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ABSTRACT
We develop Intuitionistic Metric Temporal Logic (IMTL) that ex-

tends prior work on intuitionistic temporal logics in two ways: (1)

it generalizes discrete time to dense time with intervals so it can,

for example, express the duration of signals, and (2) every proof

corresponds to a temporal computation.

Our main technical result is a syntactic proof of cut elimination

for IMTL, which entails logical consistency and ensures that every

proof executes while respecting the flow of time. Cut reductions

in IMTL correspond to temporal interactions, although we do not

fully develop a programming language in this paper.

Beyond the metatheory of IMTL, we illustrate the computational

meaning of IMTL proofs by developing examples and a small case

study where we apply IMTL to well-timed digital circuit design.

CCS CONCEPTS
• Theory of computation → Proof theory; Modal and tem-
poral logics; Constructive mathematics; • Hardware→ Static

timing analysis.

1 INTRODUCTION
Temporal logic extends the standard logical connectives with time

operations, allowing logic to describe temporal properties. Dating

back to the seminal work of Pnueli [29] on Linear Temporal Logic
(LTL), temporal modalities enable propositions to state that a prop-

erty𝐴 holds at all points in the future, written as◻𝐴, at some point
in the future,◇𝐴, or in the next instant,◯𝐴.

Computer scientists have successfully applied LTL to a wide

variety of computer science topics, from hardware specification

[5, 26] to proving properties about sequential programs [24].

The semantics of LTL usually comes from an interpretation of

its propositions relative to a model of a temporal system. In this

setting, the notion of time is generally abstract in the sense that

properties concern states that result from discrete (computational)

steps taken by the system under study.

However, in real-world systems, the properties of interest often

require reasoning about real time. To this end, (classical) Metric
Temporal Logic (MTL) [23, 27, 28] is an extension of LTL where

we constrain the usual LTL modalities by temporal intervals. In

MTL, the proposition◻
𝐼 𝐴 denotes that 𝐴 holds during the entire

interval 𝐼 instead of over all points in the future and◇
𝐼 𝐴 denotes

that 𝐴 holds somewhere within 𝐼 . In this dense-time setting, the◯

modality does not play a central role, sometimes defined as◇ or◻

(either one works) indexed by a point (a singleton interval) such as

[𝛿 , 𝛿] for a small real 𝛿 considered the duration of a discrete step.

So far we described classical temporal logic, where the semantics

is an interpretation of propositions over models. In this framework,

we have two components: a model that captures the system of

interest and logical propositions that codify the properties satisfied

by the system.

In this paper, we propose an intuitionistic formulation of metric

temporal logic (IMTL), studied from the perspective of structural

proof theory [16, 30, 31] rather thanmodel theory. Our semantics lies

in the (syntactic) discipline of how propositions are proved rather

than interpreted over an external model.

A characteristic of the intuitionistic approach is that the logic

and the computational model coincide, in the spirit of propositions-

as-types [10, 20]. From a practical standpoint, while the classical

approach is suitable for model checking (a procedure that checks

whether a model acts in accordance to a LTL proposition [3]), the

intuitionistic approach is suitable for temporal computation (actions
through time that realize a proposition while respecting the flow

of time) and, thus, temporal programming. Thus, our main goal for

the design of IMTL is for every proof to correspond to a temporal

computation in this sense.

We introduce a sequent calculus for IMTL and show, as our main

result, a syntactic proof of cut elimination which entails temporal
causality — informally, “future events cannot affect the present”;

and temporal monotonicity, the logical counterpart requirement for

temporal computation, among other metatheorems. Furthermore, it

is possible to extract a temporal computational model from the proof

of cut elimination, although we do not fully develop a programming

language in this paper.

To the best of the authors knowledge, this is the first attempt

to develop an intuitionistic version of MTL, so we compare it with

classical MTLs and other (non-metric) intuitionistic temporal and

modal logics.

Our work shares similarities with intuitionistic versions of LTL

and programming languages with temporal dynamics. Arguably the

work most closely related to ours is that of Kojima and Igarashi [22],

who present an LTL sequent calculus that respects temporal causal-

ity and establishes cut elimination syntactically. Their calculus,

however, does not tackle the meaning of ◻ and ◇, and further-

more proofs do not correlate directly to temporal computations. For

further comparisons with related work such as Simpson’s intuition-

istic modal logic [32], Davies’ intuitionistic temporal logic [13, 14],

and other proposals for intuitionistic temporal logics [1, 6] see

Section 5.

Concretely, our principal contributions are:

● A judgmental account of IMTL based on Martin-Löf’s [25]

approach of distinguishing judgments from propositions

(Section 2);

● A sequent calculus for IMTL whose proofs correspond to

temporal computations (Section 2);
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● Formal definitions (and proofs) for temporal causality — re-

quirement for intuitionistic temporal logics — and temporal
monotonicity — requirement for proofs to be temporally

computable (Section 3);

● A syntactical result of cut elimination that entails several

metatheorems including temporal causality and monotonic-
ity (Section 3.3);

● A case study showcasing how IMTL can model well-timed

digital circuits (Section 4);

● A comparison with other temporal and modal logics (Sec-

tion 5);

2 INTUITIONISTIC METRIC TEMPORAL
LOGIC

In this section, we develop IMTL. We start by introducing the basic

judgments and then present the logical connectives individually

with small examples. We then show what kinds of formulas are,

and are not, valid in IMTL. Finally, we define an intuitionistic linear

temporal logic within IMTL for comparison purposes with other

temporal and modal logics.

2.1 Interval Judgment
IMTL builds on the methodology of Martin-Löf [25], in which judg-
ments differ from propositions. We define our logic on top of a basic

interval judgment:

𝐴 holds during interval [𝑎, 𝑏], denoted 𝐴 [𝑎,𝑏 ]

for a given proposition𝐴 and interval [𝑎, 𝑏], starting at𝑎 and ending
at 𝑏 (both possibly negative real numbers), measured relative to

the same reference point. We also write 𝐴 𝐼
, for a given interval 𝐼 ,

when referring to the interval limits is unnecessary.

2.2 Arithmetic Constraints
A key feature of IMTL is that our basic temporal judgment 𝐴 [𝑎,𝑏 ]

refers explicitly to real numbers 𝑎 and 𝑏. It is therefore critical to

clarify how we reason about them. We use standard arithmetic

constraints and real number expressions

constraints C F 𝑥 real | 𝑒1 < 𝑒2 | 𝑒1 ⩽ 𝑒2 | 𝑒1 = 𝑒2

| ⊤ | C1 ∧ C2 | ⊥ | C1 ∨ C2
expressions 𝑒 F 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2 | 𝑥 | (real constants)

and a semantic constraint entailment

Ω ⊨ C , with Ω ≜ C1,C2, · · · ,C𝑛

meaning Ω entails C in a standard theory of real numbers with

variables (denoted by 𝑥 in our case). Note that constraints can be

inconsistent, in which case Ω ⊨ ⊥, and can also branch into cases,

Ω ⊨ C1 ∨ C2.

2.3 Temporal Hypothetical Judgment
We develop a temporal sequent where both antecedents and succe-

dent are interval judgments and depend on constraints Ω. By the

sequent

Ω ; Γ ⊢𝑠 𝐴 [𝑎,𝑏 ]

where Γ = 𝐴1

[𝑎1 ,𝑏1 ] , 𝐴2

[𝑎1 ,𝑏1 ] , · · · , 𝐴𝑛
[𝑎𝑛 ,𝑏𝑛 ] ,

we mean that if propositions 𝐴1, 𝐴2, · · ·, 𝐴𝑛 are true during their

respective intervals [𝑎1 , 𝑏1], [𝑎1 , 𝑏2], · · ·, [𝑎𝑛 , 𝑏𝑛] then the proof,

which is at time 𝑠 , realizes𝐴 over interval [𝑎, 𝑏]. It is useful to think
of the proof as a process at time 𝑠 that constructs evidence for the

succedent 𝐴 [𝑎,𝑏 ]
from evidence for the antecedents. In many rules

will abbreviate the succedent 𝐴 [𝑎,𝑏 ]
as 𝛾 .

Crucially, the collection of rules applicable to a sequent depends

on the present time 𝑠 , which is how the calculus enforces the appli-

cation of rules only on propositions that are currently available.

A sequent is well-formed when satisfying the condition

Ω ⊨ (𝑠 ⩽ 𝑎) ∧ (𝑎 ⩽ 𝑏) ∧ (𝑎1 ⩽ 𝑏1) ∧ (𝑎2 ⩽ 𝑏2) ∧ · · · ∧ (𝑎𝑛 ⩽ 𝑏𝑛)
where the 𝑎𝑖 ⩽ 𝑏𝑖 clauses capture the notion that a temporal interval
has to start before it ends and the clause 𝑠 ⩽ 𝑎 enforces the succe-

dents’ interval to always start after the present time, otherwise, the

proof cannot possibly provide evidence for its succedent without

breaking temporal causality.

Having a well-formedness condition for sequents means we

consider an inference rule well-formed if all premises of the rule

are well-formed, assuming that the conclusion is well-formed. This

“bottom-up” reading of rules is characteristic for many sequent

calculi. We shall maintain this condition implicitly throughout the

paper, only invoking it when necessary.

When the constraints Ω are inconsistent we are in an unreach-

able branch of the proof and succeed, echoing the intuitionistic

proof of ⊥ ⊃ 𝐴. As we see in the proof of cut elimination, we are

sometimes in a situation where we have two abstract times 𝑢 and 𝑣 ,

and Ω does not uniquely determine which of these comes first (i.e.,

is smaller). In this case we must split the proof into two branches,

considering the cases 𝑢 ≤ 𝑣 and 𝑣 ≤ 𝑢. This is generalized in the

split rule below.
Ω ⊨ ⊥

imposs
Ω ; Γ ⊢𝑠 𝛾

Ω ⊨ C1 ∨ C2 Ω,C1 ; Γ ⊢𝑠 𝛾 Ω,C2 ; Γ ⊢𝑠 𝛾
split

Ω ; Γ ⊢𝑠 𝛾

Example 2.1. The interval judgments in a sequent are interpreted

relative to the temporal baseline 𝑠 that annotates the turnstile. For

example, in the following sequent:

𝐴 [0,3] , 𝐵 [2,4] ⊢0 𝐴 ∧ 𝐵 [2,3]

the proof is at time 0, meaning that𝐴 is at the beginning of its truth

interval, while 𝐵 and 𝐴 ∧ 𝐵 still lie in the future. Computationally,
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this means that the proof, viewed as a process, can interact at type

𝐴, but not yet at types 𝐵 or 𝐴 ∧ 𝐵.

However, proofs as in Example 2.1 would get stuck if there is

no way to interact with future intervals. IMTL does not provide

any direct way to interact with future intervals, but it provides the

structural rule delay that forwards a proof through time.

Ω ⊨ (𝑠 ⩽ 𝑢 ⩽ 𝑎)
Ω ; Γ ⊢𝑢 𝐴 [𝑎,𝑏 ]

delay
Ω ; Γ ⊢𝑠 𝐴 [𝑎,𝑏 ]

This rule is applicable given two conditions. Firstly, Ω ⊨ 𝑠 ⩽ 𝑢
makes it impossible for a proof to go back in time, as it would break

temporal causality. Secondly, Ω ⊨ 𝑢 ⩽ 𝑎 ensures that proofs do

not delay too much and end up ignoring their objective, namely

proving 𝐴 over the interval [𝑎, 𝑏].

Example 2.2 (Use of delay rule). The sequent

𝐴 [0,3] , 𝐵 [2,4] ⊢0 𝐴 ∧ 𝐵 [2,3]

from Example 2.1, cannot advance to instant 2.5 because that would

prevent it from producing evidence for 𝐴 ∧ 𝐵 in the interval from 2

to 2.5. However, it can advance to time 2, and then interact with 𝐵,

and 𝐴 ∧ 𝐵.

2.4 Rules of Inference
We present the complete set of IMTL rules in Figure 1. We proceed

by explaining the system of rules in detail. We separate the rules of

weakening and contraction to unclutter the left and right rules that

define the meaning of propositions.

Ω ; Γ ⊢𝑠 𝛾
weak

Ω ; Γ, 𝐴 [𝑎,𝑏 ] ⊢𝑠 𝛾
Ω ; Γ, 𝐴 [𝑎,𝑏 ] , 𝐴 [𝑎,𝑏 ] ⊢𝑠 𝛾

cntr
Ω ; Γ, 𝐴 [𝑎,𝑏 ] ⊢𝑠 𝛾

Our cut and identity rules are straightforward.We usually present

identity as the id rule, with the same interval [𝑎, 𝑏] on both sides,

but the more precise definition of identity is id*, which checks

whether both intervals match given constraints.

id
Ω ;𝐴 [𝑎,𝑏 ] ⊢𝑠 𝐴 [𝑎,𝑏 ]

Ω ⊨ (𝑎 = 𝑎′) ∧ (𝑏 = 𝑏′)
id*

Ω ;𝐴 [𝑎,𝑏 ] ⊢𝑠 𝐴 [𝑎′ ,𝑏′ ]

Ω ; Γ1 ⊢𝑠 𝐴 [𝑎,𝑏 ] Ω ; Γ2, 𝐴
[𝑎,𝑏 ] ⊢𝑠 𝛾

cut
Ω ; Γ1Γ2 ⊢𝑠 𝛾

Since every arithmetic expression in a sequent is interpreted

with respect to the constraints Ω, we allow ourselves shorthands

like the one on the left. In other words, if Ω ⊨ 𝑒1 = 𝑒2 we will take

the liberty to silently replace 𝑒1 by 𝑒2 or vice versa.

We justify propositions following the proof-theoretic tradition

[16, 30, 31] where themeaning of each proposition (over an interval)

comes directly from its right and left rules. The syntax for IMTL

propositions follows the grammar

𝐴, 𝐵 F 𝑃 | ⊤ | ⊥ | 𝐴 ∧ 𝐵 | 𝐴 ∨ 𝐵 | 𝐴 ⊃ 𝐵

| ◯⟨𝑎,𝑏 ⟩ 𝐴 | ◻⟨𝑎,𝑏 ⟩ 𝐴 | ◇⟨𝑎,𝑏 ⟩ 𝐴

with propositional variables 𝑃 and (real) numbers 𝑎 and 𝑏.

Proof-theoretically, we establish that all right and left rules can-

cel themselves out — a property called harmony. From harmony, we

extract computational meaning and justify the connectives seman-

tically. For now, we postulate harmony through informal discourse,

but our proofs of cut elimination and identity elimination (Section 3)

are formal evidence that the rules are harmonious.

We proceed by separating operations into logical and temporal

and explain them separately.

2.5 Logical Operations as Synchronous Events
Let us start with implication: for 𝐴 ⊃ 𝐵 to hold over an interval

[𝑎, 𝑏], 𝐵 must hold over the interval [𝑎, 𝑏] given that 𝐴 holds over

the same interval [𝑎, 𝑏]. Using an implication amounts to presenting

evidence of 𝐴 over the interval [𝑎, 𝑏] and receiving a 𝐵 over the

same interval as a result.

Ω ; Γ, 𝐴 [𝑎,𝑏 ] ⊢𝑠 𝐵 [𝑎,𝑏 ]
⊃ R(?)

Ω ; Γ ⊢𝑠 𝐴 ⊃ 𝐵 [𝑎,𝑏 ]

Ω ; Γ1 ⊢𝑠 𝐴 [𝑎,𝑏 ] Ω ; Γ2, 𝐵
[𝑎,𝑏 ] ⊢𝑠 𝛾

⊃ L(?)
Ω ; Γ1Γ2, 𝐴 ⊃ 𝐵 [𝑎,𝑏 ] ⊢𝑠 𝛾

However, these rules are too permissive when considering tem-

poral computability. We want both the left and right rules to be at

the same time when applied, enforcing synchrononicity between

both rules.We shall restrict them to be applicable only if the sequent

is at time 𝑎.

Ω ; Γ, 𝐴 [𝑎,𝑏 ] ⊢𝑎 𝐵 [𝑎,𝑏 ]
⊃ R

Ω ; Γ ⊢𝑎 𝐴 ⊃ 𝐵 [𝑎,𝑏 ]

Ω ; Γ1 ⊢𝑎 𝐴 [𝑎,𝑏 ] Ω ; Γ2, 𝐵
[𝑎,𝑏 ] ⊢𝑎 𝛾

⊃ L
Ω ; Γ1Γ2, 𝐴 ⊃ 𝐵 [𝑎,𝑏 ] ⊢𝑎 𝛾

Here we present a concise version of the rules, similar to the

identity rule case. By the sequent Ω ; Γ1Γ2 ⊢𝑎 𝐴 ⊃ 𝐵 [𝑎,𝑏 ]
we denote

Ω ; Γ1Γ2 ⊢𝑠 𝐴 ⊃ 𝐵 [𝑎,𝑏 ]
with Ω ⊨ 𝑠 = 𝑎, reasoning up to equality as

derivable via Ω.
All other logical connectives (∨, ⊃,⊤,⊥) share the same pattern

of requiring the sequent to be at the start of the interval (Ω ⊨
present time = 𝑎). This is one of the factors that allows us to relate

proofs to temporal computations (more in Section 3).

We emphasize disjunction ∨ because it requires either choice

to be stable during the entire duration of the interval, a different

semantics from the one found in classical MTL:

Ω ; Γ ⊢𝑎 𝐴 [𝑎,𝑏 ]
∨R1

Ω ; Γ ⊢𝑎 𝐴 ∨ 𝐵 [𝑎,𝑏 ]
Ω ; Γ ⊢𝑎 𝐵 [𝑎,𝑏 ]

∨R2
Ω ; Γ ⊢𝑎 𝐴 ∨ 𝐵 [𝑎,𝑏 ]

Ω ; Γ, 𝐴 [𝑎,𝑏 ] ⊢𝑎 𝛾 Ω ; Γ, 𝐵 [𝑎,𝑏 ] ⊢𝑎 𝛾
∨L

Ω ; Γ, 𝐴 ∨ 𝐵 [𝑎,𝑏 ] ⊢𝑎 𝛾

Computationally, harmony of all connectives (except◯) entails

that some specific information is sent and received during cut re-

duction (which represents a single step of communication). The

carrier of this information (say, a wire, a channel, or a memory
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location—let’s call it an address generically) remains entirely ab-

stract, but the information contents itself is specific. For example, a

proof of 𝐴 ⊃ 𝐵 [𝑎, 𝑏] expects to receive the address of an 𝐴. A proof

of𝐴∨ 𝐵 will sent a (stable) bit of information over the interval [a,b],

representing whether it consists of a proof of 𝐴 or 𝐵. ⊤[𝑎, 𝑏] has
only one proof, so it represents a point of synchronization without

any further information being communicated.

Logical connectives represent synchronous events because they
require both sides of the communication (the one providing the

event and the one using it) to agree on a temporal interval [𝑎, 𝑏]
and act/react during its entirety (see Figure 1).

Example 2.3 (Uncurrying). Implication works similar to ∧, by
requiring the present time to be the start of the interval (refer to

Figure 1). Like in this example, we often omit constraints Ω when

they are trivial or easily determined by context.

id
𝐴 [𝑎,𝑏 ] ⊢𝑎 𝐴 [𝑎,𝑏 ]

id
𝐵 [𝑎,𝑏 ] ⊢𝑎 𝐵 [𝑎,𝑏 ] id

𝐶 [𝑎,𝑏 ] ⊢𝑎 𝐶 [𝑎,𝑏 ]
⊃ L

𝐵 ⊃ 𝐶 [𝑎,𝑏 ] , 𝐵 [𝑎,𝑏 ] ⊢𝑎 𝐶 [𝑎,𝑏 ]
⊃ L

𝐴 ⊃ (𝐵 ⊃ 𝐶) [𝑎,𝑏 ] , 𝐴 [𝑎,𝑏 ] , 𝐵 [𝑎,𝑏 ] ⊢𝑎 𝐶 [𝑎,𝑏 ]
∧L

𝐴 ⊃ (𝐵 ⊃ 𝐶) [𝑎,𝑏 ] , 𝐴 ∧ 𝐵 [𝑎,𝑏 ] ⊢𝑎 𝐶 [𝑎,𝑏 ]
⊃ R

𝐴 ⊃ (𝐵 ⊃ 𝐶) [𝑎,𝑏 ] ⊢𝑎 (𝐴 ∧ 𝐵) ⊃ 𝐶 [𝑎,𝑏 ]
⊃ R

· ⊢𝑎 (𝐴 ⊃ (𝐵 ⊃ 𝐶)) ⊃ (𝐴 ∧ 𝐵) ⊃ 𝐶 [𝑎,𝑏 ]
delay

· ⊢0 (𝐴 ⊃ (𝐵 ⊃ 𝐶)) ⊃ (𝐴 ∧ 𝐵) ⊃ 𝐶 [𝑎,𝑏 ]

2.6 Temporal Connectives
Our first temporal modality,◯

⟨𝑎,𝑏 ⟩ 𝐴 is the internalization of the

interval judgment as a proposition, in the sense that◯
⟨𝑎,𝑏 ⟩ 𝐴 and

𝐴 [𝑎,𝑏 ]
both mean “𝐴 is true during interval [𝑎, 𝑏]”.

As an internalization of the judgment, it is clear that by◯
⟨𝜕1 ,𝜕2 ⟩ 𝐴 [0,0]

we mean 𝐴 [𝜕1 ,𝜕2 ]
and, stretching the concept to future points in

time, by◯
⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑠 ,𝑠 ]

we mean 𝐴 [𝑠+𝜕1 ,𝑠+𝜕2 ]
.

Generally, by◯
⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑎,𝑏 ]

we mean𝐴 [𝑎+𝜕1 ,𝑏+𝜕2 ]
, which sub-

sumes the intuitions above by, formally, adding the endpoints to the

interval [𝑎, 𝑏]. The rules need to check that the resulting interval

is well-formed.

Ω ⊨ 𝑎 + 𝜕1 ⩽ 𝑏 + 𝜕2

Ω ; Γ, 𝐴 [𝑎+𝜕1 ,𝑏+𝜕2 ] ⊢𝑠 𝛾
◯ L

Ω ; Γ,◯⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑎,𝑏 ] ⊢𝑠 𝛾

Ω ⊨ 𝑎 + 𝜕1 ⩽ 𝑏 + 𝜕2

Ω ; Γ ⊢𝑠 𝐴 [𝑎+𝜕1 ,𝑏+𝜕2 ]
◯R

Ω ; Γ ⊢𝑠 ◯⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑎,𝑏 ]

We use a different notation for ⟨𝜕1 , 𝜕2⟩ because it is a differential
(of an interval) rather than an interval, in the sense that 𝜕1 ⩽ 𝜕2
might not hold. While a differential is not an interval, we add a

differential to an interval to obtain the next interval.
The definition of differential enforces (and we will keep it im-

plicit in our presentation), that both of its components are positive,

(i.e., 𝜕1 ⩾ 0 ∧ 𝜕2 ⩾ 0), otherwise ◯ would allow reasoning about

past events and break causality of time. Note that every interval is

a differential although not every differential is an interval. The use

of differentials enables modeling interesting temporal phenomena

as we will see in Section 4.

Computationally, ◯ does not require any communication, we

just change the interval at which a particular proposition may

interact (which always lies in the future).

Also, because ⟨𝜕1 , 𝜕2⟩ is not an interval, it is not trivial from

the conclusion that [𝑎 + 𝜕1 , 𝑏 + 𝜕2] is an interval, which is why we

need to require that Ω ⊨ 𝑎 + 𝜕1 ⩽ 𝑏 + 𝜕2.

While◯
⟨𝜕1 ,𝜕2 ⟩

represents communication over a certain interval,

◻
⟨𝜕1 ,𝜕2 ⟩

and ◇
⟨𝜕1 ,𝜕2 ⟩

represent communications that are uncer-
tain about their interval of interaction apart from the fact it must

lie within ⟨𝜕1 , 𝜕2⟩. Here we use the notion of “within” as a gener-

alization of the notion of subinterval ⊆, extended to account for

differentials.

⟨Y1 , Y2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩ ≜ (𝜕1 ⩽ Y1 ⩽ Y2 ⩽ 𝜕2)

∨ (𝜕2 ⩽ Y2 ⩽ Y1 ⩽ 𝜕1)

where the first disjunct accounts for the usual subinterval relation

while the second accounts for when a differential is not an interval,

flipping the relations according to the figure.

◻
⟨𝜕1 ,𝜕2 ⟩ 𝐴 means that 𝐴 must be true for all differentials within

⟨𝜕1 , 𝜕2⟩. As a succedent, we therefore must prove it for all subdiffer-
entials. As an antecedent, we conversely assume that it is true for
all subdifferentials. We capture this interplay by introducing fresh

time parameters 𝛼1 and 𝛼2 in◻R, and allowing arbitrary times ℓ1
and ℓ2 in◻ L. In both rules a requisite interval constraint must be

satisfied to reflect the intuitive meaning of◻
⟨𝜕1 ,𝜕2 ⟩

.

Ω, ⟨𝛼1 , 𝛼2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩ ⊨ 𝑎 + 𝛼1 ⩽ 𝑏 + 𝛼2

Ω, ⟨𝛼1 , 𝛼2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩ ; Γ ⊢𝑎 𝐴 [𝑎+𝛼1 ,𝑏+𝛼2 ]
◻R𝛼1,𝛼2

Ω ; Γ ⊢𝑎 ◻⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑎,𝑏 ]

Ω ⊨ ⟨ℓ1 , ℓ2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩
Ω ⊨ 𝑎 + ℓ1 ⩽ 𝑏 + ℓ2

Ω ; Γ, 𝐴 [𝑎+ℓ1 ,𝑏+ℓ2 ] ⊢𝑎 𝛾
◻ L

Ω ; Γ,◻⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑎,𝑏 ] ⊢𝑎 𝛾

Symmetrically,◇
⟨𝜕1 ,𝜕2 ⟩ 𝐴 means that 𝐴 must be true over some

subdifferential within ⟨𝜕1 , 𝜕2⟩. Therefore the ◇R can choose an

arbitrary subdifferential ⟨ℓ1 , ℓ2⟩, while◇ L must work for arbitrary

subdifferentials and introduces fresh parameters 𝛼1 and 𝛼2.

Ω ⊨ ⟨ℓ1 , ℓ2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩
Ω ⊨ 𝑎 + ℓ1 ⩽ 𝑏 + ℓ2

Ω ; Γ ⊢𝑎 𝐴 [𝑎+ℓ1 ,𝑏+ℓ2 ]
◇R

Ω ; Γ ⊢𝑎 ◇⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑎,𝑏 ]

Ω, ⟨𝛼1 , 𝛼2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩ ⊨ 𝑎 + 𝛼1 ⩽ 𝑏 + 𝛼2

Ω, ⟨𝛼1 , 𝛼2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩ ; Γ, 𝐴 [𝑎+𝛼1 ,𝑏+𝛼2 ] ⊢𝑎 𝛾
◇ L𝛼1,𝛼2

Ω ; Γ,◇⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑎,𝑏 ] ⊢𝑎 𝛾

In both sets of rules, ⟨𝜕1 , 𝜕2⟩, ⟨ℓ1 , ℓ2⟩ and ⟨𝛼1 , 𝛼2⟩ are differentials,
but 𝛼𝑖 are variables while 𝜕𝑖 and ℓ𝑖 are expressions. Note that [𝑎, 𝑏],
[𝑎 + 𝛼1 , 𝑏 + 𝛼2] and [𝑎 + ℓ1 , 𝑏 + ℓ2] must be intervals, according to
sequent well-formedness (Section 2.3), which is why we have to

add preconditions Ω ⊨ 𝑎 + 𝛼1 ⩽ 𝑏 + 𝛼2 and Ω ⊨ 𝑎 + ℓ1 ⩽ 𝑏 + ℓ2.
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We can instantiate ⟨𝛼1 , 𝛼2⟩ via an admissible substitution princi-

ple

Ω ⊨ ⟨ℓ1 , ℓ2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩ Ω, ⟨𝛼1 , 𝛼2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩ ; Γ ⊢𝑠 𝐴 [𝑎,𝑏 ]
subst

Ω ; [ℓ1, ℓ2/𝛼1, 𝛼2] (Γ ⊢𝑠 𝐴 [𝑎,𝑏 ] )

where [ℓ1, ℓ2/𝛼1, 𝛼2] (Γ ⊢𝑠 𝐴 [𝑎,𝑏 ] ) substitutes ℓ𝑖 for 𝛼𝑖 throughout
the sequent. The harmony of both ◻ and ◇ is as follows: one

side communicates the interval of interaction ⟨ℓ1 , ℓ2⟩ and the other

replaces ⟨𝛼1 , 𝛼2⟩ by it. Both sides agree, before the communication,

that the base interval of interaction is [𝑎, 𝑏] and that the chosen

differential must be within ⟨𝜕1 , 𝜕2⟩.
The modalities ◻ and ◇ model events whose timing is con-

strained, but not fully determined. Combined with logical connec-

tives and◯, which are synchronous, our logic is expressive enough

to model a wide range of temporal phenomena while maintaining

computational relevance as we will show during our case study in

Section 4.

Example 2.4 (Derivation with ◻,◇ and ◯). The situation, de-

picted and described by the derivation below, involves all three

temporal modalities to prove the formula◻
⟨0,10⟩ (𝐴 ⊃ ◯⟨2,3⟩ 𝐵) ⊃

◇
⟨3,7⟩ 𝐴 ⊃ ◇⟨3,7⟩

◯
⟨2,3⟩ 𝐵 at [0, 0]. We use Ω = ⟨𝛼1 , 𝛼2⟩ ⊆ ⟨3, 7⟩.

id
Ω ;𝐴 [𝛼1 ,𝛼2 ] ⊢𝛼1 𝐴 [𝛼1 ,𝛼2 ]

id
Ω ;◯

⟨2,3⟩ 𝐵 [𝛼1 ,𝛼2 ] ⊢𝛼1 ◯⟨2,3⟩ 𝐵 [𝛼1 ,𝛼2 ]
⊃ L

Ω ;𝐴 ⊃ ◯⟨2,3⟩ 𝐵 [𝛼1 ,𝛼2 ] , 𝐴 [𝛼1 ,𝛼2 ] ⊢𝛼1 ◯⟨2,3⟩ 𝐵 [𝛼1 ,𝛼2 ]
delay

Ω ;𝐴 ⊃ ◯⟨2,3⟩ 𝐵 [𝛼1 ,𝛼2 ] , 𝐴 [𝛼1 ,𝛼2 ] ⊢0 ◯⟨2,3⟩ 𝐵 [𝛼1 ,𝛼2 ]
◇R

Ω ;𝐴 ⊃ ◯⟨2,3⟩ 𝐵 [𝛼1 ,𝛼2 ] , 𝐴 [𝛼1 ,𝛼2 ] ⊢0 ◇⟨3,7⟩
◯

⟨2,3⟩ 𝐵 [0,0]
◻ L

Ω ;◻
⟨0,10⟩ (𝐴 ⊃ ◯⟨2,3⟩ 𝐵) [0,0] , 𝐴 [𝛼1 ,𝛼2 ] ⊢0 ◇⟨3,7⟩

◯
⟨2,3⟩ 𝐵 [0,0]

◇ L
· ;◻⟨0,10⟩ (𝐴 ⊃ ◯⟨2,3⟩ 𝐵) [0,0] ,◇⟨3,7⟩ 𝐴 [0,0] ⊢0 ◇⟨3,7⟩

◯
⟨2,3⟩ 𝐵 [0,0]

⊃ R
· ;◻⟨0,10⟩ (𝐴 ⊃ ◯⟨2,3⟩ 𝐵) [0,0] ⊢0 ◇⟨3,7⟩ 𝐴 ⊃ ◇⟨3,7⟩

◯
⟨2,3⟩ 𝐵 [0,0]

⊃ R
· ; ⊢0 ◻⟨0,10⟩ (𝐴 ⊃ ◯⟨2,3⟩ 𝐵) ⊃ ◇⟨3,7⟩ 𝐴 ⊃ ◇⟨3,7⟩

◯
⟨2,3⟩ 𝐵 [0,0]

2.7 Examples of IMTL derivations
We say a formula 𝐴 is valid if it holds at any time and for any

interval:

def: 𝐴 is valid if · ; 𝑠 real, 𝑎 real, 𝑏 real ⊢𝑠 𝐴 [𝑎,𝑏 ]

where 𝐴 does not mention 𝑠 , 𝑎 and 𝑏. In other words, 𝐴 is valid if it

holds for any (reasonable) instant of time and interval (remember

𝑠 ⩽ 𝑎 ⩽ 𝑏 holds implicitly by well-formedness.) However, an

equivalent way to prove validity is to check whether𝐴 holds during

[0, 0] starting from point 0 (Lemma 2.5)

Lemma 2.5 (Alternative validity).

𝐴 is valid if and only if · ; · ⊢0 𝐴 [0,0]

Proof (sketch). From left to right by substitution. From right

to left, we can construct a derivation that delays from 𝑠 to 𝑎 and

then acts as the derivation on the right since IMTL restricts rule

application by checking only whether the present time matches the

start of the interval. □

We now proceed by analyzing IMTL valid and not valid proposi-

tions. We also present additional examples of IMTL derivations.

Lemma 2.6 (IMTL theorems). For generic 𝝏 and 𝝏′, unless speci-
fied, the following formulas are valid.

(1) ◯
𝝏 (𝐴 ∧ 𝐵) ⊃ (◯𝝏 𝐴 ∧◯𝝏 𝐵)

(2) ◻
𝝏 (𝐴 ∧ 𝐵) ⊃ (◻𝝏 𝐴 ∧◻𝝏 𝐵)

(3) ◇
𝝏 (𝐴 ∧ 𝐵) ⊃ (◇𝝏 𝐴 ∧◇𝝏 𝐵)

(4) ◯
𝝏 (𝐴 ⊃ 𝐵) ⊃ ◯𝝏 𝐴 ⊃ ◯𝝏 𝐵

(5) ◻
𝝏 (𝐴 ⊃ 𝐵) ⊃ ◻𝝏 𝐴 ⊃ ◻𝝏 𝐵

(6) ◇
𝝏 (𝐴 ⊃ 𝐵) ⊃ ◻𝝏 𝐴 ⊃ ◇𝝏 𝐵

(7) ◻
𝝏 (𝐴 ⊃ 𝐵) ⊃ ◇𝝏 𝐴 ⊃ ◇𝝏 𝐵

(8) ◻
𝝏 𝐴 ⊃ ◯𝝏′ 𝐴 for ⊨ 𝝏′ ⊆ 𝝏

(9) ◯
𝝏′ 𝐴 ⊃ ◇𝝏 𝐴 for ⊨ 𝝏′ ⊆ 𝝏

(10) ◯
𝝏
◯

𝝏′ 𝐴 ⊃ ◯𝝏+𝝏′ 𝐴
(11) ◯

𝝏+𝝏′ 𝐴 ⊃ ◯𝝏
◯

𝝏′ 𝐴

Formulas (1), (2) and (3) show that all temporal modalities distribute
over ∧. Propositions (4), (5), (6) and (7) show how the modalities
distribute over ⊃, given the duality between◻ and◇. Formulas (8)
and (9) clarify the order of strength between the modalities:◻ entails
◯,◯ entails◇, and the reverse directions do not hold.

Example 2.7. We show the derivation of proposition (6). We use

the shorthand 𝜶 = ⟨𝛼1 , 𝛼2⟩ for variables 𝛼1 and 𝛼2.
id

𝜶 ⊆ 𝝏 ;𝐴 𝜶 ⊢𝛼1 𝐴 𝜶 id
𝜶 ⊆ 𝝏 ;𝐵 𝜶 ⊢𝛼1 𝐵 𝜶

⊃ L
𝜶 ⊆ 𝝏 ;𝐴 ⊃ 𝐵 𝜶 , 𝐴 𝜶 ⊢𝛼1 𝐵 𝜶

delay
𝜶 ⊆ 𝝏 ;𝐴 ⊃ 𝐵 𝜶 , 𝐴 𝜶 ⊢0 𝐵 𝜶

◇R
𝜶 ⊆ 𝝏 ; (𝐴 ⊃ 𝐵) 𝜶 , 𝐴 𝜶 ⊢0 ◇𝝏 𝐵 [0,0]

◻ L
𝜶 ⊆ 𝝏 ; (𝐴 ⊃ 𝐵) 𝜶 ,◻𝝏 𝐴 [0,0] ⊢0 ◇𝝏 𝐵 [0,0]

◇ L
· ;◇𝝏 (𝐴 ⊃ 𝐵) [0,0] ,◻𝝏 𝐴 [0,0] ⊢0 ◇𝝏 𝐵 [0,0]

⊃ R
· ;◇𝝏 (𝐴 ⊃ 𝐵) [0,0] ⊢0 ◻𝝏 𝐴 ⊃ ◇𝝏 𝐵 [0,0]

⊃ R
· ; · ⊢0 ◇𝝏 (𝐴 ⊃ 𝐵) ⊃ ◻𝝏 𝐴 ⊃ ◇𝝏 𝐵 [0,0]

The guideline for deriving the sequent is to apply◇𝐿 first, intro-

ducing the variables in 𝜶 , then choosing the same 𝜶 when applying

◻𝐿 and◇𝑅. Formulas 5 and 6 are similar.

IMTL proofs respect the flow of time, meaning they cannot prove

propositions that break temporal causality.

Lemma 2.8 (Some IMTL counterexamples). The following for-
mulas are not valid for general 𝐴, 𝐵, 𝝏, and 𝝏′. Here we use ☆ ∈
{◻,◇,◯} to mean any temporal modality.

(1) ☆
𝝏 (𝐴 ∨ 𝐵) ⊃ (☆𝝏 𝐴 ∨☆𝝏 𝐵)

(2) ☆
𝝏 ⊥ ⊃ ⊥

(3) ☆
𝝏 𝐴 ⊃ 𝐴

(4) ◇
[𝜕1 ,𝜕2 ]◇[𝜕′

1
,𝜕′

2
] 𝐴 ⊃ ◇[𝜕1+𝜕′

1
,𝜕2+𝜕′

2
] 𝐴

(5) ◻
[𝜕1 ,𝜕2 ] ◻[𝜕′

1
,𝜕′

2
] 𝐴 ⊃ ◻[𝜕1+𝜕′

1
,𝜕2+𝜕′

2
] 𝐴

Example 2.9. We show that it is not possible to derive proposition

(1) with☆ = ◻ as valid. Here we try every possible rule applicable

to the sequent except cut which is always applicable. If all of the

attempts lead to an ill-formed derivation, we can say the sequent is

not provable. This works because IMTL has a cut elimination result
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(Section 3) and, thus, if a proof has no cut-free derivation, then it

does not have a derivation at all.

We start with the only option, the ⊃ 𝑅 rule, and then note we

can either apply ◻ L or ∨R. If we apply ∨R first, we commit to

showing either 𝐴 or 𝐵 from 𝐴 ∨ 𝐵 which is not possible. The other

option is to apply◻𝐿 first:

······
· ;𝐴 ∨ 𝐵 [ℓ1 ,ℓ2 ] ⊢0 ◻𝝏 𝐴 ∨◻𝝏 𝐵 [0,0]

(· ⊨ ℓ1 ⩽ ℓ2)
(· ⊨ [ℓ1 , ℓ2] ⊆ 𝝏)

◻ L
· ;◻𝝏 (𝐴 ∨ 𝐵) [0,0] ⊢0 ◻𝝏 𝐴 ∨◻𝝏 𝐵 [0,0]

⊃ R
· ; · ⊢0 ◻𝝏 (𝐴 ∨ 𝐵) ⊃ (◻𝝏 𝐴 ∨◻𝝏 𝐵) [0,0]

Note that now we have only one option, which is to use ∨𝑅. This
is because interacting with the antecedent would require delaying

until the start of interval [ℓ1 , ℓ2] (which is generally not 0), which is

not allowed since we cannot ignore the succedent at [0, 0]. Thus, we
get stuck and the initial sequent is not derivable. A similar pattern

arises if we replace◻ by◇ or◯.

Kojima and Igarashi [22] point out the importance of developing

(constructive) temporal logics where ∨ does not distribute over tem-

poral modalities, as it would break temporal causality. Intuitively it

would mean we know information about an event before it happens.

Their calculus, as is the case with IMTL, does not break causality

in this sense, albeit using different technical devices (more about

that in Section 5).

2.8 Linear-Time Temporal Logic in IMTL
For the purposes of comparing IMTL with other intuitionistic linear
temporal logics (ILTLs) and other modal logics it is convenient to

define an ILTL within IMTL.

Here we define ILTL as the logic with propositional variables

and the standard propositional connectives 𝑃,∧,∨, ⊃,⊤ and ⊥ in

addition to the modalities●𝐴, next (from now);∎𝐴, always (start-
ing from now); and◆𝐴, eventually (starting from now). Although

our ILTL shares the same grammar as other intuitionistic linear

temporal logics, such as, for example, ITL◇◻ in [7] or ITL𝑒 in

[1, 6], our insistence regarding causality and computation results in

a different set of valid formulas.

We define ILTL modalities in terms of those of IMTL:

∎𝐴 ≜ ◻⟨0,∞⟩ 𝐴, ◆𝐴 ≜ ◇⟨0,∞⟩ 𝐴, and ●𝐴 ≜ ◯⟨1,1⟩ 𝐴

where a “discrete” timestep has length 1 in real units. We also use

∞ by extending our real number domain with the symbol∞ such

that ∞ + 𝑥 = ∞ for any 𝑥 . The use of ∞ does not invalidate any of

our relevant metatheorems.

Furthermore, we restrict the selectable intervals to be either a

singleton [𝑛, 𝑛] or an infinite duration interval such as [𝑛,∞] for an
integer 𝑛. As far as we know, this restriction means cut elimination

may not hold anymore, but it makes it correspond to ILTL with

always and eventually modalities.

In addition to the theorems in Lemma 2.6, the theorems in

Lemma 2.10 also hold.

Lemma 2.10 (ILTL theorems). For☀ ∈ {∎,◆,●}:
(1) ●⊥ ⊃ ⊥ is not valid
(2) ∎⊥ ⊃ ⊥ is valid
(3) ◆⊥ ⊃ ⊥ is not valid

(4) ☀(𝐴 ∨ 𝐵) ⊃ (☀𝐴 ∨☀𝐵) is not valid
(5) ●(𝐴 ⊃ 𝐵) ⊃ ●𝐴 ⊃ ●𝐵 is valid
(6) ●◆𝐴 ⊃ ◆●𝐴 is not valid
(7) ◆●𝐴 ⊃ ●◆𝐴 is valid
(8) ●∎𝐴 ⊃ ∎●𝐴 is valid
(9) ∎●𝐴 ⊃ ●∎𝐴 is not valid
(10) ∎𝐴 ⊃ 𝐴 ∧●∎𝐴 is not valid
(11) 𝐴 ∨●◆𝐴 ⊃ ◆𝐴 is not valid
(12) ∎𝐴 ⊃ 𝐴 is valid
(13) 𝐴 ⊃ ◆𝐴 is valid
(14) ∎∎𝐴 ⊃ ∎𝐴 is valid
(15) ∎𝐴 ⊃ ∎∎𝐴 is not valid
(16) ◆◆𝐴 ⊃ ◆𝐴 is not valid
(17) ◆𝐴 ⊃ ◆◆𝐴 is valid

In ITLe all of the formulas shown above are valid, which show-

cases differences between our ILTL (and by a stretch IMTL) to

previous accounts of intuitionistic temporal logic whose semantics

is not based on temporal execution.

Propositions (1), (3) and (4) not being valid is closely tied to tem-
poral causality, as they would amount to knowing the contents of

an event before it happened (same happens in [22] for● only). The

rest of the propositions that are invalid in our formulation of ILTL

(i.e., (6), (9), (10), (11), (15) and (16)) are thus because of temporal
monotonicity. As each modality amounts to a computation that

takes place along a temporal interval, the order of the modalities in

a sequence of modalities matters.

Example 2.11. We show a derivation of validity of proposition

(8).

id
⟨𝛼1 , 𝛼2⟩ ⊆ [0,∞] ;𝐴 [𝛼1+1,𝛼2+1] ⊢1 𝐴 [𝛼1+1,𝛼2+1]

◻ L
⟨𝛼1 , 𝛼2⟩ ⊆ [0,∞] ;◻⟨0,∞⟩ 𝐴 [1,1] ⊢1 𝐴 [𝛼1+1,𝛼2+1]

delay
⟨𝛼1 , 𝛼2⟩ ⊆ [0,∞] ;◻⟨0,∞⟩ 𝐴 [1,1] ⊢0 𝐴 [𝛼1+11 ,𝛼2+12 ]

◯R
⟨𝛼1 , 𝛼2⟩ ⊆ [0,∞] ;◻⟨0,∞⟩ 𝐴 [1,1] ⊢0 ◯⟨1,1⟩ 𝐴 [𝛼1 ,𝛼2 ]

◻R
· ;◻⟨0,∞⟩ 𝐴 [1,1] ⊢0 ◻⟨0,∞⟩

◯
⟨1,1⟩ 𝐴 [0,0]

◯R
· ;◯⟨1,1⟩

◻
⟨0,∞⟩ 𝐴 [0,0] ⊢0 ◻⟨0,∞⟩

◯
⟨1,1⟩ 𝐴 [0,0]

⊃ R
· ; ⊢0 ◯⟨1,1⟩

◻
⟨0,∞⟩ 𝐴 ⊃ ◻⟨0,∞⟩

◯
⟨1,1⟩ 𝐴 [0,0]

3 METATHEORY
In proof-theoretic terms, we want to show that our inference rules

are both sound and complete (i.e., in harmony). In purely logical

terms, we want to show that the subformula property, the disjunction
property and that consistency hold. In temporal terms, we want to

prove temporal erasure, causality and monotonicity. Fortunately, all
of these properties, except completeness, are a consequence of cut
elimination and induction on the structure of cut-free IMTL proofs.

Completeness holds because of identity elimination.
We focus the discussion on the properties and proofs that differ

the most from the standard literature, which are the proof-theoretic

and the temporal ones.
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id
Ω ;𝐴 [𝑎,𝑏 ] ⊢𝑠 𝐴 [𝑎,𝑏 ]

Ω ; Γ1 ⊢𝑠 𝐴 [𝑎,𝑏 ] Ω ; Γ2, 𝐴
[𝑎,𝑏 ] ⊢𝑠 𝛾

cut
Ω ; Γ1Γ2 ⊢𝑠 𝛾

Ω ⊨ ⊥
imposs

Ω ; Γ ⊢𝑠 𝛾
Ω ⊨ C1 ∨ C2 Ω,C1 ; Γ ⊢𝑠 𝛾 Ω,C2 ; Γ ⊢𝑠 𝛾

split
Ω ; Γ ⊢𝑠 𝛾

Ω ; Γ ⊢𝑠 𝛾
weak

Ω ; Γ, 𝐴 [𝑎,𝑏 ] ⊢𝑠 𝛾
Ω ; Γ, 𝐴 [𝑎,𝑏 ] , 𝐴 [𝑎,𝑏 ] ⊢𝑠 𝛾

cntr
Ω ; Γ, 𝐴 [𝑎,𝑏 ] ⊢𝑠 𝛾

Ω ⊨ (𝑠 ⩽ 𝑢 ⩽ 𝑎)
Ω ; Γ ⊢𝑢 𝐴 [𝑎,𝑏 ]

delay
Ω ; Γ ⊢𝑠 𝐴 [𝑎,𝑏 ] ⊤R

Ω ; · ⊢𝑎 ⊤ [𝑎,𝑏 ]
Ω ; Γ ⊢𝑎 𝛾

⊤L
Ω ; Γ,⊤ [𝑎,𝑏 ] ⊢𝑎 𝛾

⊥L
Ω ;⊥ [𝑎,𝑏 ] ⊢𝑎 𝛾

Ω ; Γ, 𝐴 [𝑎,𝑏 ] , 𝐵 [𝑎,𝑏 ] ⊢𝑎 𝛾
∧L

Ω ; Γ, 𝐴 ∧ 𝐵 [𝑎,𝑏 ] ⊢𝑎 𝛾

Ω ; Γ1 ⊢𝑎 𝐴 [𝑎,𝑏 ] Ω ; Γ2 ⊢𝑎 𝐵 [𝑎,𝑏 ]
∧R

Ω ; Γ1Γ2 ⊢𝑎 𝐴 ∧ 𝐵 [𝑎,𝑏 ]
Ω ; Γ, 𝐴 [𝑎,𝑏 ] ⊢𝑎 𝐵 [𝑎,𝑏 ]

⊃ R
Ω ; Γ ⊢𝑎 𝐴 ⊃ 𝐵 [𝑎,𝑏 ]

Ω ; Γ1 ⊢𝑎 𝐴 [𝑎,𝑏 ] Ω ; Γ2, 𝐵
[𝑎,𝑏 ] ⊢𝑎 𝛾

⊃ L
Ω ; Γ1Γ2, 𝐴 ⊃ 𝐵 [𝑎,𝑏 ] ⊢𝑎 𝛾

Ω ; Γ ⊢𝑎 𝐴 [𝑎,𝑏 ]
∨R1

Ω ; Γ ⊢𝑎 𝐴 ∨ 𝐵 [𝑎,𝑏 ]
Ω ; Γ ⊢𝑎 𝐵 [𝑎,𝑏 ]

∨R2
Ω ; Γ ⊢𝑎 𝐴 ∨ 𝐵 [𝑎,𝑏 ]

Ω ; Γ, 𝐴 [𝑎,𝑏 ] ⊢𝑎 𝛾 Ω ; Γ, 𝐵 [𝑎,𝑏 ] ⊢𝑎 𝛾
∨L

Ω ; Γ, 𝐴 ∨ 𝐵 [𝑎,𝑏 ] ⊢𝑎 𝛾

Ω, ⟨𝛼1 , 𝛼2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩ ⊨ 𝑎 + 𝛼1 ⩽ 𝑏 + 𝛼2

Ω, ⟨𝛼1 , 𝛼2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩ ; Γ ⊢𝑎 𝐴 [𝑎+𝛼1 ,𝑏+𝛼2 ]
◻R𝛼1,𝛼2

Ω ; Γ ⊢𝑎 ◻⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑎,𝑏 ]
Ω ⊨ ⟨ℓ1 , ℓ2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩

Ω ⊨ 𝑎 + ℓ1 ⩽ 𝑏 + ℓ2

Ω ; Γ, 𝐴 [𝑎+ℓ1 ,𝑏+ℓ2 ] ⊢𝑎 𝛾
◻ L

Ω ; Γ,◻⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑎,𝑏 ] ⊢𝑎 𝛾

Ω ⊨ 𝑎 + 𝜕1 ⩽ 𝑏 + 𝜕2

Ω ; Γ, 𝐴 [𝑎+𝜕1 ,𝑏+𝜕2 ] ⊢𝑠 𝛾
◯ L

Ω ; Γ,◯⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑎,𝑏 ] ⊢𝑠 𝛾
Ω ⊨ 𝑎 + 𝜕1 ⩽ 𝑏 + 𝜕2

Ω ; Γ ⊢𝑠 𝐴 [𝑎+𝜕1 ,𝑏+𝜕2 ]
◯R

Ω ; Γ ⊢𝑠 ◯⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑎,𝑏 ]
Ω ⊨ ⟨ℓ1 , ℓ2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩

Ω ⊨ 𝑎 + ℓ1 ⩽ 𝑏 + ℓ2

Ω ; Γ ⊢𝑎 𝐴 [𝑎+ℓ1 ,𝑏+ℓ2 ]
◇R

Ω ; Γ ⊢𝑎 ◇⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑎,𝑏 ]

Ω, ⟨𝛼1 , 𝛼2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩ ⊨ 𝑎 + 𝛼1 ⩽ 𝑏 + 𝛼2

Ω, ⟨𝛼1 , 𝛼2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩ ; Γ, 𝐴 [𝑎+𝛼1 ,𝑏+𝛼2 ] ⊢𝑎 𝛾
◇ L𝛼1,𝛼2

Ω ; Γ,◇⟨𝜕1 ,𝜕2 ⟩ 𝐴 [𝑎,𝑏 ] ⊢𝑎 𝛾

Figure 1: IMTL rules

3.1 Identity elimination
Theorem 3.1 (Identity Elimination). If Ω ; Γ ⊢𝑠 𝐴 [𝑎,𝑏 ] then

there is a proof of the same sequent that uses the id rule only for
propositional variables.

We prove identity elimination by proving the admissibility of
identity first, then using it to replace all id rules by the results of

the admissibility theorem.

Theorem 3.2 (Identity admissibility). The following rule is
admissible for any 𝐴 in the system where identity is restricted to
atomic propositions 𝑃 :

id
Ω ;𝐴 [𝑎,𝑏 ] ⊢𝑠 𝐴 [𝑎,𝑏 ]

Proof. By induction on𝐴. We show the case of𝐴 =◇⟨𝜕1 ,𝜕2 ⟩ 𝐴1.

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · IH
Ω, ⟨𝛼1 , 𝛼2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩ ;𝐴1

[𝑎+𝛼1 ,𝑏+𝛼2 ] ⊢𝑎 𝐴1

[𝑎+𝛼1 ,𝑏+𝛼2 ]
◇R

Ω, ⟨𝛼1 , 𝛼2⟩ ⊆ ⟨𝜕1 , 𝜕2⟩ ;𝐴1

[𝑎+𝛼1 ,𝑏+𝛼2 ] ⊢𝑎 ◇⟨𝜕1 ,𝜕2 ⟩ 𝐴1

[𝑎,𝑏 ]
◇ L

Ω ;◇
⟨𝜕1 ,𝜕2 ⟩ 𝐴1 [𝑎, 𝑏] ⊢𝑎 ◇⟨𝜕1 ,𝜕2 ⟩ 𝐴1

[𝑎,𝑏 ]
delay

Ω ;◇
⟨𝜕1 ,𝜕2 ⟩ 𝐴1 [𝑎, 𝑏] ⊢𝑠 ◇⟨𝜕1 ,𝜕2 ⟩ 𝐴1

[𝑎,𝑏 ]

□

3.2 Temporal properties
Temporal erasure is the idea that if we erase everything related to

time from our calculus the result is a standard intuitionistic logic

calculus.

Theorem 3.3 (Temporal erasure). If Ω ; Γ ⊢𝑠 𝐴 [𝑎,𝑏 ] for a con-
sistent Ω in IMTL then Γ∗ ⊢ 𝐴∗ in intuitionistic logic, where𝐴∗ is the
result of erasing all temporal modalities from the IMTL proposition 𝐴
and Γ∗ is the result of doing that to all elements in Γ.

Proof. By induction on the IMTL derivation. Note most rules

are standard intuitionistic logic rules without temporal information.

The modality rules and delay collapse, while imposs is impossible

and at least one premise of split must have consistent constraints.

□

Causality is informally described as ensuring that “future events

cannot affect present decisions”. Technically, it has two sides to it:

feasibility and strengthening. Feasibility tells us a process cannot

conclude something in its past while strengthening tells us a past

event is the same as no event. We designed IMTL’s inference rules

to naturally enforce causality, so the proof goes by induction on

the (cut-free) derivation.

Theorem 3.4 (Temporal causality).

Feasibility:
If Ω ; Γ ⊢𝑠 𝐴 [𝑎,𝑏 ] then Ω ⊨ 𝑠 ⩽ 𝑎.

Strengthening:
If Ω ; Γ, 𝐴 [𝑎,𝑏 ] ⊢𝑠 𝛾 with Ω ⊨ 𝑎 < 𝑠 then Ω ; Γ ⊢𝑠 𝛾

Feasibility is implied by well-formedness of the sequent. It there-

fore holds for every sequent in a proof if it holds for the final

conclusion, because each rule ensures that all premises are well-

formed if the conclusion is well-formed. Formally, this would be

proved by induction over the structure of a proof.

Similarly, strengthening holds because all our left rules require

the present time to match the start of the interval (because of

Ω ⊨ 𝑠 = 𝑎). Again, formally this could be expressed as an induction.

Temporal causality is a requirement for intuitionistic temporal

logics but it is not sufficient to achieve temporal computability

because a temporal logic can conclude only causal sequents without

temporally computable derivations (this is the case in Kojima and

Igarashi [22]’s sequent calculus).
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The logical counterpart of temporal computability is temporal
monotonicity. Informally, monotonicity means a proof either stays

at the same point in time or moves forward (and never backwards).

Technically, monotonicity relies on a timestamps function (Defini-

tion 3.5) defined inductively on the structure of IMTL derivations

that are ground (Ω is empty).

Definition 3.5 (Timestamps). We define a function T from closed

cut-free derivations D :: · ; Γ ⊢𝑠 𝛾 to sets of sequences of num-
bers, corresponding to all possible timestamps of derivation D. T is
inductively defined on cut-free D with propositional identity only.

If the last rule inD has one subderivationD1, with the exception

of◯ L,◯R,◻R,◇ L and delay, as for example

D1 :: Ω ; Γ ⊢𝑎 𝐴 [𝑎,𝑏 ]
D = ∨R1

Ω ; Γ ⊢𝑎 𝐴 ∨ 𝐵 [𝑎,𝑏 ]

then we add 𝑎 to all possible sequences,

T(D) = {(𝑎, 𝑆) | 𝑆 ∈ T(D1)}
This is the case of weak, cntr, ⊤L, ∧L, ∨R1, ∨R2, ⊃ R, ◻ L and

◇R.
If the last rule inD has two subderivationsD1 andD2, with the

exception of split, as for example

D1 :: · ; Γ1 ⊢𝑎 𝐴 [𝑎,𝑏 ]

D2 :: · ; Γ2, 𝐵 [𝑎,𝑏 ] ⊢𝑎 𝛾
D = ⊃ L

· ; Γ1Γ2, 𝐴 ⊃ 𝐵 [𝑎,𝑏 ] ⊢𝑎 𝛾

then we add 𝑎 to the union of all possible timestamps of both

branches

T(D) = {(𝑎, 𝑆) | 𝑆 ∈ T(D1) ∪ T(D2)}
This is the case of ∧R, ∨L and ⊃ L.

If the last rule in D is◯ L,◯R or delay , as for example

· ⊨ (𝑠 ⩽ 𝑢 ⩽ 𝑎)
D1 :: · ; Γ ⊢𝑢 𝐴 [𝑎,𝑏 ]

D = delay
· ; Γ ⊢𝑠 𝐴 [𝑎,𝑏 ]

then we do not add any timestamp

T(D) = T(D1)
If the last rule in D is an axiom, like

D = id
· ; 𝑃 [𝑎,𝑏 ] ⊢𝑠 𝑃 [𝑎,𝑏 ]

or

D = ⊥L
· ;⊥ [𝑎,𝑏 ] ⊢𝑎 𝛾

with the exception of imposs, then the only possible sequence is

the one with 𝑎 on it, (even for the id case),

T(D) = {(𝑎)}
where (𝑎) is a one-element sequence. This is the case of id, ⊤R, ⊥L.

If the rule introduces variables, such as

D1 :: [𝛼1 , 𝛼2] ⊆ [𝜕1 , 𝜕2] ; Γ, 𝐴 [𝑎+𝛼1 ,𝑏+𝛼2 ] ⊢𝑎 𝛾
D = ◇ L

· ; Γ,◇[𝜕1 ,𝜕2 ] 𝐴 [𝑎,𝑏 ] ⊢𝑎 𝛾

◇𝐿, then we consider all the possible instantiations [ℓ1 , ℓ2] of

[𝛼1 , 𝛼2] that satisfy [ℓ1 , ℓ2] ⊆ [𝜕1 , 𝜕2]:

T(D) = {(𝑎, 𝑆) | 𝑆 ∈ S}, where

S =
⋃{T( [ℓ1, ℓ2/𝛼1, 𝛼2]D1) | [ℓ1 , ℓ2] ⊆ [𝜕1 , 𝜕2]}

If the last rule in D is

· ⊨ ⊥D = imposs· ; Γ ⊢𝑠 𝛾
then we have that · ⊨ ⊥, which is unsatisfiable, meaning timestamps

will not realize this branch,

T(D) = {}

If the last rule in D is

· ⊨ C1 ∨ C2
D1 :: C1 ; Γ ⊢𝑠 𝛾
D2 :: C2 ; Γ ⊢𝑠 𝛾

D = split· ; Γ ⊢𝑠 𝛾
then by the meaning of · ⊨ C1 ∨ C2, we know that · ⊨ C1 or · ⊨ C2,
meaning we have either D1 or D2 closed. Then we define

T(D) = T′ (D1) ∪ T′ (D2), where

T′ (F ) = {} if constraints in F are inconsistent

T′ (F ) = T(F ) otherwise

Theorem 3.6 (Temporal monotonicity). For any closed deriva-
tion D :: · ; Γ ⊢𝑠 𝐴 [𝑎,𝑏 ] , all of its possible timestamps T(D) are
monotonically non-decreasing.

Proof. By induction on the derivation D. □

Temporal monotonicity means that any execution of D will

respect the flow of time granularly, given that all of its actions are

monotonically ordered in time.

Note that temporal monotonicity subsumes causality since it

forces proofs to obey the flow of time granularly, at every step, while

temporal causality only requires every sequent to be temporally

coherent in isolation.

3.3 Cut elimination
Theorem 3.7 (Cut Elimination). If Ω ; Γ ⊢𝑠 𝐴 [𝑎,𝑏 ] then there is

a proof of the same sequent that does not use the cut rule.

We prove cut elimination syntactically through cut admissibility
as in Gentzen [18] and Dragalin [15]. Usually, we prove cut admis-
sibility by strengthening the induction hypothesis with structural

rules, making sure it covers all cases, including the commuting

conversions, which are often the most intricate cases. Since our

calculus is local and has intervals it is a priori unclear whether cut
premises would always eventually interact despite the commuting

conversions.

Proving cut admissibility for a sequent calculus with explicit

structural rules was already solved by Gentzen for weakening and

contraction. We do the same in IMTL, but we have to strengthen our

cut with delay as well. The result is the strong cut principle, which
connects two derivations at different times𝑢 and 𝑣 and cuts multiple

assumptions of 𝐴 [𝑎,𝑏 ]
at once (using the notation {𝐴 [𝑎,𝑏 ] }∗).

Theorem 3.8 (Strong Cut Admissibility). If there are cut-free
derivations of Ω ; Γ1 ⊢𝑢 𝐴 [𝑎,𝑏 ] and Ω ; Γ2, {𝐴 [𝑎,𝑏 ] }∗ ⊢𝑣 𝛾 with
Ω ⊨ (𝑠 ⩽ 𝑢, 𝑣) then there is a cut-free derivation of Ω ; Γ1Γ2 ⊢𝑠 𝛾 .

Proof. We express the theorem as the construction of derivation

F from D and E in the form:
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Ω ⊨ (𝑠 ⩽ 𝑢, 𝑣)
D :: Ω ; Γ1 ⊢𝑢 𝐴 [𝑎,𝑏 ]

E :: Ω ; Γ2, {𝐴 [𝑎,𝑏 ] }∗ ⊢𝑣 𝛾· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · cut∗
Ω ; Γ1Γ2 ⊢𝑠 𝛾

⇝ F :: Ω ; Γ1Γ2 ⊢𝑠 𝛾

By nested induction on𝐴, then onD and E. We divide the proof

into (overlapping) cases depending on the last rules of D and E.
The induction hypothesis is enough to solve most cases.We show

the principal case for◻—where bothD and E are interacting with

the judgment 𝐴 [𝑎,𝑏 ] = ◻[𝜕1 ,𝜕2 ] 𝐴1

[𝑎,𝑏 ]
— and a commuting case

— when either D or E are not interacting with 𝐴 [𝑎,𝑏 ]
.

◻ principal case. This is the case where D is◻R and E is◻ L,
corresponding to cut reduction for◻.

D1 :: Ω
′
; Γ1 ⊢𝑎 𝐴1

[𝑎+𝛼1 ,𝑏+𝛼2 ]
D = ∧L

Ω ; Γ1 ⊢𝑎 ◻[𝜕1 ,𝜕2 ] 𝐴1

[𝑎,𝑏 ]

E1 :: Ω ; Γ2, 𝐴1

[𝑎+ℓ1 ,𝑏+ℓ2 ] , {◻[𝜕1 ,𝜕2 ] 𝐴1

[𝑎,𝑏 ] }∗ ⊢𝑎 𝛾
E = ⊃ R

Ω ; Γ2, {◻[𝜕1 ,𝜕2 ] 𝐴 [𝑎,𝑏 ] }∗ ⊢𝑎 𝛾

to construct F :: Ω, Γ1Γ2 ⊢𝑠 𝛾 where Ω ⊨ [ℓ1 , ℓ2] ⊆ [𝜕1 , 𝜕2] and
Ω′ = Ω, [𝛼1 , 𝛼2] ⊆ [𝜕1 , 𝜕2].

We first remove the copies of ◻
[𝜕1 ,𝜕2 ] 𝐴1

[𝑎,𝑏 ]
cutting D and

E1.

D :: Ω ; Γ1 ⊢𝑎 ◻[𝜕1 ,𝜕2 ] 𝐴1

[𝑎,𝑏 ]

E1 :: Ω ; Γ2, 𝐴1

[𝑎+ℓ1 ,𝑏+ℓ2 ] , {◻[𝜕1 ,𝜕2 ] 𝐴1

[𝑎,𝑏 ] }∗ ⊢𝑎 𝛾
F1 = · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · IH

Ω ; Γ1Γ2, 𝐴1

[𝑎+ℓ1 ,𝑏+ℓ2 ] ⊢𝑠 𝛾

And cut𝐴1

[𝑎+ℓ1 ,𝑏+ℓ2 ]
using substitution onD1 and cutting with

the result above.

[ℓ1, ℓ2/𝛼1, 𝛼2]D1 :: Ω
′
; Γ1 ⊢𝑎 𝐴1

[𝑎+ℓ1 ,𝑏+ℓ2 ]

F1 :: Ω ; Γ1Γ2, 𝐴1

[𝑎+ℓ1 ,𝑏+ℓ2 ] ⊢𝑠 𝛾
F = · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · IH

Ω, Γ1Γ2 ⊢𝑠 𝛾

Commuting case. Solving commuting cases while following tem-

poral monotonicity impose new challenges, requiring the applica-

tion of imposs and split rules.
We show an instance of commuting case where both D and E

are not interacting with the principal judgment 𝐴 [𝑎,𝑏 ]
). In this

subcase, the last rules in D and in E are ∧𝐿 and ⊃ 𝑅 respectively.

D1 :: Ω ; Γ1, 𝐵1
[𝑢,𝑢′ ] , 𝐵2 [𝑢,𝑢′ ] ⊢𝑢 𝐴 [𝑎,𝑏 ]

D = ∧L
Ω ; Γ1, 𝐵1 ∧ 𝐵2

[𝑢,𝑢′ ] ⊢𝑢 𝐴 𝐼

E1 :: Ω ; Γ2, {𝐴 [𝑎,𝑏 ] }∗,𝐶1

[𝑣,𝑣′ ] ⊢𝑣 𝐶2

[𝑣,𝑣′ ]
E = ⊃ R

Ω ; Γ2, {𝐴 𝐼 }∗ ⊢𝑣 𝐶1 ⊃ 𝐶2

[𝑣,𝑣′ ]

to construct F :: Ω ; Γ1Γ2, 𝐵1 ∧ 𝐵2
[𝑢,𝑢′ ] ⊢𝑠 𝐶1 ⊃ 𝐶2

[𝑣,𝑣′ ]
with

Ω ⊨ (𝑠 ⩽ 𝑢, 𝑣).
Note that it is unclear, a priori, whether we should progress

through D or E. Since we want to respect monotonicity (Theo-

rem 3.6) we have to progress through the derivation that indexed

by smaller time first, otherwise the cut elimination procedure could

get stuck.

Since we cannot always know the relationship between 𝑢 and 𝑣

statically, we solve this case by splitting cases on Ω ⊨ (𝑢 ⩽ 𝑣)∨ (𝑣 ⩽
𝑢) and tackling the subcases separately. This is valid because at

execution time, when Ω is concretely instantiated, at least one of

the branches will have a constraint (equivalent to) ⊤. The cut-free
derivation is

Ω ⊨ (𝑢 ⩽ 𝑣) ∨ (𝑣 ⩽ 𝑢)
F𝑢⩽𝑣 :: Ω, 𝑢 ⩽ 𝑣 ; Γ1Γ2, 𝐵1 ∧ 𝐵2

[𝑢,𝑢′ ] ⊢𝑠 𝐶1 ⊃ 𝐶2

[𝑣,𝑣′ ]

F𝑣⩽𝑢 :: Ω, 𝑣 ⩽ 𝑢 ; Γ1Γ2, 𝐵1 ∧ 𝐵2
[𝑢,𝑢′ ] ⊢𝑠 𝐶1 ⊃ 𝐶2

[𝑣,𝑣′ ]
F = split

Ω ; Γ1Γ2, 𝐵1 ∧ 𝐵2
[𝑢,𝑢′ ] ⊢𝑠 𝐶1 ⊃ 𝐶2

[𝑣,𝑣′ ]

where

D1 :: Ω, 𝑢 ⩽ 𝑣 ; Γ1, 𝐵1
[𝑢,𝑢′ ] , 𝐵2 [𝑢,𝑢′ ] ⊢𝑢 𝐴 [𝑎,𝑏 ]

E :: Ω, 𝑢 ⩽ 𝑣 ; Γ2, {𝐴 [𝑎,𝑏 ] }∗ ⊢𝑢 𝐶1 ⊃ 𝐶2

[𝑣,𝑣′ ]
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · IH
Ω, 𝑢 ⩽ 𝑣 ; Γ1Γ2, 𝐵1

[𝑢,𝑢′ ] , 𝐵2 [𝑢,𝑢′ ] ⊢𝑢 𝐶1 ⊃ 𝐶2

[𝑣,𝑣′ ]
∧L

Ω, 𝑢 ⩽ 𝑣 ; Γ1Γ2, 𝐵1 ∧ 𝐵2
[𝑢,𝑢′ ] ⊢𝑢 𝐶1 ⊃ 𝐶2

[𝑣,𝑣′ ]
F𝑢⩽𝑣 = delay

Ω, 𝑢 ⩽ 𝑣 ; Γ1Γ2, 𝐵1 ∧ 𝐵2
[𝑢,𝑢′ ] ⊢𝑠 𝐶1 ⊃ 𝐶2

[𝑣,𝑣′ ]

and

D :: Ω, 𝑢 ⩽ 𝑣 ; Γ1, 𝐵1 ∧ 𝐵2
[𝑢,𝑢′ ] ⊢𝑢 𝐴 [𝑎,𝑏 ]

E1 :: Ω, 𝑢 ⩽ 𝑣 ; Γ2, {𝐴 [𝑎,𝑏 ] }∗,𝐶1

[𝑣,𝑣′ ] ⊢𝑢 𝐶2

[𝑣,𝑣′ ]
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · IH
Ω, 𝑢 ⩽ 𝑣 ; Γ1Γ2, 𝐵1 ∧ 𝐵2

[𝑢,𝑢′ ] ,𝐶1

[𝑣,𝑣′ ] ⊢𝑣 ⊃ 𝐶2

[𝑣,𝑣′ ]
⊃ R

Ω, 𝑢 ⩽ 𝑣 ; Γ1Γ2, 𝐵1 ∧ 𝐵2
[𝑢,𝑢′ ] ⊢𝑣 𝐶1 ⊃ 𝐶2

[𝑣,𝑣′ ]
F𝑣⩽𝑢 = delay

Ω, 𝑢 ⩽ 𝑣 ; Γ1Γ2, 𝐵1 ∧ 𝐵2
[𝑢,𝑢′ ] ⊢𝑠 𝐶1 ⊃ 𝐶2

[𝑣,𝑣′ ]

We solve other subcases similarly. □

4 CASE STUDY: DIGITAL CIRCUITS AS IMTL
DERIVATIONS

Digital circuits are an excellent way to explore the expressiveness

of IMTL because they describe computations whose (functional)

correctness depends on timing. By interpreting IMTL derivations

as circuits, we develop a way to design circuits that are well-timed

by construction.

We interpret circuit components as implication formulas inside

a context Γ and the ⊃ L rule as sending a (bit) signal to the circuit.

We start by modeling an inverter, taking into consideration its

temporal behavior. Our model of digital gates captures timing to a

reasonably realistic degree, but we abstract away several low-level

phenomena related to the physics of gates.

4.1 Model of an inverter (NOT gate)
We model the temporal behavior of an inverter, with a propagation
delay 𝜕𝑝 — the (maximum) time between the start of the input

and the start of the output — and a contamination delay 𝜕𝑐 — the

(minimum) time between the end of the input until the end of the

output as in Figure 2 (details on the temporal behavior of digital

gates can be found, for example, in [4]).

If an input bit, defined as

9



in

out

in out

Figure 2: Inverter temporal behavior with propagation and
contamination delays

Bit ≜ lo ∨ hi where lo ≜ ⊤ and hi ≜ ⊤,

is stable during interval [𝑎, 𝑏], the inverter’s behavior would be to

output at [𝑎 + 𝜕𝑝 , 𝑏 + 𝜕𝑐 ]. In this case study we will assume that

𝜕𝑐 < 𝜕𝑝 , meaning the output’s duration is shorter than the input’s

by 𝜕𝑝 − 𝜕𝑐 time units. We model this behavior using◯ and ⊃

◯
[𝑎,𝑏 ] (Bit ⊃ ◯𝝏 Bit)

where 𝝏 ≜ [𝜕𝑝 , 𝜕𝑐 ].
However, note that our inverter currently works only for a con-

crete interval 𝐼 . Instead, we would like it to be parametric over any

interval, which hints at using◻. An insufficient attempt would be

to replace◯
[𝑎,𝑏 ]

for◻
[𝑎,𝑏 ]

, since we would allow for durationless
interval inputs, which realistically do not work since electronic

gates require a minimum duration 𝑑 ≜ 𝜕𝑝 − 𝜕𝑐 to process the input.

A solution is to use a ◻ followed by a ◯
[0,𝑑 ]

, resulting in a gate

that is parametric over an input interval but needs a minimum

duration 𝑑 . We are assuming here that the inverter is available for

use at any time, so we use◻
[0,∞]

.

◻
[0,∞]
◯

[0,𝑑 ] (Bit ⊃ ◯𝝏 Bit)

This is already a temporally detailed account of a gate. Addi-

tionally, we might want to add uncertainty in the output by using

◇. We then have a certain delay 𝝏𝑐 = [𝜕𝑐
1
, 𝜕𝑐

2
] and an uncertain

delay 𝝏𝑢 = [𝜕𝑢
1
, 𝜕𝑢

2
] and 𝑑 must be the worst case scenario given

the uncertainty: 𝑑 ≜ (𝜕𝑐
1
+ 𝜕𝑢

1
) − 𝜕𝑐

2
(see Figure 3)

Figure 3: Inverter with uncertain delays

◻
[0,∞]
◯

[0,𝑑 ] (Bit ⊃ ◇𝝏𝑢
◯

𝝏𝑐 Bit)

Even if we treat components as primitives, notice the formula

above is valid, and thus has a derivation describing its inner work-

ings, temporally. Here we use Ω ≜ [𝛼1 , 𝛼2] ⊆ [0,∞].

Ω ⊨ [ℓ1 , ℓ2] ⊆ 𝝏𝑢

······
Ω ;Bit [𝛼1 ,𝛼2+𝑑 ] ⊢0 Bit [𝛼1+(ℓ1+𝜕𝑐

1
) ,𝛼2+𝑑+(ℓ2+𝜕𝑐

2
) ]
◯R

Ω ;Bit [𝛼1 ,𝛼2+𝑑 ] ⊢0 ◯𝝏𝑐 Bit [𝛼1+ℓ1 ,𝛼2+𝑑+ℓ2 ]
◇R

Ω ;Bit [𝛼1 ,𝛼2+𝑑 ] ⊢0 ◇𝝏𝑢
◯

𝝏𝑐 Bit [𝛼1 ,𝛼2+𝑑 ]
⊃ R

Ω ; · ⊢0 Bit ⊃ ◇𝝏𝑢
◯

𝝏𝑐 Bit [𝛼1 ,𝛼2+𝑑 ]
◯R

Ω ; · ⊢0 ◯[0,𝑑 ] (Bit ⊃ ◇𝝏𝑢
◯

𝝏𝑐 Bit) [𝛼1 ,𝛼2 ]
◻R

· ; · ⊢0 ◻[0,∞]
◯

[0,𝑑 ] (Bit ⊃ ◇𝝏𝑢
◯

𝝏𝑐 Bit) [0,0]

⊤R
Ω ; hi [𝛼1 ,𝛼2+𝑑 ] ⊢𝛼1 + (ℓ1 + 𝜕𝑐

1
) lo [𝛼1+(ℓ1+𝜕𝑐

1
) ,𝛼2+𝑑+(ℓ2+𝜕𝑐

2
) ]

∨R2
Ω ; hi [𝛼1 ,𝛼2+𝑑 ] ⊢𝛼1 + (ℓ1 + 𝜕𝑐

1
) Bit [𝛼1+(ℓ1+𝜕𝑐

1
) ,𝛼2+𝑑+(ℓ2+𝜕𝑐

2
) ]

delay
Ω ; hi [𝛼1 ,𝛼2+𝑑 ] ⊢𝛼1 Bit [𝛼1+(ℓ1+𝜕𝑐

1
) ,𝛼2+𝑑+(ℓ2+𝜕𝑐

2
) ] (· · · ) ∨L

Ω ;Bit [𝛼1 ,𝛼2+𝑑 ] ⊢𝛼1 Bit [𝛼1+(ℓ1+𝜕𝑐
1
) ,𝛼2+𝑑+(ℓ2+𝜕𝑐

2
) ]

where (· · · ) is the opposite case where the input is lo and the

inverter chooses to output hi. Here, ⟨ℓ1 , ℓ2⟩ ⊆ 𝝏𝒖 is the “uncertain”

part of the inverter delay that the consumer does not know (but

the gate knows.)

In the derivation, after the modalities disappear we get to an

input interval [𝛼1 , 𝛼2 + 𝑑], which is any interval with minimum

duration 𝑑 , and an output interval

[𝛼1 + (𝜕𝑐
1
+ ℓ1) , 𝛼2 + 𝑑 + (𝜕𝑐

2
+ ℓ2)]

which is the same interval shifted by 𝝏𝑢 and 𝝏𝑐 . Since we are assum-

ing realistic values of 𝝏𝑐 and 𝝏𝑢 might have their first component

greater than their second component, 𝑑 must be big enough to

ensure that

Ω ⊨ 𝛼1 + (𝜕𝑐
1
+ ℓ1) ⩽ 𝛼2 + 𝑑 + (𝜕𝑐

2
+ ℓ2)

holds in all cases.

As soon as the circuit finds out whether the value of the Bit
is hi or lo by using the ∨𝐿 rule, the state of the circuit changes,

allowing it to construct the opposite Bit in the future regardless if

the original Bit is still available or not. The only requirement is

that the output interval starts after the output interval, which is the

case since 𝛼1 ⩽ 𝛼1 + (ℓ1 + 𝜕𝑐
1
). Note that IMTL derivations model

the natural monotonic effect of information through time which

adequately represents digital gates.

4.2 Model of two-input gates
The expressiveness of digital gates relies partly on two-input gates

since any binary circuit is definable in terms of only NORs or

NANDs. The challenge lies in modeling two-input gates when each

input is stable during different intervals (Figure 5). In our model, a

two-input gate starts to process only when both inputs are present.

In IMTL it suffices to model what happens when the two input in-

tervals are the same. Additionally, the◻ takes care of mismatching

intervals, as long as they have an intersection. An IMTL two-input

gate, available at any time, is the formula

◻
[0,∞]
◯

[0,𝑑 ] (Bit ⊃ Bit ⊃ ◇𝜕𝑢 ◯
𝜕𝑐 Bit)

Just like the inverter, we can also assign a IMTL derivation to a

two-input gate, as, for instance, an and gate. Here we omit some

of the details of the derivation since it is similar to the inverter

except it has two inputs. We start by eliminating the modalities and

implications until we get to the sequent
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id
Bit [30,70] ⊢30 Bit [30,70]

id
Bit [30,70] ⊢30 Bit [30,70]

id
◇

[5,0]
◯

[20,10] Bit [30,70] ⊢30 ◇[5,0]
◯

[20,10] Bit [30,70] ⊃ L
Bit ⊃ ◇[5,0]

◯
[20,10] Bit [30,70] ,Bit [30,70] ⊢30 ◇[5,0]

◯
[20,10] Bit [30,70] ⊃ L

Bit ⊃ Bit ⊃ ◇[5,0]
◯

[20,10] Bit [30,70] ,Bit [30,70] ,Bit [30,70] ⊢30 ◇[5,0]
◯

[20,10] Bit [30,70]
delay

Bit ⊃ Bit ⊃ ◯[20,10]
◇

[5,0] Bit [30,70] ,Bit [30,70] ,Bit [30,70] ⊢0 ◇[5,0]
◯

[20,10] Bit [30,70]
◯ L(×2)

◯
[0,20] (Bit ⊃ Bit ⊃ ◇[5,0]

◯
[20,10] Bit) [30,50] ,Bit [30,70] ,Bit [30,70] ⊢0 ◯[30,70]

◇
[5,0]
◯

[20,10] Bit [0,0]
◻ L(×3)

◻
[0,∞]
◯

[0,20] (Bit ⊃ Bit ⊃ ◇[5,0]
◯

[20,10] Bit) [0,0] ,◻[30,100] Bit [0,0] ,◻[0,70] Bit [0,0] ⊢0 ◯[30,70]
◇

[5,0]
◯

[20,10] Bit [0,0]

Figure 4: Two-input gate example derivation

Figure 5: Temporal behavior of a two-input gate

[𝛼1 , 𝛼2] ⊆ [0,∞] ;Bit [𝛼1 ,𝛼2+𝑑 ] ,Bit [𝛼1 ,𝛼2+𝑑 ] ⊢𝛼1 Bit [𝛼1+ℓ1+𝜕𝑐
1
,𝛼2+𝑑+ℓ2+𝜕𝑐

2
]

again for a given hidden delay [ℓ1 , ℓ2] ⊆ 𝝏𝒖 , in which case we

proceed by covering all possible 4 input combinations using ∨Ls
followed by ∨R.

The derivation in Example 4.1 represents the situation of apply-

ing a two-input gate to skewed inputs, as in Figure 5.

Example 4.1 (Using a two-input gate). We use 𝑑 = 20𝑛𝑠 , 𝝏𝑐 =

[20𝑛𝑠, 10𝑛𝑠] and 𝝏𝑢 = [5𝑛𝑠, 0𝑛𝑠] with ns standing for nanoseconds.
See Figure 5 for a depiction of the example and Figure 4 for a deriva-

tion representing the situation. We omit Ω and merge consecutive

rules (indicated).

The derivation uses ◻ L and◇R to select the intersection be-

tween the input intervals [30𝑛𝑠, 100𝑛𝑠] and [0𝑛𝑠, 70𝑛𝑠], which is

[30𝑛𝑠, 70𝑛𝑠]. After that the derivation delays to the right moment

and sends both signals to the gate by consecutive applications of

the ⊃ L rule.

4.3 Modeling Combinational Circuits
Combinational circuits are built by plugging (sub)circuits together.

Checking temporal correctness of these circuits can often be difficult

even for simple circuits [4], but IMTL can assist with this issue. Now

that we have an inverter IMTL derivation, we want to plug two of

them, one after the other, as in Figure 6.

However, the formulas do not exactly match, so cutting them

together is not enough. Instead, we manipulate the modalities in

such a way that the signals match.

Example 4.2 (Connected inverters). The derivation in Figure 7

models the situation depicted in Figure 6.

The derivation combines signals by manipulating ◻s and ◇s

into matching intervals. The result, unsurprisingly, shows that

Figure 6: Connected inverters and example waveform

the uncertainty introduced by ◇ is infectious (i.e, it cannot be

eliminated).

We can model other combinational circuits using the framework

presented in this section. Note that if a wire splits in two, as is

customary in circuit design, we can use contraction to model it.

To analyze a circuit solely from the perspective of its function-

ality (without timing) we can retrieve an atemporal well-formed

intuitionistic logic derivation from an IMTL one by the time erasure
property, Theorem 3.3. Standard intuitionistic logic serves as a log-

ical foundation for atemporal executable circuits, further enabling

a circuit designer to prove functional properties of the circuit such

as knowing whether it implements a given boolean function.

Modeling circuits with loops is a more challenging, albeit inter-

esting, problemwhich seems to require a notion of proof-circularity.

Furthermore, there are even more realistic ways to model circuits.

These topics are not the locus of this paper but we plan to explore

them in the future.

5 RELATEDWORK
Classical Metric Temporal Logic (CMTL). CMTL [23] (see [3] for

a survey) and IMTL are solutions to different problems: classical

semantics solve model checking while our intuitionistic semantics

define a temporally feasible computational interpretation of proof

reductions.

Kojima and Igarashi [22] mention the main differences between

intuitionistic and classical approaches to temporal logics in their

concluding remarks and it seems like the conclusions they achieve

somewhat generalize to MTL as well — in summary, CMTL is an

IMTL without concerns for temporal causality, monotonicity and

proof-relevance. Informally, removing (somehow) these three as-

pects from IMTL would yield a CMTL, but the details are unclear

and there is little justification for exploring this direction.
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Ω ≜ [𝑥 , 𝑦] ⊆ [20, 10]

id
· ;Bit [0,200] ⊢0 Bit [0,200]

id
Ω ;Bit [𝑥+30,𝑦+210] ⊢𝑥 + 3 Bit [𝑥+30,𝑦+210]

id
Ω ;◇

[20,10]
◯

[30,10] Bit [𝑥+30,𝑦+210] ⊢𝑥 + 30
◇

[20,10]
◯

[30,10] Bit [𝑥+30,𝑦+210] ⊃ L
Ω ;Bit ⊃ ◇[20,10]

◯
[30,10] Bit [𝑥+30,𝑦+210] ,Bit [𝑥+30,𝑦+210] ⊢𝑥 + 30

◇
[20,10]

◯
[30,10] Bit [𝑥+30,𝑦+210]

delay
Ω ;Bit ⊃ ◇[20,10]

◯
[30,10] Bit [𝑥+30,𝑦+210] ,Bit [𝑥+30,𝑦+210] ⊢0 ◇[20,10]

◯
[30,10] Bit [𝑥+30,𝑦+210]

◇R,◯R
Ω ;Bit ⊃ ◇[20,10]

◯
[30,10] Bit [𝑥+30,𝑦+210] ,Bit [𝑥+30,𝑦+210] ⊢0 ◇[20,10]

◯
[30,10]

◇
[20,10]

◯
[30,10] Bit [0,200]

◻ L,◯ L
Ω ;◻

[0,∞]
◯

[0,200] (Bit ⊃ ◇[20,10]
◯

[30,10] Bit) [0,0] ,Bit [𝑥+30,𝑦+210] ⊢0 ◇[20,10]
◯

[30,10]
◇

[20,10]
◯

[30,10] Bit [0,200]
◇ L,◯ L

· ;◻[0,∞]
◯

[0,200] (Bit ⊃ ◇[20,10]
◯

[30,10] Bit) [0,0] ,◇[20,10]
◯

[30,10] Bit [0,200] ⊢0 ◇[20,10]
◯

[30,10]
◇

[20,10]
◯

[30,10] Bit [0,200] ⊃ L
· ;◻[0,∞]

◯
[0,200] (Bit ⊃ ◇[20,10]

◯
[30,10] Bit) [0,0] ,Bit ⊃ ◇[20,10]

◯
[30,10] Bit [0,200] ,Bit [0,200] ⊢0 ◇[20,10]

◯
[30,10]

◇
[20,10]

◯
[30,10] Bit [0,200]

◻ L,◯ L(×2),◯R
· ;◻[0,∞]

◯
[0,200] (Bit ⊃ ◇[20,10]

◯
[30,10] Bit) [0,0] ,◻[0,∞]

◯
[0,200] (Bit ⊃ ◇[20,10]

◯
[30,10] Bit) [0,0] ,◯[0,200] Bit [0,0]

⊢0 ◯[0,200]
◇

[20,10]
◯

[30,10]
◇

[20,10]
◯

[30,10] Bit [0,0]

Figure 7: Derivation of two connected inverters

In CMTL the modalities◻ and◇ are definable in terms of one

another, which is not possible intuitionistically, but usually, there

is no metric version of◯ corresponding to IMTL’s◯ modality.

IMTL seems to provide a more symmetric version of the temporal

modalities by having symmetric◻ and◇ and a◯ in the middle,

forming two adjunctions. The symmetry comes from defining our

logic on top of interval judgments, rather than instants in time, as is
usual from CMTL semantics. One result of this approach is that the

classical and intuitionistic modalities (as well as logical connectives,

such as ∨) do not trivially relate to each other.

Note that a definition of the until operator U, common in CMTL,

is not as natural in IMTL precisely because of interval judgments.

We do not deny the possibility of an intuitionistic until operator,

but it does not seem as foundational as its classical counterpart.

A few papers applied CMTL to prove properties of programs

[8, 21], but inferring an execution model from the logic itself is

a novel contribution. Some works show semantic proofs of cut

elimination for CMTL (see, for example, [2, 17]). However, as far as

we are aware, no syntactic proofs that might give rise to a concrete

computational interpretation exist prior to this work.

Intuitionistic Temporal and Modal Logics. While we are not aware

of prior work on intuitionistic versions of MTL, there are multiple

accounts of intuitionistic linear temporal logic (LTL) and othermodal
logics (for a survey on the former see [7]). Despite their discrete-step

semantics, they confront some of the issues we addressed.

Several accounts of LTL such as the ones described in [1, 6], do

not respect temporal causality, in the sense that, for example, ●
distributes over ∨. Kojima and Igarashi [22] being the first (purely

logical) account of trying to incorporate causality into the calculus,

resulting in temporal logic where● does not distribute over ∨ and

●⊥ ⊃ ⊥ is not valid. We saw in Section 2.8 that IMTL’s aim for

causality and computation causes multiple properties valid in ITLe

to be invalid in IMTL-based ILTL.

Simpson’s elegant account of intuitionistic modal logic [32] is

based on Kripke-style world structures where proofs can reason

with propositions true at any worlds. A proposition such as (◇𝐴 ⊃
◻𝐵) ⊃ ◻(𝐴 ⊃ 𝐵) is then valid regardless of the properties of the

accessibility relation between worlds, but will not be valid under

any natural mapping into IMTL.

Davies [13] provides a different take on intuitionistic temporal
logic including only the discrete-time◯ to capture binding times

and support partial evaluation. His system is temporally monotonic,

which is enforced in an entirely different manner using natural

deduction and discrete time transformation from a program at time

𝑛 to a residual program at time 𝑛 + 1. His logical system does not

include positive types like disjunction and it is not clear if such an

extension is easily possible so that normalization/cut elimination

would hold. He also does not have ◻ and ◇ which are a priori

semantically incompatible with◯. We recommend [14, Section 6]

for an extended discussion of the related complexities.

The work of Kojima and Igarashi [22] seems to be the closest to

ours in the sense they provided a syntactic cut elimination result as

well as cared about a notion of temporal causality, represented by

the fact their calculus cannot prove●(𝐴 ∨ 𝐵) ⊃ ●𝐴 ∨●𝐵 (IMTL

also cannot prove it; see Lemma 2.8) because of rule restrictions.

Although their goal is for their calculus to respect temporal causal-

ity, their proofs do not correspond to temporal computations, at

least not directly, since a notion of temporal monotonicity would

not hold. Our work extends theirs by replacing points by intervals,

adding the ◻ and ◇ modalities, and by making sure proofs are

computational while retaining the notion of causality.

Accounts similar to ours can be found in the combinations of in-

tuitionistic LTL and linear logic (in the sense of Girard [19]) [11, 12].

Proofs in linear logic correspond to communicating processes ad-

hering to session-typed protocols [9]. The types are then augmented

with temporal modalities that capture the number of discrete steps

taken by a flexible cost model. While the programming language

satisfies preservation and progress (incorporating cost), it does not

appear that a corresponding logic would satisfy cut elimination.

6 CONCLUDING REMARKS
We defined and studied IMTL, an intuitionistic account of metric

temporal logic where proofs respect temporal causality and mono-

tonicity, entailing a proofs as temporal programs interpretation.
The concrete description of temporal computation comes from

cut reductions, derived from our syntactic proof of cut elimina-

tion, but we have not yet developed a programming notation and

extracted an operational semantics.

We plan on (1) extending the current logical foundations with

recursion (both at the level of types and the level of programs)

and explore IMTL’s modeling limitations, and (2) developing the

modeling of digital circuits with IMTL further than this paper did,

tackling interesting issues, such as feedback loops and lenient gates,

that seem to interest logicians as well as hardware designers.
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