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Abstract

Higher-order logic programming (HOLP) languages are particularly useful for various kinds of meta-
programming and theorem proving tasks because of the logical support for variable binding via λ-
abstraction. They have been used for a wide range of applications including theorem proving, program-
ming language interpretation, type inference, compilation, and natural language parsing. Despite their
utility, current language implementations have acquired a well-deserved reputation for being inefficient.
In this paper we argue that HOLP languages can reasonably be viewed as Constraint Logic Program-
ming (CLP) languages, and show how this can be expected to lead to more practical implementations
by applying the known principles for the design and implementation of practical CLP systems.

1 Introduction

Higher-order logic programming (HOLP) languages [17] typically use a typed λ-calculus as their domain
of computation. In the case of λProlog [18] it is the simply-typed λ-calculus, while in the case of Elf
[22] it is a dependently typed λ-calculus. These languages are particularly useful for various kinds of meta-
programming and theorem proving tasks because of the logical support for variable binding via λ-abstraction.
They have been used for a wide range of applications including theorem proving [3], programming language
interpretation [5, 13], type inference [21], compilation [6], and natural language parsing [20]. Despite their
utility, current language implementations have acquired a well-deserved reputation for being inefficient. In
this paper we argue that HOLP languages can reasonably be viewed as Constraint Logic Programming (CLP)
languages [8]. Measurements with an instrumented Elf interpreter confirm that such a view can produce
practical benefits, as the known principles for the design and implementation of practical CLP systems [9, 12]
are directly applicable to making implementations of HOLP languages more efficient.

The core domain of the languages we consider is the set of typed λ-expressions, where abstraction
and application are the only interpreted operations and equality is the only relation (interpreted as βηα-
convertibility). There are other features of these languages that distinguish them from the CLP language
scheme as defined in [8], for example, higher-order predicates, dependent or polymorphic types, modules,
embedded implication and universal quantification. Many of these features have been addressed in a satis-
factory way in ongoing implementation projects at Duke and IRISA/INRIA in Rennes. Surveys and further



references to the design of these implementations can be found in [11] and [1]. In this paper we will concen-
trate on the issues related to the view of higher-order logic programming as constraint logic programming
which, we believe, has the most fundamental impact on expected execution speed.

2 Solving Equations Between Typed λ-Expressions

Full unification in higher-order languages is clearly impractical, due to the non-existence of minimal complete
sets of most-general unifiers [7]. Therefore, work on λProlog has used Huet’s algorithm for pre-unification [7],
where so-called flex-flex pairs (which are always unifiable) are maintained as constraints, rather than being
incorporated in an explicit parametric form. Yet, even pre-unifiability is undecidable, and sets of most
general pre-unifiers may be infinite. While undecidability has not turned out to be a severe problem, the
lack of unique most general unifiers makes it difficult to accurately predict the run-time behavior of λProlog
programs that attempt to take advantage of full higher-order pre-unification. It can result in thrashing when
certain combinations of unification problems have to be solved by extensive backtracking. Moreover, in a
straightforward implementation, common cases of unification incur a high overhead compared to first-order
unification. These problems have led to a search for natural, decidable subcases of higher-order unification
where most general unifiers exist. Miller [15] has suggested a syntactic restriction (Lλ) to λProlog, easily
extensible to related languages [23], where most general unifiers are unique modulo βηα-equivalence.

Miller’s restriction has many attractive features. Unification is deterministic and thrashing behavior due
to unification is avoided. Higher-order unification in its full power can be implemented if some additional
control constructs (when) are available [16].

However, our empirical analysis [14] suggests that this solution is unsatisfactory, since it has a detrimen-
tal effect on programming methodology, and potentially introduces a new efficiency problem. Object-level
variables are typically represented by meta-level variables, which means that object-level capture-avoiding
substitution can be implemented via meta-level β-reduction. The syntactic restriction to Lλ prohibits this
implementation technique, and hence a new substitution predicate must be programmed for each object
language. Not only does this make programs harder to read and reason about, but a substitution predicate
will be less efficient than meta-language substitution. This is not to diminish the contribution that Lλ has
made to our understanding of higher-order logic programming. As we will describe below, it forms the basis
for our approach to the implementation of HOLP languages.

3 A Practical Approach to Constraint Logic Programming

The generality of the CLP scheme allows languages to be defined that raise two important implementation
problems:

• High overhead for frequently-occurring simple constraints.
It has been observed [9, 12] that the constraints that occur most frequently in the execution of pro-
grams in many CLP systems are relatively simple. However, the generality needed to solve the more
complicated, but rarely occurring constraints tends to introduce overheads for solving all constraints.
Ideally, it should be possible to solve the simple constraints without incurring this overhead.

• Some constraints may be too hard to solve or solve efficiently.
For many seemingly desirable domains, the required decision algorithms simply do not exist. For others,
the decision problem may be open. For many more domains, either the decision problem is known to be
intractable, or the best known algorithms are impractical. Even when a reasonably efficient decision
procedure exists, it may be incompatible with the CLP operational model. In particular, a CLP
implementation requires incremental satisfiability testing to be efficient. That is, it must be possible
to determine efficiently whether a satisfiable set of constraints, augmented with a new constraint, is
still satisfiable. Efficiency here loosely means that the time should be proportional more to the size of
the added constraint than that of the previous, satisfiable, set. Furthermore, because of backtracking,
it must be possible to undo such augmentations of the constraint set efficiently.



Solving the first problem requires that the system be implemented with a bias towards frequently
occurring constraints. A data structure that is most appropriate for certain special cases but cumbersome
and inefficient for the general case can often result in dramatically improved overall performance.

One approach to the second problem is to syntactically restrict the kinds of constraints on the given
domain that can be expressed. Such syntactic restrictions determine what expressions can be constructed
using the operators, and what expressions the various relation symbols can be applied to. For example,
arithmetic expressions could be restricted to be linear. It turns out that syntactic restrictions on constraints
often rule out useful and natural programs. Such programs contain syntactically complex expressions that
are typically simplified by the time they are selected at runtime. For example, a non-linear expression could
become linear after instantiation of some variables.

We advocate another approach, by which constraints that cannot be decided (or decided efficiently) at
the time they arise are delayed with the expectation that the problem will be simplified under additional con-
straints. This approach can be justified under two diametrically opposed philosophies underlying constraint
logic programming.

In the first, perhaps more traditional view of constraint programming, it is important that the program-
mer should not have to be concerned with when information becomes available but just needs to provide
enough constraints for it eventually to become available. Under this philosophy, the delaying approach
achieves some amount of independence of the order in which constraints arrive at the solver without unduly
restricting programs. This philosophy and the justification of delay is described in considerable detail by Jaf-
far et al. in [10], where it is argued further that delay does not require the programmer to think substantially
more algorithmically.

The second view advances that a constraint logic programming language is a logic with a completely
specified operational semantics, which programmers should know in order to predict runtime behavior and
evaluate the efficiency of their programs. Under this view, the delaying semantics is simply a design decision
in the specification of the language permitting a larger range of algorithms to be expressed concisely and
naturally.

It is shown in [10] that delay can be implemented with overhead proportional to the number of delayed
constraints whose state is affected by each additional constraint, rather than the total number of delayed
constraints. The issue of how to restrict a CLP language appropriately has often arisen and been addressed
in different ways in real systems. In CLP(R) [9], the selection rule is modified to delay nonlinear constraints
until they become linear. A similar approach to nonlinear arithmetic has been adopted in recent commercial
versions of Prolog III. Furthermore, the same approach is now used in Prolog III to deal with the intractability
of word unification: word equations are delayed until the length of the value of initial variables is known.

We have studied a selection of 12 representative and non-trivial Elf programs with a total of about
3500 lines of code [14]. We analyzed these programs from a static and dynamic perspective. Our study
demonstrates that the above observations and strategies for dealing with the problems of CLP languages in
general are directly applicable to HOLP languages, and that a considerable performance improvement can
be expected. Conversely, the HOLP languages provide further evidence of the general applicability of this
approach.

4 Special Cases of HOLP Constraints

Terms in Elf and λProlog that contain no abstraction or functional variables correspond directly to first-order
terms (as in Prolog). Our empirical study showed that most unification was either simple assignment or first-
order (Herbrand) unification: around 95%, averaged over all examples. When λ-abstractions are present,
substitution of a term for a bound variable (β-reduction) is a common operation. Most of these (about 95%)
substitute a parameter1 for a variable. Because first-order unification and parameter substitution dominate,
the representation should be designed to handle these cases particularly efficiently.

The obvious representation for terms is that corresponding to first-order abstract syntax: a DAG with
special nodes for application, abstraction etc. This is problematic because the frequently occurring first-order
unification cases rely heavily on finding the principal functor, which in this representation is at the head

1A parameter (sometimes called eigenvariable) acts like a constant in unification, but has proper scope. It arises from solving
universally quantified goals.
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Figure 1: Conventional and Functor/Arguments term representations for Elf

of the spine of applications. Consider, for example, the representation of the term FM1M2M3M4 shown
on the left in Figure 1. The major inefficiency results when a disagreement pair must be classified. The
classifications are mostly based on the nature of the head and in particular on whether it is a constant or not.
Furthermore, in the frequently occurring Rigid-Rigid case (where both heads are parameters or constants),
it is necessary to know which constant: the pair is only decomposed into argument pairs if the heads are
identical; otherwise unification fails. In the left-associative representation, obtaining information about the
head is too expensive. This suggests a representation as a pair of a functor and a list of arguments. This
representation, for the same example, is shown on the right in Figure 1. Notice that this representation also
makes it easier to make use of clause indexing on rigid term heads.

This Prolog-like functor/argument representation can be problematic when the head is a variable, since
it may be bound to an expression which requires some normalization, producing a new head, and the old
one needs to be stored for backtracking in some way. These complications are outbalanced by the efficiency
improvement for the simple cases, since the overwhelming majority of λProlog or Elf equality constraints
can be solved by Prolog unification. We conclude that functor/argument representation is an essential
optimization for a λProlog or Elf implementation.2

In principle, an important part of term comparison in these languages is the test for α-convertibility.
The Duke representation proposal [19] suggests a de Bruijn representation [2] of terms for this reason. While
that suggestion may well be appropriate, the empirical study showed the comparison of two abstractions to
be a rare occurrence, and so this consideration alone should probably not be allowed to determine the choice
of term representation.

Similarly, the implementation of substitution is an important issue. The dominant kinds of substitutions
are those that replace bound variables by parameters—the representation should be optimized towards
handling this case efficiently. This is a much more difficult issue than the representation of application, but
our observations suggest that an explicit way to shift variable references in a term (through a special form
of environment) might solve the efficiency problem associated with parameter substitutions.

2Such a representation was in fact used pervasively in Nadathur’s original implementation of λProlog up to LP2.7. In the
current Elf implementation, a functor/argument representation is used as an intermediate form in the constraint solver for the
reasons cited above.



5 Hard Constraints in HOLP

Even a brief examination of Elf and λProlog programs shows that syntactic restriction to Lλ would affect a
significant proportion of programs. While these programs can be rewritten to conform to the Lλ restriction,
doing so makes them harder to reason about and, with present implementation technology, significantly less
efficient. Furthermore, most programs dynamically conform to the Lλ restriction even without delay, and we
are aware of only one useful program that does not run properly when hard constraints are delayed [4]. On
the other hand, there are programs that run significantly more efficiently when hard constraints are delayed
(for example, type inference in the polymorphic λ-calculus [21]).

The operational semantics of Elf, in contrast to λProlog, is based on solving all dynamically arising
equations that lie within an appropriate extension of Lλ to dependent types. All other equations (solvable
or not) are delayed. We found that this addresses the problems with higher-order unification without
compromising programming methodology. The primary disadvantage of this approach is that one must take
care in interpreting the final answer, if it contains delayed constraints, as a conditional: each solution of the
remaining constraints yields a proof of the original query. In this section, we state precisely which constraints
are deemed to be hard in λProlog and Elf and how they arise, and show how the methodology described in
[10] can be used to manage hard constraints in this context.

5.1 Classification of Higher-Order Terms

In Prolog each term can be classified as either a variable, a constant, or a compound term. Solving constraints
over higher-order terms requires a finer classification. For example, a term might be a λ-abstraction or a
β-redex. The critical cases, however, arise when the head of a term is either a variable or a constant. In
our terminology, an Evar is an existential variable (logic variable, in Prolog terminology) and a Uvar is a
parameter (a constant with a well-defined scope introduced when solving a universally quantified goal). An
Evar E is said to depend on a Uvar x in a goal if E is introduced into the computation within the scope of x.
If E depends on x the substitution term for E may contain occurrences of x, otherwise it may not. Terms
are then classified as follows.

• Gvar
Fx1x2 · · ·xn, n ≥ 0 where F is an Evar, the xi are Uvars, F does not depend on any xi, and the xi
are all distinct.

• Flex
FM1M2 · · ·Mn, n ≥ 0 where F is an Evar and the Mi are terms, and the Gvar conditions above are
not satisfied.

• Rigid
fM1M2 · · ·Mn, n ≥ 0 where f is a constant or a Uvar and the Mi are arbitrary terms.

Note that, to simplify the discussion, types and other classes of disagreement pairs have been omitted,
since they are dealt with by straightforward recursive unifications. We should also emphasize that in this
discussion the Flex case does not include the Gvar case, unlike in Huet’s usage.

5.2 Classification of Constraints

A HOLP system must solve the nine kinds of equations arising from these three kinds of terms, collapsing
to six kinds due to symmetry. The table in Figure 2 shows which pairs are directly solved and which are
delayed. Note that the disagreement pairs that are directly solved will either have a most general solution
or no solution.

The constraint solver state consists of a set of substitutions of the form X = M where X is an Evar and
M is a term, such that X does not occur elsewhere, and a set of Flex-Flex pairs. This is an implicit solved
form. In the implementation, the Evar-Term pairs are not represented as pairs, but by pointers from the
variable to its instantiation term (as in Prolog). However, Flex-Flex pairs must be represented explicitly. In
addition, the constraint solver must handle hard constraints, which arise in two ways:



Core Elf Unification Table
Gvar Flex Rigid

Gvar unify
Flex delay delay
Rigid unify delay unify

Figure 2: Core unification table for Elf

1. When a new disagreement pair is a Flex-Rigid pair (under the current substitution). This corresponds
to the typical source of hard constraints in languages like CLP(R).

2. When additional substitutions are added to the solver as a result of solving a new disagreement pair,
and these can be used to rewrite some Flex-Flex pair already in the solver to a pair that is a hard
constraint.

The second situation is unusual for constraint languages, since a conjunction of directly solvable con-
straints may be simplified into a hard constraint. However, this is not problematic in the context of the
methodology described in [10]: it merely requires that Flex-Flex pairs be treated as if they were hard
constraints when designing the wakeup system, as described below.

5.3 A Wakeup System

In this section, our aim is to describe the management of hard constraints in Elf in terms of the framework
developed by Jaffar et al. in [10].

We need five wakeup degrees in addition to awakened. These are for Flex-Flex, Flex-Rigid, Rigid-
Flex, Flex-Gvar, and Gvar-Flex. We note that it is not desirable to combine symmetric cases, because the
transitions of the two sides of the equation depend on the binding of different variables.

The transitions between these three forms of expressions that we need to consider are as follows. Note
that we do not consider leading abstractions.

1. Flex ⇒ Rigid
The head F in FM1M2 · · ·Mn is bound to

λx1 · · ·λxk. gN1 · · ·Nm

where g is a constant or a Uvar and the Ni are arbitrary terms. The resulting Rigid term will be of
the form

gP1 · · ·Pl.

2. Gvar ⇒ Rigid
Same as Flex ⇒ Rigid.

3. Flex ⇒ Gvar

(a) All of the arguments are bound to universal variables, such that the Gvar criteria now hold. (This
is very unlikely, and expensive to check for, so it has not been implemented to date).

(b) The head F of FM1M2 · · ·Mn is bound to

λx1 · · ·λxk. Gy1 · · · ym

where G is an existential variable, each yj is either a Uvar or one of the xi, and the resulting term
is a Gvar, that is, a term of the form

Gz1 · · ·zl
such that the zi are all distinct Uvars, and G does not depend on any of them.



4. Gvar ⇒ Flex
The head F of Fx1x2 · · ·xm is bound to

λx1 · · ·λxk. GN1 · · ·Nm

where G is a an existential variable and the Ni are terms, such that the Gvar criteria are now violated.
The resulting Flex term will be of the form

GP1 · · ·Pl.

Notice that the above transitions admit the possibility of cycles: A Flex term can turn into a Gvar
term when more information becomes available, and with still more information may turn back into a Flex
term, all without backtracking. This makes the wakeup system cyclic, as shown in Figure 3. The two arcs
shown using a thinner line correspond to the case that is expensive, unlikely, and omitted in the current
implementation. We describe the generic wakeup conditions in symmetric pairs, to avoid notational clutter,
and ignore the term that does not change in each pair.

6 Conclusion

Higher-Order Logic Programming languages differ substantially from other Constraint Logic Programming
languages. However, our empirical evidence shows that the language design and implementation strategies
that have made such a substantial difference to better known CLP languages are applicable here as well.

We believe that the main challenge in the design of an abstract machine and a compiler for HOLP
languages that achieves Prolog’s efficiency on Prolog-like programs is the design of a representation that
permits efficient substitution of parameters for bound variables without incurring an undue overhead for the
usual first-order unification computation.
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