
A Decade of Dependent Session Types
Bernardo Toninho

NOVA School of Science and
Technology and NOVA-LINCS

Portugal

Luís Caires
NOVA School of Science and
Technology and NOVA-LINCS

Portugal

Frank Pfenning
Carnegie Mellon University

USA

CCS CONCEPTS
• Theory of computation→ Linear logic; Type theory; • Soft-
ware and its engineering → Concurrent programming lan-
guages.

KEYWORDS
Session Types, Dependent Types, Linear Logic

ACM Reference Format:
Bernardo Toninho, Luís Caires, and Frank Pfenning. 2021. A Decade of
Dependent Session Types. In 23rd International Symposium on Principles
and Practice of Declarative Programming (PPDP 2021), September 6–8, 2021,
Tallinn, Estonia. ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/
3479394.3479398

We begin this brief retrospective of our work by thanking the PPDP
Steering Committee for awarding the “PPDP 10 Year Most Influ-
ential Paper Award” to our paper on dependent session types [22].
This abstract gives an account of the context that led to our 2011
paper, summarizes its key contributions and gives an (incomplete)
account of the works that followed it and the remaining challenges
in this space.

1 CONTEXT
Session types date back to the seminal work of Honda et al. [14]
and are, in their essence, a mechanism to statically ensure correct-
ness properties of communication in message-passing programs.
Session types achieve this by taking a protocols-as-types view of
protocol compliance. By viewing communication protocols as the
types of communication channels, it becomes possible to statically
ensure that communication is protocol compliant (session fidelity
in the literature), even in the presence of so-called higher-order
communication (i.e. sending channels along channels). A key in-
gredient of session types is type duality, which captures the fact
that communication between peers proceeds in tandem. When one
party sends, the other receives, when one offers a choice, the other
chooses. Session type duality embodies this principle, ensuring that
processes that communicate along the same channel must follow
dual types, thus achieving communication safety. Session types (in
the sense of [14]) also ensure deadlock-freedom (or progress) for
processes communicating along a single session channel.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PPDP 2021, September 6–8, 2021, Tallinn, Estonia
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8689-0/21/09.
https://doi.org/10.1145/3479394.3479398

In the sense above, session types have two key limitations: progress
guarantees only apply in a limited setting (i.e. two processes com-
municating exclusively on a single channel without higher-order
communication) and, types only describe simple properties of com-
munication, rather than properties of exchanged data or how data
affects communication. To address the former, a notion of multi-
party session types [15] was introduced, which can progress in the
presence of multiple communicating peers, at the cost of a more
complex theory; the latter limitation was mostly unsolved until the
publication of our work. We highlight the work [4], which inte-
grates decidable assertions in the multiparty session types frame-
work, in the style of type refinements, by relying on an ad-hoc
semantic notion of well-asserted protocol to ensure satisfiability of
assertions.

Concurrently to the developments above, Caires and Pfenning [5]
discovered a deep connection between session types and linear logic,
providing a purely logical account of the key features of session
types and the first true propositions-as-types account for concur-
rent communication, where session types are interpreted as the
propositions of linear logic, their proofs as well-typed processes
and proof reduction as communication. Beyond providing stronger
static correctness guarantees, namely progress in the presence of
interleaved, higher-order linear and replicated session communica-
tion, the logical foundation of session types provided the basis on
which to build our notion of dependent session type.

2 DEPENDENT SESSION TYPES
Our work [22] expanded the propositions-as-types correspondence
of [5] by introducing a logically motivated concept of dependent
session types, by formulating a computational interpretation of
first-order linear logic as a typed session calculus. In such a setting,
processes can not only communicate channels along channels (as
in [5]), but also send values drawn from a (dependent) type theory,
effectively communicating not just simple terms but also checkable
proof objects which attest the properties that can be asserted in
session types. In this sense, dependent session types address the
expressiveness limitation of the previous section in a general way,
given that explicit proof communication allows types to express
arbitrary properties of data (unlike [4]) that are witnessed by the
proof objects that are exchanged during communication. Moreover,
the logical foundation allows us to naturally incorporate a notion of
proof irrelevance as a principled way of eliminating some of the com-
munication overhead generated by the exchange of explicit proof
objects, requiring the proof objects to exist during typechecking but
allowing them to be erased at runtime. Our work also introduced a
primitive forwarder, equating two session channels, which has been
adopted in subsequent works based on the session interpretation
of linear logic [25].

https://doi.org/10.1145/3479394.3479398
https://doi.org/10.1145/3479394.3479398
https://doi.org/10.1145/3479394.3479398
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3479394.3479398&domain=pdf&date_stamp=2021-10-07

PPDP 2021, September 6–8, 2021, Tallinn, Estonia Bernardo Toninho, Luís Caires, and Frank Pfenning

To illustrate these ideas, we revisit an example of [22] of a simple
session type describing a minimalistic bank service:

$id ⊸ &{dep : $int ⊸ ($int ⊗ 1), bal : $int ⊗ 1}

The type above describes an agent that expects to receive (⊸) a
value of type id, abstracting the client’s identification data. The
bank will then offer its clients a choice (N) between a deposit and
a balance operation, triggered by the client sending the label dep
or bal, respectively. In the former case, the client must send the
deposit amount, after which the bank sends (⊗) back a receipt of
the deposited amount and the session ends (1). In the latter case,
the bank simply sends the account balance. Using the framework
of dependent session types, we can enrich the type for the bank
beyond indicating the simple types of exchanged values:

∀s :string.$uid(s) ⊸ N{bal : ∃m:int.$balance(s,m) ⊗ 1,
dep : ∀n:int.$dpst(s, n) ⊸ $rcpt(s, n) ⊗ 1}

By using dependent types we can refine the specification by
having the client and the bank exchange objects whose typing
certifies that the initial value s sent by the client is a valid user id
(uid(s)), and, for the deposit operation, that the deposit of amount n
is intended for the client with id s (witnessed by the object of type
dpst(s,n)) and, that the value mentioned in the receipt is exactly
n (rcpt(s,n)) ensuring the bank does not charge for the deposit. A
variant of the deposit branch that charges no more than 2 units for
the deposit is:

∀n:int.$dpst(s, n) ⊸ ∃m:int.∃p :(n − 2 ≤ m ≤ n).$rcpt(s,m) ⊗ 1

In this case, the bank will send an integerm, a proof p thatm is
between n − 2 and n, and the object rcpt(s,m).

Thus, the concept of dependent session types enabled a new par-
adigm of expressiveness for session types, ensuring not just session
fidelity and global progress of communications but also statically
certifying that the properties asserted in types must hold, with the
added benefit that certificates of such properties are exchanged
by processes – a key requirement in a potentially distributed set-
ting – and can also be selectively ommitted when such is deemed
appropriate.

3 IMPACT AND FURTHER DEVELOPMENTS
Logical Foundations. Following the publication of our work, the
framework of dependent session types as an exploration of first-
order linear logic was further developed in [6, 18], which incorpo-
rated an indexed affirmation modality to allow for specifications
to refer to digital signatures. As the logical foundation of session
types matured, a session interpretation for classical linear logic was
proposed [7, 25].

Intrinsic to the pure logical view of session types is strong nor-
malization of well-typed programs, disallowing general recursive
definitions. To this end, various works [16, 23] have studied how to
add recursive process and type definitions to the logical interpreta-
tion (in both classical and intuitionistic settings) while preserving
termination and confluence and so maintaining logical soundness.
Going beyond the forms of recursion allowed in the works above,
the work [9] proposes nested session types, a system with para-
metric polymorphism, recursively defined types with free nesting
polymorphic type constructors. The work shows type equality is

decidable in such a setting and presents a practical algorithm for
type equality with nested types.

In terms of session type dependency and refinement arising from
the logical interpretation, the works [10] and [11] crucially leverage
a form of value dependency (via type-indexing) to develop temporal
and ergometric session types to statically analyze work and span
of parallel and concurrent programs. However, the interaction of
recursive types and various forms of session type dependency has
only begun to be understoodmore recently. Theworks [12, 13] show
that (indexed) recursive session types with arithmetic refinements
from Presburger arithmetic result in undecidable type equality and
subtyping, proposing a coinductive, deterministic algorithm that
soundly approximates type equality.

Beyond Linearity. Another way to increase the expressiveness
of logical sessions is by considering a sharing semantics for the
exponential modality [2] via sharing modalities in the type struc-
ture, allowing cyclic proof structures (and so deadlocks). A similar
effect is achieved by conflating dual session types in classical linear
logic [1]. Deadlock-freedom can be recovered through extra-logical
means [3, 8] or, in recent work, by exploring differential linear
logic [19].

Verified Session-Typed Programming. While the session in-
terpretation for first-order linear logic used a session π -calculus,
several works have studied the ideas of dependent sessions in less
austere settings. We highlight the work [13], which introduces the
Rast language and studies the problem of refinement reconstruc-
tion in the presence of arithmetic refinements. Outside the logical
interpretation, statically verified refinements have been studied for
multiparty session embeddings in F∗ [26] and F# [17].

Beyond Value Dependencies. All works on dependent sessions
listed above deal with some form of limited dependency or refine-
ment. The work [24] enables both session and functional depen-
dencies on (session-typed) quoted processes, but does not study
inductive or recursive types. A notion of label dependency is stud-
ied in [21], which also includes type-level natural numbers and
iteration.

4 THE NEXT DECADE
We now engage in some futurology on the topic of dependent
session types. While much has been explored in this space, we have
yet to see a full dependent type theory of sessions that can allow
for generalized forms of dependency in the presence of inductive
and coinductive session types. The recent works on type-based
termination for sessions [20] and nested session types [9] provide
promising insights.

Another crucial avenue of exploration is the reconciliation of
type dependency in settings that go beyond the tree-like topologies
of linear session typing. The recent work of [19] that achieves
sharing through the logical means of differential linear logic has
great potential in this matter.

ACKNOWLEDGMENTS
This work is supported by NOVA LINCS (UIDB/04516/2020).

REFERENCES
[1] Robert Atkey, Sam Lindley, and J. Garrett Morris. 2016. Conflation Confers

Concurrency. In A List of Successes That Can Change the World - Essays Dedicated

A Decade of Dependent Session Types PPDP 2021, September 6–8, 2021, Tallinn, Estonia

to Philip Wadler on the Occasion of His 60th Birthday, Sam Lindley, Conor McBride,
Philip W. Trinder, and Donald Sannella (Eds.). Springer, 32–55. https://doi.org/
10.1007/978-3-319-30936-1_2

[2] Stephanie Balzer and Frank Pfenning. 2017. Manifest sharing with session types.
Proc. ACM Program. Lang. 1, ICFP (2017), 37:1–37:29. https://doi.org/10.1145/
3110281

[3] Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. 2019. Manifest
Deadlock-Freedom for Shared Session Types. In 28th European Symposium
on Programming, ESOP 2019, Luís Caires (Ed.). Springer, 611–639. https:
//doi.org/10.1007/978-3-030-17184-1_22

[4] Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. 2010. A Theory
of Design-by-Contract for Distributed Multiparty Interactions. In CONCUR 2010
- Concurrency Theory, 21th International Conference, Paul Gastin and François
Laroussinie (Eds.). Springer, 162–176. https://doi.org/10.1007/978-3-642-15375-
4_12

[5] Luís Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear
Propositions. InCONCUR 2010 - Concurrency Theory, 21th International Conference,
Paul Gastin and François Laroussinie (Eds.). Springer, 222–236. https://doi.org/
10.1007/978-3-642-15375-4_16

[6] Luís Caires, Frank Pfenning, and Bernardo Toninho. 2012. Towards concurrent
type theory. In TLDI 2012: 7th ACM SIGPLAN Workshop on Types in Languages
Design and Implementation, Benjamin C. Pierce (Ed.). ACM, 1–12. https://doi.
org/10.1145/2103786.2103788

[7] Luís Caires, Frank Pfenning, and Bernardo Toninho. 2016. Linear logic propo-
sitions as session types. Math. Struct. Comput. Sci. 26, 3 (2016), 367–423.
https://doi.org/10.1017/S0960129514000218

[8] Ornela Dardha and Simon J. Gay. 2018. A New Linear Logic for Deadlock-
Free Session-Typed Processes. In Foundations of Software Science and Computa-
tion Structures - 21st International Conference, FOSSACS 2018, Christel Baier and
Ugo Dal Lago (Eds.). Springer, 91–109. https://doi.org/10.1007/978-3-319-89366-
2_5

[9] Ankush Das, Henry DeYoung, Andreia Mordido, and Frank Pfenning. 2021.
Nested Session Types. In 30th European Symposium on Programming, ESOP 2021,
Nobuko Yoshida (Ed.). Springer, 178–206. https://doi.org/10.1007/978-3-030-
72019-3_7

[10] Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018. Parallel complexity
analysis with temporal session types. Proc. ACM Program. Lang. 2, ICFP (2018),
91:1–91:30. https://doi.org/10.1145/3236786

[11] Ankush Das, Jan Hoffmann, and Frank Pfenning. 2018. Work Analysis with
Resource-Aware Session Types. In 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Anuj Dawar and Erich Grädel (Eds.). ACM, 305–314.
https://doi.org/10.1145/3209108.3209146

[12] Ankush Das and Frank Pfenning. 2020. Session Types with Arithmetic Refine-
ments. In CONCUR 2020 - Concurrency Theory, 31th International Conference,
Igor Konnov and Laura Kovács (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 13:1–13:18. https://doi.org/10.4230/LIPIcs.CONCUR.2020.13

[13] Ankush Das and Frank Pfenning. 2020. Verified Linear Session-Typed Concur-
rent Programming. In PPDP ’20: 22nd International Symposium on Principles and
Practice of Declarative Programming. ACM, 7:1–7:15. https://doi.org/10.1145/
3414080.3414087

[14] Kohei. Honda, Vasco T. Vasconcelos, andMakoto Kubo. 1998. Language Primitives
and Type Discipline for Structured Communication-Based Programming. In 7th
European Symposium on Programming Languages and Systems (ESOP’98). Springer
LNCS 1381, 122–138.

[15] Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2016. Multiparty Asynchro-
nous Session Types. J. ACM 63, 1 (2016), 9:1–9:67. https://doi.org/10.1145/2827695

[16] Sam Lindley and J. Garrett Morris. 2016. Talking bananas: structural recursion
for session types. In 21st ACM SIGPLAN International Conference on Functional
Programming, ICFP 2016, Jacques Garrigue, Gabriele Keller, and Eijiro Sumii (Eds.).
ACM, 434–447. https://doi.org/10.1145/2951913.2951921

[17] Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. 2018.
A session type provider: compile-time API generation of distributed protocols
with refinements in F#. In 27th International Conf. on Compiler Construction,
CC 2018, Christophe Dubach and Jingling Xue (Eds.). ACM, 128–138. https:
//doi.org/10.1145/3178372.3179495

[18] Frank Pfenning, Luís Caires, and Bernardo Toninho. 2011. Proof-Carrying Code
in a Session-Typed Process Calculus. In Certified Programs and Proofs - First
International Conference, CPP 2011, Jean-Pierre Jouannaud and Zhong Shao (Eds.).
Springer, 21–36. https://doi.org/10.1007/978-3-642-25379-9_4

[19] Pedro Rocha and Luís Caires. 2021. Propositions-as-Types and Shared State. Proc.
ACM Program. Lang. 5, ICFP. to appear.

[20] Siva Somayyajula and Frank Pfenning. 2021. Circular Proofs as Processes: Type-
Based Termination via Arithmetic Refinements. (2021). https://arxiv.org/abs/
2105.06024

[21] Peter Thiemann and Vasco T. Vasconcelos. 2020. Label-dependent session types.
Proc. ACM Program. Lang. 4, POPL (2020), 67:1–67:29. https://doi.org/10.1145/
3371135

[22] Bernardo Toninho, Luís Caires, and Frank Pfenning. 2011. Dependent session
types via intuitionistic linear type theory. In 13th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming, Peter Schneider-
Kamp and Michael Hanus (Eds.). ACM, 161–172. https://doi.org/10.1145/2003476.
2003499

[23] Bernardo Toninho, Luís Caires, and Frank Pfenning. 2014. Corecursion and
Non-divergence in Session-Typed Processes. In Trustworthy Global Computing -
9th International Symposium, TGC 2014, Revised Selected Papers, Matteo Maffei
and Emilio Tuosto (Eds.). Springer, 159–175. https://doi.org/10.1007/978-3-662-
45917-1_11

[24] Bernardo Toninho and Nobuko Yoshida. 2017. Certifying data in multiparty
session types. J. Log. Algebraic Methods Program. 90 (2017), 61–83. https:
//doi.org/10.1016/j.jlamp.2016.11.005

[25] Philip Wadler. 2012. Propositions as sessions. In ACM SIGPLAN International
Conference on Functional Programming, ICFP’12, Peter Thiemann and Robby Bruce
Findler (Eds.). ACM, 273–286. https://doi.org/10.1145/2364527.2364568

[26] Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko
Yoshida. 2020. Statically verified refinements for multiparty protocols. Proc. ACM
Program. Lang. 4, OOPSLA (2020), 148:1–148:30. https://doi.org/10.1145/3428216

https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1007/978-3-319-30936-1_2
https://doi.org/10.1145/3110281
https://doi.org/10.1145/3110281
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_12
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1145/2103786.2103788
https://doi.org/10.1145/2103786.2103788
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/978-3-319-89366-2_5
https://doi.org/10.1007/978-3-030-72019-3_7
https://doi.org/10.1007/978-3-030-72019-3_7
https://doi.org/10.1145/3236786
https://doi.org/10.1145/3209108.3209146
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://doi.org/10.1145/3414080.3414087
https://doi.org/10.1145/3414080.3414087
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1007/978-3-642-25379-9_4
https://arxiv.org/abs/2105.06024
https://arxiv.org/abs/2105.06024
https://doi.org/10.1145/3371135
https://doi.org/10.1145/3371135
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1145/2003476.2003499
https://doi.org/10.1007/978-3-662-45917-1_11
https://doi.org/10.1007/978-3-662-45917-1_11
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1016/j.jlamp.2016.11.005
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/3428216

	1 Context
	2 Dependent Session Types
	3 Impact and Further Developments
	4 The Next Decade
	Acknowledgments
	References

