which shows we
achieve the effect of outputting an existing channel w:A along
z : A ® B and then offer B along x.

wA=>weyl iy A id A=Q:z:B
AwA= (vy)z(y).(wey] | Q) z: AR B

®R

A pleasing aspect of this process interpretation is that process re-
duction matches up exactly with proof reduction, modulo structural
congruence on processes. Typing is a bit unusual, because we have
to type processes modulo structural congruence for the purpose of
type preservation. This is not too difficult, but we conjecture that in
the design of programming language constructs based on our sys-
tem, one can take a more restrictive view on syntax and relegate
the structural congruences to the runtime state of communicating
processes. A related departure from the usual Curry-Howard iso-
morphism is that the process terms assigned to particular inference
rules mix multiple different constructs. For example, the —o L rule
requires a name restriction, an output, and a parallel composition
in its process term. However, the particular combination of these
constructs is idiomatic and has been observed multiple times in the
literature.

In the version of 1 with more intrinsic parallelism, we take some
liberty with the isomorphism because the 1 rule is silent, that is,
has no trace in the process expression. As a consequence, some cut
reductions are structural congruences on the process side.

Another possibility of restoring independent parallel composi-
tion is to generally allow interactions under independent prefixes.
Independence here refers to syntactic conditions on the names used
in action prefixes. For example, a process z(y).u(w). P might input
first on  or on w as long as all four names are distinct. Allowing
such exchanges mirrors commuting conversion of the sequent cal-
culus and could potentially uncover significant latent parallelism.
Proof theory is a strong guide, and we have already developed the
necessary theoretical tools to analyze such an extension [Pérez et al.
2011].

7. Branching

Branching, or external choice, means to offer both A and B along a
channel and let the client decide which one to use. We add a binary
guarded choice to the process calculus [Sangiorgi and Walker 2001]
and additive conjunction A & B to our fragment of linear logic.
Since only either A or B will be used (at the client’s discretion),
the context is propagated to both premises. Conversely, if A & B is
in the environment, we have to chose either A or B.

A=A A=B

A= A&B &R
AA=C I AB=C .
AAB=C %" AagB=c &
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When assigning process terms we again exploit linearity of chan-
nels. We indicate a choice (inl or inr) on a channel and then con-
tinue on the same channel with either A or B, respectively.

A=P:xz:A A=Q:uz:B

A = z.case(P,Q) :z: A& B &R
AxzA=Q:uz:C I
A,x:A&B#m.inl;Q::z:C& !
Alz:B=Q:z:C
© &L2

Ar:A&B = z.inr;Q :: z: C

Reduction is also straightforward. In particular, process reduction
and proof reduction match perfectly. We leave the details for the
reader to reconstruct.
(vz)(z.case(P, Q) | z.inl; R) — (vz)(P | R)
(vz)(z.case(P, Q) | z.inr; R) — (vz)(Q | R)

For the expansion, from :A & B = [z <> 2] it z : A & B we
obtain

[x ¢ 2] = z.case(z.inl; [z > 2], z.inr; [z + 2])
8. Choice

Choice, more precisely internal choice, means to offer either A or
B along a channel z, the offering process is the one to decide. A
party using x must therefore be prepared for both A and B. We
do not need to extend the process language for this, having already
added binary guarded choice, but we need A & B as an appropriate
logical connective.

A=A A= B
AsAeB VM ASasp O
AJA=C A B=C
AAeB=C
We present the process assignment with the guarded choice.

A=P:x:A R

A=zinP:z: A®B ®H
A=P:z:B

DR

A=zin;P:z: A® B
Alz:A=P:z:C Az:B=Q:z:C
A, x:A® B = z.case(P,Q) :: z: C

The reduction was already discussed for branching. The expansion
fromz:A®B =[x« z]:2: A® Bis

®L

[x = z] = x.case(z.inl; [z <> 2], z.inr; [z <> 2])

9. Revisiting the Example

We now extend our PDF indexer to incorporate branching and
choice, embodied in the types & and @. The server so far only
implements a single service: indexing. Conceivably, a server im-
plements multiple services. For instance, we might want the server
to check whether an indexed PDF is indeed indexed correctly. This
verification service can be modelled through the following type:

Verif £ file — ((valid ® 1) @ (invalid ® 1))

The verification service inputs the pdf file that is to be verified and
then will either output a message signaling the file was valid, or
output a message signaling otherwise. This form of choice that
is internal to the server is modelled by the use of @. A process
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implementing the verification service is (along channel x):
- = z(f).Check :: z : Verif

with Check :: z : ((valid ® 1) @ (invalid ® 1)) depending on the
validity of the received file. To include this service in our original
example, we make use of & to obtain:

2Services £ Indexer & Verif
And the process offering the two services becomes:
- = x.case(Srv, z(f).Check) :: = : 2Services

A client that wishes to use the verification service must then choose
accordingly (and branch on the two possibilities, abstracted here by
the processes Pox and Phok):

ClientVerif £ x.inr; (vpdf )z (pdf).z.case(Pok, Prok)

10. Replication

So far, the logic we have considered is purely linear. In order to
capture process replication, we will need the proposition !A as a
type. A process offering a service !A along x is offering the ser-
vice A persistently: clients may use A as many times as they would
like, including not at all. The judgmentally sound way to capture
this logically is the sequent formulation of dual intuitionistic lin-
ear logic [Barber 1997; Chang et al. 2003], which goes back to
Andreoli’s dyadic formulation of classical linear logic [Andreoli
1992]. We distinguish another judgment on antecedents, namely
that A is persistently available. Tt is customary to sort the linear
and persistent antecedents into separate zones, so that their judg-
mental status is obvious from their position in the sequent.

Bh...,Bk ; Al,..AAn = C
———

r A
persistently true linearly true

When we label the sequents with channels and processes, not much
changes. We use a different kind of letter, u, to stand for shared
channels. They may occur arbitrarily often in the process P, unlike
the linear channels.

u1:B1,...,up:Br ; x1:A1,.. ., xn:Ap = P z2: C

All the rules we have shown so far are extended to allow a context
I" of persistent antecedents in the conclusion and all premises. This
context satisfies weakening, contraction, and exchange, according
to the persistent nature of the assumptions in them. We will use
these properties silently.

10.1 Judgmental Rules

Persistent truth is defined as truth not depending on linear assump-
tions. Therefore we have a new rule of cut to eliminate a persistent
antecedent A from a sequent, where one premise is a proof of A
with no linear antecedents. This allows us to use this premise each
time the persistent A is used, without violating any linearity con-
straints.
I';.=A TINA;A=C
rA==«=C

It is straightforward to annotate the premises with channels and
processes, but what about the conclusion?

'y -=Puz:A TYhwA; A=Q:=:z:C
I'sA=?702:C
The idea is for a shared channel u to represent the offer of a repli-
cated input. What u receives is a channel x of type A along which a

single session of type A can proceed. Meanwhile, u remains avail-
able to receive another channel of type A. Each use of A is satisfied

cut!

cut!
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by a different copy of P, as we will see. So:
I's'=Puzx:A TYhwA; A= Q:z:C
' A= (vu)(lu(z).P|Q)z:C
Based on this intuition we have to send u a new channel y:A in

order to use w. This is realized in the copy rule. Logically, it is
justified by saying that persistent truth entails linear truth.

NuA;AjyA=P:z:C c
DwA; A= (vy)uly).P:z:C
What happens if a cut! meets a copy? Logically, this is straightfor-
ward: we spawn two new cuts.
ILA; AJA=C

cut!

opy

I's-=A TA;A=C opY
T:A=C cut!
—
', -=A4 INA;AJA=C |
;.= A I AA=C cut:
r;A=<=C cut

The first one is considered smaller because the right subproof is
shorter; the second one takes place on a smaller judgment (A
linearly true vs. A persistently true). If we annotate these with
processes, we have the open premises

I';-=Puz:A

NuwA; Ay A=Q:z:C
Replaying the proof reduction on the assigned processes yields:

(vu)(fu(z).P | (vy)uly).Q)

— (wy)(P{y/z} | (vu)(u(z).P | Q))
With some structural congruences we obtain a familiar reduction
for replicated input, in this case interacting with a bound output.
We also have to consider some additional interactions of the new

judgmental rules with the old ones, specifically cut and identity.
These are commuting conversions or structural equivalences be-
tween proofs, exchanging different forms of cut; on the 7-calculus
side they are behavioral equivalences called sharpened replication
theorems [Sangiorgi and Walker 2001]. We omit the details which
can be found in Caires and Pfenning [2010].

So far, all the rules and reductions arose entirely from judgmen-
tal considerations—we did not yet introduce the ! A connective!

10.2 Sharing

After preparing the grounds by analyzing the judgment of persis-
tent truth associated with shared channels, we can now internalize
the judgment with the corresponding proposition !A. The !R rule
just requires the proof of the premise not to depend on linear as-
sumptions. The !L rule just promotes the linear antecedent !A to
the persistent antecedent A.

F;~:>A' F7A;A:>C'
T S14 T AAsC b
From the process perspective, !R introduces a replicated input,

while !L just corresponds to promoting a channel from linear to
shared status.

I';.=Puy:A
;- =lz(y).P:x:!A

'R

ThwA; A=Q:z:C
I;AvlA=z2/uQ i 2:C

In order to retain an isomorphism between proofs and processes,
and also respect the linearity of channels x, we have an explicit

1L
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renaming construct x/u.Q) which binds u with scope Q. This is
just an explicit substitution, for typing purposes, mapping into
Q{z/u}.

We have to check that these rule match up. Fortunately, a cut at
type ! A turns into a cut! at type A.

F;-:>A' F,A;A:>C'L
r;-=14"7" T';AIA=C
I A=C cut
—
I';.=A TIN'A;A=C
T A= C cut!

If we annotate these with process expressions, we see that it just
renames a bound variable and removes an explicit renaming con-
struct.

wz)(le(y). P | z/u.Q) — (vu)(tu(y).-P | Q)

In order to recover some additional parallelism, we can proceed
similarly to the 1L rule. We can either permit reduction and in-
teraction under the x/u prefix, or we can carry out the substitu-
tion to obtain Q{x/u}. Either one is another small departure from
a perfect Curry-Howard isomorphism, contracting several distinct
proofs to the same program, and collapsing some proof reductions
into congruences. The !L/! R reduction above would turn into a-
conversion.

(va)(lz(y).P | Qf{z/u}) = (vu)(u(y).P | Q)
10.3 Expansion
The expansion for ! A:
A A=A 'C‘ip
A=A Y
a;=-m
A4 — A=A b

Annotating the sequent as - ; w:lA = [w <> ] =
the expansion

z : | A we obtain

w o 2] = w/ule(z).(vy) (uly).ly < =)

10.4 Replication and Sharing in the Example

Our PDF indexing service is still only interesting insofar as it can
only be used by a client once. To make the service persistent, or
replicated, we augment the type with the exponential:

PersistentS £ 12Services

Since our implementation uses no ambient linear resources, we
need only add a replicated input to the server code to obey the
specification:

;- = ly(x).z.case(Srv, z(f).Check) :: y : PersistentS

Clients of the persistent service must now trigger a replication of
the server. For instance, a client for the verification service must be
extended as follows:

ClientVerifP £ (vx)y(x).ClientVerif

11. Taking Stock, Part IT

The extension of the calculus by internal and external choice and
replication does not create any new difficulties. Much of the com-
putational content for replication is associated with the judgmental
rules, rather than the proposition ! A itself.

In order to retain a full isomorphism we need a construct remi-
niscent of an explicit substitution that promotes a linear variable to
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be persistent. As for 1L, we justify either carrying out this substi-
tution, or reducing under the promotion prefix. In the first case we
stay within the m-calculus, but not all proof reductions correspond
to process reductions. This is analogous to the tradeoff we made for
the 1L rule.

We extend the syntax and the reductions.

Types A, B,C == ...
| A&B external choice
| AoeB internal choice
| 1A replication

Processes P, Q e
x.inl; P | z.inr; P selection

|  z.case(P,Q) branching
| lu(z).P replicating input
|  z/u.P (promotion)

We also have the following new reductions
(Structural)  (vz)(lz(y).P | z/u.Q) — (vu)(lu(y).P | Q)

Choice (vz)(z.case(P, Q) | z.inl; R) — (vz)(P | R)
(vz)(z.case(P, Q) | z.inr; R) — (vz)(Q | R)
Replication  (vu)(lu(z).P | (vy)u(y).Q)

— (vy)(P{y/z} | (vu)(tu(z).P | Q)
The new structural reduction and the promotion construct disappear
if we annotate the conclusion of the ! L rule with Q{x/u} instead

of z/u.Q.

12. Term Passing

So far, we have stayed very close to the m-calculus, establishing an
interpretation of linear propositions as session types, sequent proofs
as processes, and cut reduction as process reduction. Structural
congruence arises from structural equivalences between sequent
proofs.

Next, we would like to work towards a type theory which inte-
grates both ordinary functional computation and concurrency. We
can see two possible paths. We can embed functional programming,
using typed analogues to translations by Milner [1992]. This is in-
deed possible, since variants of Milner’s translations can be typed
in our system [Toninho et al. 2011b], but we expect an extension
to dependent types and a full type theory to be far from straightfor-
ward. Essentially, we would have to reason about functional pro-
grams by reasoning about their implementations via session-typed
concurrent processes. A second possibility is to extend the calculus
with terms from a type theory. This is somewhat reminiscent of the
applied m-calculus [Abadi and Fournet 2001] with a rich, depen-
dently typed term language. This is what we pursue here.

12.1 Judgments

Terms and values are drawn from a possibly dependent type theory.
This type theory is open-ended, since its interaction with the cal-
culus developed so far is strictly controlled. We go so far as not to
specify whether its operational semantics should be call-by-name
or call-by-value, but we will isolate the assumptions we make about
it in order to guarantee that the combined system is meaningful.
We have a basic judgment M : 7, where 7 is a type and M
is a term. We generally say “ferm” to refer to a term from the
functional language and will continue to use “process” for process
expressions. We use the basic judgment in its hypothetical form,

UEM:mT,

where W is a collection of hypotheses x;:7;. As usual, all the z;
are distinct term variables, and we assume that it is a hypothetical
judgment and therefore satisfies substitution properties and the
hypothesis rule. We assume that hypotheses ¥ are not linear, for
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the sake of simplicity. In its simply-typed version, the judgment
U = M : 7 would be related to intuitionistic propositional logic
via the standard form of the Curry-Howard isomorphism [Howard
1969].

We now generalize all the sequent judgments so far to add new
hypotheses U, assigning types to term variables, written as

UV:I';A=P:uz: A

Like the shared names in I', the typing assumptions in U are
propagated to all premises in all rules we have presented so far.
For example, the identity and cut rules are now

U:TyoA=>[zez]uz: A id

UV:I';A=Puz:A VT ;A2 A=Q:z:C
;T AA = wa)(P|Q)uz:C

cut

The generalization of sequents is straightforward, but we must in-
ternalize term typing within process typing in order to use them. We
will do this in a minimalistic way, using only two new propositions,
Vr:7.A and Jz:7. A.

12.2 Term Input

Input of terms is modeled simply by universal quantification, taking
our cue from the usual functional interpretation of type theory.

UV yr; ' A=Pux: A v
U A= z(y).Px:Vyr.A

R

As before, the type of channel x evolves through interaction. In
order for cut reduction to work correctly, the VL rule must provide
a matching output.

UEM:7 ;T A mA{M/y}=Q:z2:C
U T A eVyr A= 2(M).Q::2: C

VL

Again, as before, we reuse the name x in the premise without
conflict since x is linear. Note that y must be chosen fresh so that
the new context ¥, y:7 is well-formed. This can always be achieved
by renaming. We extend our notation of substitution of names for
names to terms for names, writing { M /y} for the capture-avoiding
substitution of M for y in A. By the substitution property of the
type theory, the result will always be well-typed.

12.3 Reduction

Applying cut to the right and left rules as formulated above yields
the conclusion

VT AA = (va)(z(y).P|z(M).Q)::z: C

To applying the usual reduction step from the sequent calculus, we
must substitute M for y in the premise of the VR. We see that
we need the substitution property for hypotheses in ¥ to justify
reduction. After that we obtain the following cut:

U A= P{M/y}:xz: A{M/y}
U:T; A AM/y}=Q:z:C
T A A = (va)(P{M/y} | Q) =2:C

cut

from which we read off the reduction

wz)(z(y).P | 2(M).Q) — (va)(P{M/y} | Q)

In other words, we just use term passing instead of name passing in
the w-calculus.
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12.4 Expansion

Expanding the judgment z:Vy:7. A = [z + 2] = z : Vy:T. A
yields
h .
YT E oy yp YTy A=z e z]nz A id

VL

Yt s aVy T A= a(y)r o 2]z A R

VY A= 2(y).x(y).x < 2] oz VT A v

We see that we need the hypothesis rule in the type theory to justify
the expansion.

12.5 Term Output

A channel x : Jy:7.A offers to output a term M of type 7 along
x and then offer A{M /y}. This is symmetric to term input as de-
scribed for Vy:7.A. So even though our logic is intuitionistic, we
obtain a strong duality between universal and existential quantifi-
cation.
U-M:7 U;T';A=P:ux: A{M/y}
U A= o(M).P:z:3yT.A

JR

U,y ;DA A= Quz: C
VT Az yr A= 2(y).Q2: C

Applying cut to these two rules yields the conclusion

U:T;AA = (ve)(z(M).P|2y).Q):2:C
Straightforward substitution into the premise of 3L and cutting the
result with the premise of IR yields

U:I'; A= P:ua: A{M/y}

U; T A o A{M /)y = Q{M/y} 2z : C

U T AA = (vx)(P | Q{M/y}) = 2: C
So modulo symmetry of parallel composition, the reduction is the
same as for the VR/VL pair:

(va)(@(M).P | z(y).Q) — (vz)(P | Q{M/y})

A similar observation can be made about the expansion, which for
ajudgment z:3y:7. A = [z <> 2] = z : Jy:7. A yields

3L

cut

The new constructs of the type theory and process language in-
cluding terms and term passing are incorporated into the overall
summary in Figures 1, 2, and 3.

12.6 Incorporating Dependencies in the Example

While we can claim that our running example of the PDF indexing
service models two services (an indexer and a verifier), the types we
have presented only really specify communications (an input fol-
lowed by an output or an input followed by a choice, for example).
Using dependent types, we can enrich the protocol description to
have it enforce properties on the actual data that is communicated.
A common idiom that arises when using dependencies in this man-
ner is writing Vz:7. A where « does not occur in A. We emphasize
the non-dependence with the abbreviation 7 O A for the univer-
sal quantifier and 7 A A for the existential quantifier (3x:7.A for z
not in A). Consider the original indexing service. We can specify
that the communicated objects are indeed valid PDF files as follows
(using the idioms mentioned above):

IndexD 2 Vf:file. pdf(f) D Ir:file. pdf(r) A 1

The type IndexD specifies that the process is to input a file and
a proof that the file is a valid PDF. Afterwards, the process must
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output a second file and a proof that this file is also a valid PDF. A
process implementing such a service along channel x might be

SrvD £ z(f).z(p).x (w1 (genIndex f p)).
z(m2(genindex f p)).0

where genlndex is a dependently typed function implementing the
index generation, with type I1f:file. IIp:pdf(f). Xr:file. pdf(r).

13. Proof Irrelevance

One particularly important aspect of a dependent type theory is
that proofs are first-class objects. This means that proofs can be
offered and requested during interactions on sessions. For example,
a process of type x : Fix persistently offers a service computing a
fixed point of a given function if it exists, or a proof that there is no
fixed point.

Fix; 2 z : Vf:nat — nat. (Ip:(Em:nat. m = f(m)). 1)
@ (Fg:(-Xm:nat.m = f(m)).1)

We assume here that the type theory provides function types
IIz:7.0 (which may be written 7 — o if there are no depen-
dencies), dependent sum types Xz:7.0 (inhabited by dependently
typed pairs, which may be written 7 X ¢ if there are no dependen-
cies), negation —7 (inhabited by proofs of contradiction from 7),
and equality M = N (inhabited by equational proofs).

In practice, we may not care about the proof that a fixed point
does not exist; we are happy to trust the server. In that case we
can employ proof irrelevance (for example, in the form of squash
types [Constable et al. 1986] or bracket types [Awodey and Bauer
2004]). Briefly, the type [7] is inhabited by terms [M] where M : T,
but M can be shown not to be relevant to the outcome of a func-
tional computation. The rules are elided here—they are reviewed
in Toninho et al. [2011a]; Pfenning et al. [2011]. The type theory
guarantees that witnesses for bracket types need not be transmitted
during sessions, and we assume that session participants agree on
that. Then we can rewrite the specification above as

Fixe = x : IVf:nat — nat. (Ip:(Sm:nat.m = f(m)).1)
@ (Ig:[~Xm:nat.m = f(m)].1)

We can even go a step further and realize that no proof of the
equality m = f(m) is needed, since we can do this check ourselves
by applying f to the witness provided by the server. We obtain:

Fixs £ x : IVf:nat — nat. (3p:(Sm:nat.fm = f(m)]).1)
@ J¢:[-Xm:nat.m = f(m)].1)

After erasure of information that is not transmitted, this type is
isomorphic to

Fixs £ 2 : IVf:nat — nat. (3p:nat.1) O 1

so we can optimize both computation and communication if we
agree that the optimizations are applied at both ends of sessions.
Of course, this last specification is much less informative than the
previous ones.

13.1 Example with Proof Irrelevance

While it is often necessary to have processes explicitly communi-
cate proof objects, there are situations where the extra communica-
tion overhead may not be desirable, or even necessary. For instance,
in our example, proofs for the validity of the exchanged PDF files
are communicated explicitly. This verification can potentially be
made by the client and the server (with some extra computational
overhead) and the communication of the proofs may be suppressed.
To capture this at the level of types, we make use of proof irrele-
vance as follows:

IndexID £ Vf-file. [pdf(f)] D Ir:file. [pdf(r)] A 1
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Note that during type-checking, the proof objects are required to
exist (and so the contract is still enforced by typing) but the actual
objects are suppressed at runtime and thus their communication
may be erased.

SrvID £ z(f).z([p]).z(m1 (genlndex f p)).
z{[m2(genIndex f p)]).0)

The process above is what one would expect during type-checking:
all terms are present to ensure the desired properties. The optimiza-
tion procedure would then produce the following:

SrvIDop: = z(f).z(m1(genIndex f p)).0

14. Digital Signatures

A common way mobile code is certified in practice is through
digital signatures. We now sketch how to extend our type theory
to capture them, so that trust in mobile code can be acquired
either through explicit proof, or via digital signatures, or some
combination of these techniques. This means that type checking
at channel interfaces in the distributed setting must have the ability
to check digital signature for authenticity, say, using some public
key infrastructure.

On the logical side, we have the new judgment of affirma-
tion [Garg et al. 2006] by a principal K, written as ¥ + M :x T
(K affirms that M has type 7). The rule that defines it is

VHFM:T
\If|—<MlT>K:K7’

The notation (M:7) literally refers to a certificate that M has
type 7, signed by K. We internalize this judgment in the type theory
with a new principal-indexed family of modal operators Qi 7. It is
defined by the following two rules:

UHM:xT UVEM: 0kt V,2:THEN:go
UkEM: Ot Utlet (z:T)k =Min N :x o

So far, the digital signature only serves to cut down proof-checking
time: if we trust the signer, we do not need to the check proof.
When combined with proof irrelevance, however, it becomes much
more significant: since irrelevant proofs of type [7] are not trans-
mitted, signing a statement of the form ([M]:[7]) actually becomes
([J:[7]) in transmission. By putting our trust in the signer, we avoid
transmitting the proof.

Resuming the fixed point example, if we call the principal
offering the service I, then we can express that the non-existence
of a fixed point must be certified by F as:

Fixs = x : IVf:nat — nat. (3p:(m:nat.[m = f(m)]).1)
@ J¢:0r[-Zminat.m = f(m)].1)

affirm

OF

In contrast, the proof that x is a fixed point can be omitted outright,
no signature required, because we can easily check the fixed point
property.

We replay the interaction on x : Fixs on a simple example.

Client: z(y) send fresh channel y
Client :  y(An:nat.n+ 1) send function

Server :  y.inr select “no fixed point”
Server 1 y(([J:[-X¥m:nat.m = m + 1])r)

send signed affirmation

14.1 Example with Digital Signatures

Our indexing service guarantees that the communicated files are
valid PDF files (either by requiring and supplying the necessary
proof objects or by eliding them at runtime). However, nothing
yet guarantees that the file sent by the service is actually correctly
indexed. We integrate this in the type of the service by having it
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include an extra proof object that attests such a fact:

ldxA 2 ¥ ffile.[pdf (f)] O
Jrfile. [pdf (r)] A [agree(f, )] A 1

Given that the proof objects can be suppressed, we wish to enforce
some form of accountability. In particular, we want the indexing
service to sign the proof certificate, attesting agreement between f
and r. We can do so by changing the type accordingly (assuming
the identification of the service is X):

IdxSign £ Vf:file.[pdf(f)] D
Ar-file. [pdf (r)] A Ox [agree(f,7)] A1

The actual server code can be easily extended to implement this
service by outputting an extra, signed, proof object. In an actual
implementation, the digital signature would involve cryptography
through some underlying public key infrastructure.

15. Conclusions

We have developed a Curry-Howard isomorphism between propo-
sitions in linear logic and session types, between proofs in the intu-
itionstic linear sequent calculus and 7-calculus processes, and be-
tween proof reductions and process reductions. The sequential na-
ture of sequent proofs impedes some expected parallelism, some of
which can be recovered by small local improvements of the type
assignment [Caires and Pfenning 2010]. More sweeping changes
would exploit a recently developed theory of observational equiv-
alences based on linear logical relations [Pérez et al. 2011]. The
basis in logic suggest straightforward generalizations, such as em-
bedding and passing terms from a functional type theory [Toninho
et al. 2011b]. This functional type theory must satisfy only some
minimal requirements, which allows us to add support for proof
erasure and digital signatures [Pfenning et al. 2011]. In total, we
have an expressive, extensible basis for concurrent systems, includ-
ing such architectures as proof-carrying code. In all the system we
obtain type preservation, global progress (which implies freedom
from deadlock), and termination, guided by proof-theoretic proper-
ties and the Curry-Howard correspondence.

Currently, the underlying functional type theory can be depen-
dent, but not the concurrent part. This means we can reason pre-
cisely about the terms being passed, but not about properties of
the channels or processes themselves beyond those guaranteed by
the simple types. We speculate that there are three plausible paths
towards a concurrent constructive type theory. One might be to en-
capsulate the concurrent part in a monad and work within a linear
dependent type theory such as CLF [Watkins et al. 2004], although
the monad in CLF plays a very different role from what is needed
here. A second one might be to use a typed translation from a func-
tions to processes and embed the functional language in the pro-
cess calculus [Milner 1992; Toninho et al. 2011b]. This requires
an understanding how dependent types fare under the type-directed
translation and, in particular, which process equalities model judg-
mental equality in the functional type theory. We have been de-
veloping a theory of typed observational equivalences [Pérez et al.
2011], which would likely play a key role in this approach. A third
approach might be to use a proof-theoretic form of the a resource
semantics [Reed 2009] in order to circumvent the usual obstacles
to linear dependent types. In this case the interaction between the
resource semantics and the operational semantics would seem to be
crucial.
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UV:I'; A= P:=:z:C U:TVwA; A= P:z:C
\I/;F;~:>x<>.0::x:11R ‘P;F;A,x:lém().P::z:ClL \P;F;A,x:!Aﬁx/u.P::z:C’!L

z().0]z().Q — Q

(vz)(z(y).P | x/u.Q

) —

(vu)(fu(y).P | Q)

Figure 2. Alternative faithful process assignment, with additional reductions.

Plo=P P=Q=P=Q
P|(Q|R)=(P | )| PlQ=QlP

z & fn(P) = P|(vz) (l/:v) P|Q) (vz)0=0
(va)(vy)P = (v )(

z(y).P | x(2).Q — P | Q{y/z}

o(M).P | 2(n).Q — P | Q{M/n}
x.inr; P | z.case(Q,R) — P | R
z & f(P) = (va)(P | [z & 2]) — Qfz/x}
P— Q= (vy)P — (vy)Q
[z, p = 2).(vw)(z(w).(ly & wa | [z < 2]p))
[z > 2], = 0
[ 2,05 = wcase(z.inl;[z < 2]a,z.inr; [z < 2]B)
[x < z]vy:_rAA =  z(y).z(y).[r < z]a

[
[
[
[

u(y).P | lu(2).Q — P | Q{y/z} | lu(2).Q
z.inl; P | z.case(Q,R) — P | Q

y € fn(Q) = (vz)(ly < 2] | Q) — Q{y/z}
Q—Q=P|Q—P|Q

P=P AP —QNQ =Q=P—Q

T 2agp = 2(y)-(vw)(z(w).([y & wla | [z < 2]B))
T2 s = z.case(w.inl;[z < 2]a, xinr [z < 2]B)
weal, = lz(z2).(vy)(w(y).ly < 2]a)

T > Z]Hy:rA =  z(y).2(y).[x < z]a

Figure 3. Processes: structural congruence, reduction and expansion

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes.
Information and Computation, 100(1):1-77, Sept. 1992. Parts I and II.

J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho. Termination in session-
based concurrency via linear logical relations. Submitted, Oct. 2011.

F. Pfenning, L. Caires, and B. Toninho. Proof-carrying code in a session-
typed process calculus. In Ist International Conference on Certified
Programs and Proofs, CPP’11, Kenting, Taiwan, Dec. 2011. Springer
LNCS. To appear.

D. Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

J. C. Reed. A Hybrid Logical Framework. PhD thesis, Carnegie Mellon
University, Sept. 2009. Available as Technical Report CMU-CS-09-155.

Draft of Nov 30, 2012

. Sangiorgi and D. Walker. The m-Calculus: A Theory of Mobile Pro-
cesses. Cambridge University Press, 2001.

. Toninho, L. Caires, and F. Pfenning. Dependent session types via
intuitionistic linear type theory. In Proceedings of the 13th International
Conference on Principles and Practice of Declarative Programming,
PPDP’11, pages 161-172, Odense, Denmark, July 2011a. ACM.

. Toninho, L. Caires, and F. Pfenning. Functions as session-typed pro-
cesses. Submitted, Oct. 2011b.

Watkins, I. Cervesato, F. Pfenning, and D. Walker. Specifying proper-
ties of concurrent computations in CLF. In C.Schiirmann, editor, Pro-
ceedings of the 4th International Workshop on Logical Frameworks and
Meta-Languages (LFM’04), Cork, Ireland, July 2004. Electronic Notes
in Theoretical Computer Science (ENTCS), vol 199, pp. 133-145, 2008.

2011/11/30



