Intersection Types for a Logical Framework

Frank Pfenning
School of Computer Science
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213-3891

Internet: fp@cs.cmu.edu

December 1992

Abstract

We propose a refinement of the type theory underlying the LF logical framework by a form
of subtypes and intersection types. This refinement preserves desirable features of LF, such as
decidability of type-checking, and at the same time considerably simplifies the representations
of many deductive systems.

1 Introduction

Over the past two years we have carried out extensive experiments in the application of the LF
Logical Framework [HHP93] to represent and implement deductive systems and their metatheory.
Such systems arise naturally in the study of logic and the theory of programming languages.
For example, we have formalized the operational semantics and type system of Mini-ML and
implemented a proof of type preservation [MP91] and the correctness of a compiler to a variant of
the Categorical Abstract Machine [HP92]. LF is based on a predicative type theory with dependent
types. It has proved to be an excellent language for such formalization efforts, since it allows direct
representation of deductions as objects and judgments as types and supports common concepts such
as variable binding, substitution, and generic and hypothetical judgments. The logic programming
language Elf [Pfe91a] implements LF and gives it an operational interpretation so that LF signatures
can be executed as logic programs. It also provides sophisticated term reconstruction, which is
important for realistic applications.

Despite its expressive power, certain weaknesses of LF emerged during these experiments. One
of these is the absence of any direct form of subtyping. Clearly, this is not a theoretical problem:
what is informally presented as subtyping can be encoded either via explicit coercions or via
auxiliary judgments as we will illustrate below. In practice, however, this becomes a significant
burden and one has the feeling that the framework should support simple reasoning about subtypes.

An obvious candidate for an extension of the type system are subset types as they are used for
example in Martin-Lof type theory [SS88]. In a logical framework, however, they are problematic,
because they lead to an undecidable type-checking problem. The methodology of LF reduces
proof checking in the object language to type checking in the meta-language (the LF type theory),
and thus decidability is paramount. Looking elsewhere, we find an extensive body of work on
order-sorted first-order calculi and their use in logic programming and automated theorem proving
(see, for example, [Smo89, SS89]). However, it is not clear how to generalize these calculi to

Intersection Types for LF 2

logics or type theories with higher-order functions, although recently some interesting work in
this direction has begun [Koh91, Koh92, NQ92|. Similar systems of simple subtypes have been
used in programming languages, in particular in connection with record types and object-oriented
programming, but such systems are not expressive enough for our purposes. More promising are
enhancements of simple subtypes with intersection types [CDCV81], which have been applied to
programming languages [Rey91] and recently also in type theory [Hay91]. General decidability
of type-checking or inference in such calculi is problematic, but under certain restrictions type
checking is decidable and principal types exist [Rey88, FP91, CG92].

In this paper we tie together ideas from these threads of research and propose a refinement of the
LF type theory by a version of bounded intersection types, or refinement types, as we call them. The
resulting type theory A& allows more direct encodings of deductive systems in many examples. We
show that it has a decidable type-checking problem and is thus useful as a logical framework. We
have not yet implemented this system, but experience with a related implementation of refinement
types for ML [FP91] and the current EIf term reconstruction algorithm leads us to believe that
type-checking will be practical.

The system we propose is relevant not only to LF and its EIf implementation, but could be
directly applied to AProlog [MNPS91] or Isabelle [PN90] with similar benefits.

In future work, we plan to consider the operational aspects of this type theory so that it can be
fully embedded into the current Elf implementation. This includes unification, or rather, solving
of constraints in the style described in [Pfe91a, Pfe91b], type reconstruction, and search. Based on
experience from first-order logic programming we conjecture that subtyping constraints can lead
to improved operational behavior of many programs.

2 Two Motivating Examples

In this section we give two prototypical examples which motivate our extension of the LF type
theory. Space only permits a rather sketchy discussion of these examples; the interested reader
may find additional explanation in the indicated references.

Hereditary Harrop Formulas. Here we consider, as an object logic, the language of hereditary
Harrop formulas [MNPS91], a fragment of logic suitable as a basis for a logic programming language.
For the sake of brevity we restrict ourselves to the propositional formulas.

Formulas F = A|FiANF,|FiDF|FRVEF
Here A ranges over atomic formulas. We now define legal program and goal formulas.

Programs D = A|DiANDy|G DD
Goals G = A‘Gl/\GQ‘Gl\/GQ‘DDG

How do we represent these definitions in LF? The definition of formulas given here in the concrete
syntax of Elf, is straightforward.

form : type.

=> : form -> form -> form. %infix right 10 =>
[: form -> form -> form. Yinfix right 12 ||
&& : form -> form -> form. %infix right 14 &&

Intersection Types for LF 3

Atomic formulas are not explicitly declared, but we assume that declarations for predicate constants
are added to this basic signature as they are introduced. The next question is how to represent
programs and goals. Here we can go two ways: one is to introduce explicit judgments atom F,
prog F', and goal F' which can be used to prove that a given formula F' is either an atom, program,
or goal. That is, showing only the rules for programs:

atom : form -> type.
goal : form -> type.
prog : form -> type.

p_atom : atom A -> prog A.
p_imp : goal A -> prog B -> prog (A => B).
p_and : prog A -> prog B -> prog (A && B).

Here, free variables in a declaration are implicitly II-quantified.

A judgment, such as P G (program P entails goal G) must now carry explicit evidence that
the constituents D and G are in fact legal programs and goals. We call this judgment solve P G,
indicating its use as a logic program. It requires backchain as an auxiliary judgment. {x:A} K is
Elf’s concrete syntax for IIx:A. K.

solve : {P:form} prog P -> {G:form} goal G -> type.
backchain : {P:form} prog P -> {A:form} atom A -> {G:form} goal G -> type.

The rules defining these judgments lead to a very awkward and inefficient implementation of proof
search, since solve is now a type family indexed by four arguments instead of only two.

Another possibility is to declare separate types for programs and goals. Unfortunately, this
means that we have to introduce separate instances of the shared connectives, and the connection
to an overarching language of formulas is lost and would have to be axiomatized separately.

Both alternatives illustrate general techniques available within the LF type theory. While
feasible for relatively small examples, they become very difficult to manage for larger examples and
obscure the representations greatly compared to the relative simplicity of the informal definition.
In contrast, with refinement types we can declare a type of formulas and then atoms, programs,
and goals as subtypes.

Natural Deductions in Normal Form. The next example illustrates that we often want to
make subtype distinctions at the level of deductions and not only at the level of syntax. We follow
the usual representation of natural deduction in LF [HHP93] and Felty’s trick to enforce normal
forms [Fel89]. We restrict ourselves to the purely implicational fragment.

— T

A

B ADB A
OI* OB
ADB B

The deduction in the premise of the implication introduction rule discharges the hypothesis A
labelled = and is represented as a function from deductions of A to deductions of B. The derivability
judgment is represented by the family pf which is indexed by a formula.

Intersection Types for LF 4

o . type.
imp : o => o -> o.

pf : o —> type.

impi : (pf A -> pf B) -> pf (imp A B).
impe : pf (imp A B) -> pf A -> pf B.

Again, quantifiers over A and B are implicit. A type of the form pf A is the type of all natural
deductions of A. A natural deduction is normal if no introduction of an implication is immediately
followed by its elimination. An equivalent formulation essentially says that we can only reason with
elimination rules from hypotheses and with introduction rules from the conclusion. We implement
this via two judgments, elim and nf, on deductions. This has the same drawbacks as in the previous
example: it is more verbose, and arguments proliferate in judgments which depend on elim and
nf. Here is how this alternative could be written:

nf : pf A -> type.
elim : pf A -> type.

impi_nf : {Q:pf A -> pf B} ({P:pf A} elim P -> nf (Q P)) -> nf (impi Q).
impe_elim : {P:pf (imp A B)} {Q:pf A} elim P -> nf Q -> elim (impe P Q).
elim nf : {P:pf A} elim P -> nf P.

Implicit arguments (to nf, elim, impi, and impe) and type reconstruction in Elf go a long way
towards making this option feasible, but it is still awkward. Felty’s solution introduces new families
elim and nf indexed by formulas. Again, the connection to pf remains informal and one then has
to prove that every normal natural deduction is in fact a natural deduction. Using refinement
types, we will be able to declare deductions in normal form as a subtype of natural deductions.

3 The Refinement Type System

In this section we present a refinement of the LF type theory ()\H) to accomodate commonly used
forms of subtypes. We refer to this system as A'¢. We have to ensure that the basic, necessary
properties of the LF type theory are not destroyed: in particular, we need to preserve decidability
of type-checking and the adequacy of encodings. These requirements have led us to a number of
basic design decision which we review here before the technical development. The examples will
draw upon Section 2.

Sorts and Proper Types. Semantically, a sort may be best thought of as describing a subset
of a proper type as it exists in LF. This extends through the type hierarchy in straightforward
fashion; for example, the sort (elim A — nf B) will describe a subset of the functions of type
(pf A — pf B), namely those that map a deduction of A by elimination rules to a normal form
deduction of B. Thus we think of sorts as a refinement of the structure of types, and similary for
sort families indexed by objects. Sorts are not distinguished syntactically, but via a new form of
declaration that specifies a sort refining a type. For example, goal :: form declares the sort goal of
legal goals as a refinement of the type form of formulas.

Subsorts and Intersection Types. The space of sorts that refine a given proper type must
possess structure to be useful. We thus introduce new declarations of the form a < o’ that specify

Intersection Types for LF 5

that sort a is a subsort of sort a’. This will only be considered well-formed when both a and o’
refine some proper type b. At the level of functions, simple subsorting is insufficient, since a given
A-expression may have a number of different sorts. For example, (Az:pf A. z) has type pf A — pf A,
and also sorts elim A — elim A and nf A — nf A. In order to express all these properties directly
we use intersection types:

(Ax:pf A. z) : (elim A — elim A) &(nf A — nf A) &(pf A — pf A).

Again, in keeping with the basic refinement philosophy, sorts may only be conjoined if they refine
a common type (pf A — pf A, in this example).

Objects. We also make a basic decision not to change the space of objects, but merely to classify
them more accurately than in A!l. This may seem rather drastic insofar as types occur in objects
(labelling A’s) and one might thus expect them to change as the language of types changes. Through
the typing rules we enforce that A-abstractions are labelled by proper types. The typing rules
then allow analysis of the body of the term Az:A. M for every sort that refines the type A.
This restriction may not be necessary to obtain a decidable system, but it affords a tremendous
simplification of the meta-theory of our calculus without effecting its expressiveness in any essential
way. It is also consistent with the philosphy behind refinement types. Note that such a restriction
is only reasonable because the functions we may form at the level of objects do not constitute a
general purpose, functional programming language, but only serve to represent binding and scope
at various levels (variable binding, hypotheses, etc.).

3.1 Syntax

We maintain LE’s three levels and augment families and kinds by intersections. Objects and con-
texts remain basically the same, although we have eliminated family-level abstractions Az:A4;. Ao,
since they do not occur in practice or in normal forms and would complicate our meta-theory.

Kinds K == Type|llz:A. K | K; & K>
Families A = a ‘ AM ‘ H.’BiAl. A2 ‘ A1 &AQ
Objects M == c|z | z:A. M | My M,
Contexts T == -|T,x:A

Signatures may now contain two additional forms of declarations: refinement declarations a; :: ag
and subsort declarations a1 < as.

Signatures X = | X, aK | X, cA|X a1 a2 | X, a1 < ag

We now also drop the restriction that a constant may be declared at most once in a signature
(where a:K, a; :: ag, and c:A declare a, a1, and ¢, respectively). Instead we impose other validity
conditions in the next section. As usual, we consider a-convertible terms to be identical.

3.2 Judgments

In our approach, it is extremely important that sorts and sort families can be recognized, and that
a sort refines a unique type. Thus we begin by defining the refinement judgment. Since it must be
applied uniformly through all levels (kinds, families, objects) with essentially the same rules, we
use the meta-variables U and V' to range over terms from any of the three levels and d to range
over object-level or family-level constants. For an instance of a rule schema to be valid it must be

Intersection Types for LF 6

sensible according to the stratification imposed above. Variable occurring in the terms involved in
this judgment are treated uniformly, so we omit the context here.

}_E U1 . V1 }_E U2 . V2
k. Type :: Type ks Hx:Uq. Uy i 1z Vy. Vs
KU =W K Us i Vo KUV Uy V
sy U1 Us 2 V1 Vo L U & Uy 2V
}_E U1 . V1 }_E U2 . V2
kz:aox K Ax:Uqp. Ug 2 Ax:Vq. Vy

d:U in X a:ain®
K d::d kya:d

Note that the refinement relation is neither transitive nor reflexive. The conditions on valid signa-
tures will guarantee that exactly one of the last two cases is applicable for any declared constant,
and the second only for a unique a’. This implies that in a valid signature X for a given U there
exists at most one V such that 5 U :: V.

The validity judgments have the following form. Here, Kind is a special token to allow a uniform
presentation of the validity judgments at the three levels.

F X Sig 3 15 a valid signature

K I Ctx I’ is a valid context

I' 5 K : Kind K is a valid kind

'k A K A is a valid family of kind K
'kM:A M is a valid object of type A

We also need the auxiliary judgments

U=V U is Bn-convertible to V
RU<V U is a subsort of V

where the subsorting judgment only applies at the levels of families and kinds. Here are the rules
for valid signatures.

- Sig
F X Sig ks K : Kind k K K/ ks K; :: K’ for any a:K; in & noa:aind
3, a:K Sig

X Sig ks A: Type Az A ks A; ii A for any c:A; in X
3, c:A Sig

F 3 Sig az:K in ¥ a1 not declared in X

H 2,(11 L an Slg

F X Sig ay ::aginX as ::agin X
F X, a1 < ag Sig

Intersection Types for LF 7

A declaration of the form a :: b declares a sort family a which inherits its kind from the type family
b it refines. Valid contexts are straightforward.

k T Ctx 'k A: Type
ks - Ctx kI, z:A Ctx

The rules for valid terms are uniform throughout the levels (as long as they apply), so we give
them in schematic form for terms. Note that we do not check validity of signatures or contexts
at the leaves, but require their validity in the theorems and take care to propagate this property.
Where there is no ambiguity we use the usual conventions for the names of meta-variables. Here,
S stands for either Type or Kind.

r:Ain T
I' i, Type : Kind I'kx:A

d:U in ¥ a:biny b:KinX

I'kd:U I'ka: K
I'sU:W IW—EU:VQ1 I'sU:V VW FI—EW:S(Q)
'sU:Vi&Va ' U:W
I'k A:Type IaeAkU:S I'U:S TRU:S RUL2V KUV
'k x:A. U: S ' U &Uz: S
'k U:1Iz:A. V 'k M:A

' UM :[M/x]V
KkB:A I'k A: Type I's, B: Type I‘,a::B}—EM:C'3
'k Ax:A. M : llx:B. C

I'sU:V V=W FI—EW:S(4)
I'sU:W

Note that we need a subsorting rule (2) and a type conversion rule (4), since we have formulated
them as separate judgments which interact very little (formally). In the rule for A-abstraction (3)
one can see that the type label acts as a bound: we can analyze the expression for each sort B
which refines A and conjoin the results using the introduction rule for & (1).

Finally, the rules for subsorting. The rules enforce the restriction that sorts and sort families

Intersection Types for LF 8

can only be compared if they refine a common type.

kU:=W VW KRU:=W VW
RU&V <U RU&V <V
KEU<W U<V, a<bin X
U< Vi&Vs s a<b
ks AUy o W ks Hz:A. Uy o W

b (Iz:A. Uh) &(Iz: A Up) < (Ilz:A. Uy & Us)

KkB<A KLUV Kk A<B
i Type < Type b oAU <Ilz:B. V kAM<BM

LU=W KU<V sV <W
s U<U s U<W

The subsorting relationship is contravariant in the domain of a function type, as expected. Indexed
sort families may only be compared if the indices are identical, which may require some applications
of the type conversion rule (4) in a typing derivation before the subsumption rule (2) can be applied.
3.3 Properties of \'&

We begin by defining a forgetful mapping ||.|| from A% to AL, Tt ignores the distinctions introduced
by sorts by collapsing them to the type they refine. The result of interpreting a signature 3 is a
signature ¥’ in Al and a substitution o mapping terms over ¥ into terms over Y. We use o(U) as
a notation for the result of applying o to U with the special provision that

Vv ito(Uy) =0(Uz) =V
undefined otherwise

o(U1 & Usy) = {

The application of o to a context I' distributes into the constituent terms. The empty substitution
is denoted by [] and the extension of a substitution o mapping the new constant d to d’ is written
as o @ [d— d].

-1 =D

|2, U = ||Z] if d declared in X

|2,d:U|| = (¥,d:o(U);o®[d— d]) ifd not declared in ¥ and (X';0) = ||X|
12,01 az]| = (X0 a1 — ag]) where (3';0) = |||
1X,01 < apf| = X

Lemma 1 If ¥ is valid and 5, U <V then there exists a (unique) W such that tx, U :: W and
K VW,

Lemma 2 (Refinement) Let ¥ be a valid signature, I' be a valid context, and ||X|| = (¥';0). Then:

(i) if U=V theno(U)=0o(V), (i) ifs U <V then o(U)=0o(V),
(i) if U=V then o(U)=0o(V), (iv) ifTKU:V then o(T) Ky o(U) : o(V).

Intersection Types for LF 9

Proof: By straightforward inductions over the derivations of the given judgments, employing
uniqueness of bounds and Lemma 1. |

We call a A& term canonical if it is in long 3n-normal form, as in LF.

Lemma 3 The judgment U =V is decidable on valid terms and every valid term U has a unique
equivalent canonical form.

Proof sketch: The corresponding judgment on LF is decidable on valid LF terms (see, for exam-
ple, [Geu92]). Equivalence on types and kinds is structural and therefore trivially decidable, except
for conversions among the embedded objects. But labels of A-abstractions are restricted to terms
which remain unchanged under the forgetful interpretation, and thus conversions in ¢(U) and o (V)
can be lifted to conversions in U and V. O

The equivalence relation = is defined by U =2 V iff U <V and V < U. It is easily shown that
this is a congruence. Also, the following properties are easily proved.

Lemma 4 (Basic Properties of Sorts) We assume implicitly that both sides of each of the equiva-
lences below refine the same type.

(i) ULV2V&U, (i) ULV &W)=(U&V)&W,
(iii) U&U 2 U, (iv) (Mz:A. Up) &(z:A. Us) & (z:A. Uy & Us).

Theorem 5 (Decidability of Subsorting) The subsorting judgment b, U < V' is decidable for valid
stgnatures 3.

Proof sketch: By an interpretation into the subtyping problem for Forsythe, for which a decid-
ability proof has been given by Reynolds [personal communication, 1991]. The proof can be found
in [Pie91] in a slightly different form. Each atomic type of the form a M; ... M, is interpreted as
a simple type a M . ..M, which inherits its subsorting property from a. The main observation in
the correctness proof of this interpretation is that AM < BN iff A< B and M = N. O

We call a type A a minimal type for the object M in context I' if A is canonical and for every
canonical B such that I' 5; M : B we have ; A < B. A similar definition applies to minimal kinds.

Theorem 6 (Decidability of A&) The validity of signatures and contexts and the typing judgment
I's U :V are decidable. Furthermore, every valid term U has a minimal type or kind.

Proof sketch: Using the forgetful interpretation and the soundness and completeness of the al-
gorithmic version of LF in [HHP93] we can show that each derivation can be transformed into one
which eagerly applies normalization on types, but otherwise requires no type conversion. Secondly
we show that applications of the subsorting rule in such a derivation can be pushed up to the
leaves, except for A-abstractions and applications, where we can directly calculate a minimal type
from minimal types of the constituents. The completeness of this calculation relies on the fact that
only finitely many sorts (modulo =) refine a given type. O

Intersection Types for LF 10

4 Examples Revisited

Now that the M calculus has been defined, we revisit the earlier examples. We use the concrete
syntax :: for :: and <: for <.

Hereditary Harrop formulas. Following the previous and unchanged definitions of the connec-
tives, we declare atoms, goals, and programs as refinements of formulas. Then we declare sorts for
the constructors.

atom :: form. % atoms
goal :: form. % legal goals
prog :: form. Y legal programs

atom <: goal. 7% every atom is a legal goal

=> : prog -> goal -> goal.
[: goal -> goal -> goal.
&& : goal -> goal -> goal.

atom <: prog. % every atom is a legal program
=> : goal -> prog -> prog.
&& : prog -> prog -> prog.

The entailment and backchaining judgments can now be declared naturally. Their definition (not
shown here) is also simple and intuitive.

solve : prog -> goal -> type.

backchain : prog -> atom -> goal -> type.

Normal Natural Deductions. Here, both elim and nf become sort families which refine pf.
Following the previous declarations for pf, impi, and impe we complete the definition as follows.

nf :: pf. % normal form deductions
elim :: pf. % pure elimination deductions from hypotheses

elim <: nf. 7 every elim deduction is in normal form
impi : (elim A -> nf B) -> nf (imp A B).
impe : elim (imp A B) -> nf A -> elim B.

Below we show the obvious deduction of p D (¢ D p) for parameters p and ¢q. Terms of the form
Ax:A. M are written as [x:A] M in concrete syntax.

([p:o] [q:o0] impi ([P:pf pl impi ([Q:pf ql P))
: {p:o} {q:0} nf (imp p (imp q p)).

These small examples should help to illustrate how refinement types provide a natural and
direct means to express subtyping in the context of a logical framework. Many of the case studies
of deductive systems in LF that we and others have carried out would benefit similarly.

Intersection Types for LF 11

5 Conclusion and Further Work

We plan to implement the system A& a5 an extension of Elf. However, before this can be done,
a unification algorithm and a feasible type reconstruction algorithm need to be developed. The
type-checking algorithm which arises out of the proof of Theorem 6 works by bottom-up synthesis
and is not practical. However, a top-down type-checking algorithm as in the implementation of
refinement types for ML [FP91] promises to be of acceptable efficiency, especially since our language
lacks recursion at the level of terms.

We would also like to consider relaxing some of the restrictions currently in place to enforce
orthogonality of conversion and subsorting. In particular, it is intuitively appealing to allow sorts
(to be interpreted as bounds) in the labels of A-abstractions, but we believe that this necessitates
a form of typed or sorted conversion and our decidability proof no longer applies. One might
also consider promotion of sorts to types and demotion of types to sorts which sometimes further
economizes representations without making them less intuitive.

Finally, there is the question of adequacy proofs for representations in A, The normal form
theorem is useful here, but we would also like to describe an interpretation which maps a signature
in A% into an equivalent signature in Al. We conjecture that there is such a mapping which
interprets refinement by relativizing II-quantifiers and subsorting by coercions.

Acknowledgments. We would like to thank Michael Kohlhase for discussions regarding refine-
ment types and Nevin Heintze and Ekkehard Rohwedder for comments on a draft of this extended
abstract.

References

[CDCV81] Mario Coppo, Maria Dezani-Ciancaglini, and B. Venneri. Functional character of solvable terms.
Zeitschrift fiir mathematische Logic und Grundlagen der Mathematik, 27:45-58, 1981.

[CG92) M. Coppo and P. Giannini. A complete type inference algorithm for simple intersection types.
In J.-C. Raoult, editor, 17th Colloquium on Trees in Algebra and Programming, Rennes, France,
pages 102-123, Berlin, February 1992. Springer-Verlag LNCS 581.

[Fel89) Amy Felty. Specifying and Implementing Theorem Provers in a Higher-Order Logic Program-
ming Language. PhD thesis, Department of Computer and Information Science, University of
Pennsylvania, July 1989. Available as Technical Report MS-CIS-89-53.

[FPI1] Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceedings of the SIGPLAN 91
Symposium on Language Design and Implementation, Toronto, Ontario, pages 268-277. ACM
Press, June 1991.

[Geu92] Herman Geuvers. The Church-Rosser property for 8n-reduction in typed A-calculi. In A. Scedrov,
editor, Seventh Annual IEEE Symposium on Logic in Computer Science, pages 453-460, Santa
Cruz, California, June 1992. IEEE Computer Society Press.

[Hay91] Susumu Hayashi. Singleton, union and intersection types for program extraction. In T. Ito
and A. R. Meyer, editors, Proceedings of the International Conference on Theoretical Aspects of
Software, pages 701-730, Sendai, Japan, September 1991. Springer-Verlag LNCS 526.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. Journal of
the Association for Computing Machinery, 40(1):143-184, January 1993.

[HP92] John Hannan and Frank Pfenning. Compiler verification in LF. In Andre Scedrov, editor, Seventh
Annual IEEE Symposium on Logic in Computer Science, pages 407-418, Santa Cruz, California,
June 1992. IEEE Computer Society Press.

Intersection Types for LF 12

[Koh91]

[Koh92]

[MNPS91]

[MP91]

INQ92]

[Pfe9lal

[Pfe91b)]

[Pie91]

[PNYO]
[Rey88]

[Rey91]

[Smo89]

[SS88]

[SS89]

Michael Kohlhase. Order-sorted type theory I: Unification. SEKI Report SR-91-18, Universitat
des Saarlandes, Saarbriicken, Germany, 1991.

Michael Kohlhase. Unification in order-sorted type theory. In A. Voronkov, editor, Proceedings of
the International Conference on Logic Programming and Automated Reasoning, pages 421-432,
St. Petersburg, Russia, July 1992. Springer-Verlag LNAI 624.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a
foundation for logic programming. Annals of Pure and Applied Logic, 51:125-157, 1991.

Spiro Michaylov and Frank Pfenning. Natural semantics and some of its meta-theory in Elf. In
L.-H. Eriksson, L. Hallnds, and P. Schroeder-Heister, editors, Proceedings of the Second Inter-
national Workshop on Extensions of Logic Programming, pages 299-344, Stockholm, Sweden,
January 1991. Springer-Verlag LNAT 596.

Tobias Nipkow and Zhenyu Qian. Reduction and unification in lambda calculi with subtypes.
In D. Kapur, editor, Proceedings of the 11th International Conference on Automated Deduction,
pages 66-78, Saratoga Springs, New York, June 1992. Springer-Verlag LNAI 607.

Frank Pfenning. Logic programming in the LF logical framework. In Gérard Huet and Gordon
Plotkin, editors, Logical Frameworks, pages 149-181. Cambridge University Press, 1991.

Frank Pfenning. Unification and anti-unification in the Calculus of Constructions. In Sizth
Annual IEEE Symposium on Logic in Computer Science, pages 74-85, Amsterdam, The Nether-
lands, July 1991.

Benjamin C. Pierce. Programming with Intersection Types and Bounded Polymorphism. PhD
thesis, School of Computer Science, Carnegie Mellon University, December 1991. Available as
Technical Report CMU-CS-91-205.

Lawrence C. Paulson and Tobias Nipkow. Isabelle tutorial and user’s manual. Technical Report
189, Computer Laboratory, University of Cambridge, January 1990.

John C. Reynolds. Preliminary design of the programming language Forsythe. Technical Report
CMU-CS-88-159, Carnegie Mellon University, Pittsburgh, Pennsylvania, June 1988.

John C. Reynolds. The coherence of languages with intersection types. In T. Ito and A. R.
Meyer, editors, International Conference on Theoretical Aspects of Computer Software, pages
675-700, Sendai, Japan, September 1991. Springer-Verlag LNCS 526.

G. Smolka. Logic Programming over Polymorphically Order-Sorted Types. Dissertation, Univer-
sitdt Kaiserslautern, May 1989.

Anne Salvesen and Jan M. Smith. The strength of the subset type in Martin-Lo6f’s type theory.
In Third Annual Symposium on Logic in Computer Science, Edinburgh, Scotland, pages 384-391.
IEEE, July 1988.

Manfred Schmidt-Schau3. Computational Aspects of an Order-Sorted Logic with Term Declara-
tions. Springer-Verlag LNAI 395, 1989.

