
A Modal Analysis of Staged Computation

Rowan Davies∗ and Frank Pfenning†

Department of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213, U.S.A.

rowan@cs.cmu.edu and fp@cs.cmu.edu

Abstract

We show that a type system based on the intuitionistic
modal logic S4 provides an expressive framework for specify-
ing and analyzing computation stages in the context of func-
tional languages. Our main technical result is a conservative
embedding of Nielson & Nielson’s two-level functional lan-
guage in our language Mini-ML2, thus proving that binding-
time correctness is equivalent to modal correctness on this
fragment. In addition Mini-ML2 can also express immedi-
ate evaluation and sharing of code across multiple stages,
thus supporting run-time code generation as well as partial
evaluation.

1 Introduction

Dividing a computation into separate stages is a common in-
formal technique in the derivation of algorithms. For exam-
ple, instead of matching a string against a regular expression
we may first compile a regular expression into a finite au-
tomaton and then execute the automaton on a given string.
Partial evaluation divides the computation into two stages
based on the early availability of some function arguments.
Binding-time analysis statically determines what part of the
computation may be carried out in the first phase, and what
part remains to be done in the second phase.

It often takes considerable ingenuity to write programs
in such a way that they exhibit proper binding-time sepa-
ration, that is, that all computation pertaining to the stat-
ically available arguments can in fact be carried out. From
a programmer’s point of view it is therefore desirable to
declare the expected binding-time separation and obtain
constructive feedback when the computation may not be
staged as expected. This suggests that the binding-time
properties of a function should be expressed in a prescrip-

∗This work was partly supported by a Hackett Studentship from
the University of Western Australia. Part of this work was completed
during a visit by the first author to BRICS (Basic Research in Com-
puter Science, Centre of the Danish National Research Foundation).
†This work was sponsored in part by the Advanced Research

Projects Agency (ARPA) , CSTO, under the title “The Fox Project:
Advanced Development of Systems Software”, ARPA Order No. 8313,
issued by ESD/AVS under Contract No. F19628–91–C–0168.

To appear in the 23rd Annual ACM Symposium on
Principles of Programming Languages, January 1996,
St. Petersburg Beach, Florida. An earlier version ap-
pears as Technical Report CMU-CS-95-145, Carnegie
Mellon School of Computer Science.

tive type system, and that binding-time analysis should
be a form of type checking. The work on two-level func-
tional languages [NN92] and some work on partial evaluation
(e.g. [GJ91, Hen91]) shows that this view is indeed possible
and fruitful.

Up to now these type systems have been motivated algo-
rithmically, that is, they are explicitly designed to support
specialization. In this paper we show that they can also be
motivated logically, and that the proper logical system for
expressing computation stages is the intuitionistic variant of
the modal logic S4. This observation immediately gives rise
to a natural generalization of standard binding-time anal-
ysis by allowing multiple computation stages, initiation of
successor stages, and sharing of code across multiple stages.
Such extensions are normally considered external issues. For
example, Jones [Jon91] describes a typed framework for such
concepts, but only at the level of operations on whole pro-
grams. Our framework instead provides these operations
within the language of programs.

One of our conclusions is that when we extend the Curry-
Howard isomorphism between proofs and programs from in-
tuitionistic logic to the intuitionistic modal logic S4 we ob-
tain a natural and logical explanation of computation stages.
Each world in the Kripke semantics of modal logic corre-
sponds to a stage in the computation. A term of type 2A
corresponds to code to be executed in a future stage of the
computation. The modal restrictions imposed on terms of
type 2A guarantee that a function of type B → 2A can
carry out all computation concerned with its first argument
while generating the residual code of type A.

We begin by considering Mini-ML2e , a formulation of in-
tuitionistic modal S4 in which the permissible operations on
code and the staging of computation are represented very
explicitly. The presentation is new, but draws on ideas
in [BdP92, PW95]. It is augmented with a fixpoint oper-
ator, natural numbers, and pairs and endowed with a nat-
ural call-by-value operational semantics along the lines of
Mini-ML [CDDK86].

Mini-ML2e is somewhat awkward because it requires the
broad syntactic structuring of the program to directly re-
flect staging. We thus consider a more implicit formula-
tion of S4 directly motivated by its Kripke semantics fol-
lowing [MM94, PW95] and then augment it as before to
form Mini-ML2. With some syntactic sugar, Mini-ML2 is
intended to serve as the basis for a conservative extension
of ML with a practical means to express and check staging
of computation. The operational semantics of Mini-ML2 is
given by a type-preserving translation to Mini-ML2e whose

correctness is not entirely trivial.
We then exhibit a simple full and faithful embedding of

Nielson & Nielson’s two-level language [NN92] in Mini-ML2,
providing further evidence that Mini-ML2 provides an in-
tuitively appealing, technically correct, and logically moti-
vated view of staged computation.

2 Modal Mini-ML: Explicit Formulation

This section presents Mini-ML2e , a language that com-
bines some elements of Mini-ML [CDDK86] with a modal
λ-calculus for intuitionistic S4 following ideas in [BdP92,
PW95]. For the sake of simplicity Mini-ML2e is explicitly
typed. ML-style or explicit polymorphism can also be added
in a straightforward manner; we omit the details here in or-
der to concentrate on the essential issues within the given
space constraints.

A common feature of many types of staged computation
is the manipulation of code in various forms. Macro ex-
panders and partial evaluators typically manipulate source
expressions, runtime code generators typically manipulate
object code or some form of intermediate code. Starting
from a typed language such as Mini-ML we thus introduce
a new type constructor 2, where 2A represents code of type
A. This type remains abstract in the sense that we do not
commit ourselves to a particular representation of code. In
this way our type system can support diverse applications.
In the description of the operational semantics we choose
the usual device of representing values (including code) by
corresponding source expressions. This may be refined in
different ways for lower-level semantics describing, for ex-
ample, run-time code generation or partial evaluation.

Next we have to decide which operations should be sup-
ported on code. First, we should be able to manipulate an
arbitrary closed expression as code. This suggests a con-
structor box where box E : 2A if E : A in the empty
context. This is essentially the modal rule of necessitation.
The second means of constructing code is by substitution:
we can substitute code for a free variable appearing in code
to obtain code. In a meaningful type system such substitu-
tion must be “hygienic” and rename bound variables if nec-
essary to avoid capture. The restriction that we can only
substitute code (and not arbitrary expressions) into code
is reflected exactly in the natural deduction variant of the
modal necessitation rule: We can infer that box E : 2A
from E : A if all hypotheses of the latter derivation are of the
form x : 2B. Note that this is quite different from Moggi’s
computational λ-calculus [Mog89] which only distinguishes
values from computations and does not allow us to express
stage separation. Moreover, the intended implementation of
code is intensional, since we wish to allow refinements of our
semantics to optimize code, while Moggi’s computations are
extensional with evaluation as the only operation.

Technically we enforce the restriction by introducing two
contexts into the typing judgement ∆; Γ `e E : A. The outer
context ∆ contains variables that may be bound only to code
during evaluation; Γ contains variables that may be bound
to arbitrary values. Only variables in ∆ are permitted to
occur free inside box expressions. This presentation simpli-
fies that of the modal λ-calculus λ→2e from [BdP92, PW95]
by eliminating the need for simultaneous substitution while
preserving subject reduction.

The elimination construct for box allows us to bind a
variable x in ∆ to code of type A, written as let box x =

E1 in E2. Evaluation of code, certainly one of the most
fundamental operations, is then definable by

eval ≡ (λx:2A. let box y = x in y) : (2A)→ A.

Note that the opposite coercion, λx:A. box x, cannot be
well-typed, since x is an arbitrary argument and will not nec-
essarily be bound to code. Furthermore, it violates the con-
cept of stage separation since x is a static argument which
we refer to dynamically (i.e., inside the box).

2.1 Syntax

Types A ::= nat | A1 → A2 | A1 × A2 | 2A
Terms E ::= x | λx:A. E | E1 E2

| fix x:A. E
| 〈E1, E2〉 | fst E | snd E
| z | s E
| (case E1 of z⇒ E2 | s x⇒ E3)
| box E | let box x = E1 in E2

Contexts Γ ::= · | Γ, x:A

We use A,B for types, Γ,∆ for contexts, and x for vari-
ables assuming that any variable can be declared at most
once in a context. Bound variables may be renamed tacitly.
We omit leading ·’s from contexts. We write [E′/x]E for
the result of substituting E′ for x in E, renaming bound
variables as necessary in order to avoid the capture of free
variables in E′.

2.2 Typing Rules

Our typing rules for the Mini-ML fragment of the explicit
language are completely standard. The problem of typing
the modal fragment is well understood; we present here a
variant of known systems [BdP92, PW95] with two contexts
as motivated above.

∆; Γ `e E : A
E has type A in modal context
∆ and non-modal context Γ.

Our system has the property that a valid term has a unique
type and typing derivation.

λ-calculus Fragment

x:A in Γ
tpe lvar

∆; Γ `e x : A

∆; (Γ, x:A) `e E : B
tpe lam

∆; Γ `e λx:A. E : A→ B

∆; Γ `e E1 : A→ B ∆; Γ `e E2 : A
tpe app

∆; Γ `e E1E2 : B

2

Mini-ML Fragment

∆; Γ, x:A `e E : A
tpe fix

∆; Γ `e fix x:A. E : A

∆; Γ `e E1 : A1 ∆; Γ `e E2 : A2
tpe pair

∆; Γ `e 〈E1, E2〉 : A1 ×A2

∆; Γ `e E : A1 ×A2
tpe fst

∆; Γ `e fst E : A1

∆; Γ `e E : A1 ×A2
tpe snd

∆; Γ `e snd E : A2

tpe z
∆; Γ `e z : nat

∆; Γ `e E : nat
tpe s

∆; Γ `e s E : nat

∆; Γ `e E1 : nat ∆; Γ `e E2 : A ∆; (Γ, x:nat) `e E3 : A
tpe case

∆; Γ `e (case E1 of z⇒ E2 | s x⇒ E3) : A

Modal Fragment

x:A in ∆
tpe gvar

∆; Γ `e x : A

∆; · `e E : A
tpe box

∆; Γ `e box E : 2A

∆; Γ `e E1 : 2A (∆, x:A); Γ `e E2 : B
tpe let box

∆; Γ `e let box x = E1 in E2 : B

The elimination rule for 2, tpe let box, is the only one
that introduces variables into the modal context.

2.3 Operational Semantics

The Mini-ML fragment of our system has a standard call-
by-value operational semantics. For the modal part, we
represent code for E simply by box E, making the least
commitment as to possible lower-level implementations.

Values V ::= λx:A. E | 〈V1, V2〉 | z | s V | box E.

We evaluate let box x = E1 in E2 by substituting the code
generated by evaluating E1 for x in E2 and then evaluating
E2. The code generated by E1 may then be evaluated during
the evaluation of E2 as necessary.

E ↪→ V Expression E evaluates to value V .

λ-calculus Fragment

ev lam
λx:A. E ↪→ λx:A. E

E1 ↪→ λx. E′1 E2 ↪→ V2 [V2/x]E′1 ↪→ V
ev app

E1 E2 ↪→ V

Mini-ML Fragment

[fix x. E/x]E ↪→ V
ev fix

fix x. E ↪→ V

E1 ↪→ V1 E2 ↪→ V2
ev pair

〈E1, E2〉 ↪→ 〈V1, V2〉
E ↪→ 〈V1, V2〉

ev fst
fst E ↪→ V1

E ↪→ 〈V1, V2〉
ev snd

snd E ↪→ V2

ev z
z ↪→ z

E ↪→ V
ev s

s E ↪→ s V

E1 ↪→ z E2 ↪→ V
ev case z

(case E1 of z⇒ E2 | s x⇒ E3) ↪→ V

E1 ↪→ s V ′1 [V ′1/x]E3 ↪→ V
ev case s

(case E1 of z⇒ E2 | s x⇒ E3) ↪→ V

Modal Fragment

ev box
box E ↪→ box E

E1 ↪→ box E′1 [E′1/x]E2 ↪→ V2

ev let box
let box x = E1 in E2 ↪→ V2

As usual, the critical step in the proof of type preserva-
tion or subject reduction is a substitution lemma. Due to
the modal contexts its form is slightly unusual, so we state it
here explicitly. Other standard properties such as weakening
are completely straightforward.

Lemma 1 (Substitution)

1. If ∆; Γ `e E1 : A and ∆; (Γ, x:A) `e E2 : B
then ∆; Γ `e [E1/x]E2 : B.

2. If ∆; · `e E1 : A and (∆, x:A); Γ `e E2 : B
then ∆; Γ `e [E1/x]E2 : B.

Proof: By standard, straight-forward inductions on the
typing derivations for E2.

Theorem 2 (Determinacy and Type Preservation)

1. If E ↪→ V then V is a value.

2. If E ↪→ V and E ↪→ V̂ then V = V̂ (modulo renaming
of bound variables).

3. If E ↪→ V and ·; · `e E : A then ·; · `e V : A.

Proof: By inductions over the structure of the derivation D
of E ↪→ V . The cases for the non-modal part are completely
standard. The cases for ev box are trivial and those for
ev let box are straightforward for properties 1 and 2. We
thus show only the ev let box case in the proof of property
3.

3

Case: We have

D =

D1

E1 ↪→ box E′1

D2

[E′1/x]E2 ↪→ V2

ev let box
let box x = E1 in E2 ↪→ V2

and, by inversion on the derivation of E : A,

E1
·; · `e E1 : 2A

E2
x:A; · `e E2 : B

tpe let box
·; · `e let box x = E1 in E2 : B

Then we apply the induction hypothesis to D1 and E1 to
deduce that ·; · `e box E′1 : 2A. Now, again by inversion,
the derivation of this judgment must have the form

D′1
·; · `e E′1 : A

tpe box
·; · `e box E′1 : 2A

Then, from the substitution lemma applied to D′1 and E2
we deduce that ·; · `e [E′1/x]E2 : B. We can then use D2

and the induction hypothesis to deduce that ·; · `e V2 : B, as
required.

We can now justify the claim that the type system of
Mini-ML2e captures the separation of a computation into
stages. We follow the basic criteria for correctness of [Pal93]
in which a modular proof of correctness for binding-time
analyzes was presented.

Suppose that ·; · `e E : 2A and E ↪→ V . By 1 and 3 we
have V ≡ box E′. Thus the result consists only of residual
code to be executed in the next stage. Further, by the modal
restrictions, only terms enclosed by box constructors are
ever substituted into other box constructors. As a result,
the parts of the original program E not enclosed by any
box constructor can be designated “static” since they will
not appear in the residual code E′.

Further, the body of a box constructor can be considered
“dynamic” in the sense that we do not evaluate underneath
the box constructor. The only way for evaluation to proceed
to the body of the box constructor is using the variable
bound by a let box elimination construct to indicate where
the delayed computation should be performed.

2.4 Example: The Power Function in Ex-
plicit Form

We now define the power function in Mini-ML2e in such a
way that has type nat → 2(nat → nat), assuming a closed
term times:nat→ nat→ nat (definable in the Mini-ML frag-
ment in the standard way).

power ≡ fix p:nat→ 2(nat→ nat).
λn:nat. case n

of z ⇒ box (λx:nat. s z)
| s m⇒ let box q = p m in

box (λx:nat. times x (qx))

The type nat → 2(nat → nat) expresses that power
evaluates everything that depends on the first argument of
type nat (the exponent) and returns residual code of type

2(nat → nat). Indeed, we calculate with our operational
semantics:

power z ↪→ box (λx:nat. s z)
power (s z) ↪→ box (λx:nat. times x ((λx:nat. s z)x))

power (s (s z)) ↪→ box (λx:nat. times x
((λx:nat. times x ((λx:nat. s z)x))x))

Modulo some trivial redices of variables for variables, this
is the result we would expect from the partial evaluation of
the power function.

2.5 Implementation Issues

The operational semantics of Mini-ML2e may be imple-
mented by a translation into pure Mini-ML, by the map-
ping:

2A 7→ unit→ A
box E 7→ λu:unit. E

let box x = E1 in E2 7→ (λx′:unit→ A. [x′()/x]E2) E1.

It may then appear that the modal fragment of Mini-ML2e
is redundant. Note, however, that the type unit → A does
not express any binding-time properties, while 2A does. It
is precisely this distinction which makes Mini-ML2e inter-
esting: The type checker will reject programs which may
execute correctly, but for which the desired binding-time
separation is violated. Without the modal operator, this
property cannot be expressed and consequently not checked.

The intended implementation method would be to in-
terpret 2A as a datatype representing code that calculates
a value of type A. The representation must support sub-
stitution of one code fragment into another, as required by
the ev let box rule. If the code is machine code, this nat-
urally leads to the idea of templates, as used in run-time
code generation (see [KEH93]). For many applications this
code would instead be source expressions or some intermedi-
ate language, thus allowing optimization after code substitu-
tion. The deferred compilation approach described in [LL94]
would provide a more sophisticated implementation, sup-
porting fast run-time generation of optimized code.

3 Modal Mini-ML: Implicit Formulation

We now define Mini-ML2, an “implicit” formulation of
modal Mini-ML following the pure system λ→2 in [PW95].
The main advantage of this system over the explicit language
is that altering the staging of a computation often only re-
quires the insertion or deletion of modal constructors. In
contrast, Mini-ML2e requires that the structure of the pro-
gram exactly mirror the staging, since the only way to refer
to results from a previous stage is using variables that are
bound to code outside the enclosing box constructor. Using
let (a derived form in our fragment) to bind code variables
we can still express staging more explicitly in Mini-ML2 if
we prefer; it is now a matter of style rather than a property
enforced in the language.

Another motivation for Mini-ML2 is that it can be di-
rectly related to the two-level λ-calculus (see Section 4)
which would be much more difficult for Mini-ML2e . Fur-
ther, Mini-ML2 is very similar to the quasi-quoting and eval
mechanisms in LISP, which appear to be relatively intuitive
in practice. We believe that with some syntactic sugar along
the lines of Scheme’s backquote and comma notation (as in

4

the regular expression example in Section 5.3), Mini-ML2

would be a practical and theoretically well-founded basis
for an extension of Standard ML.

The operational semantics of the new system is given in
terms of a type-preserving compilation to Mini-ML2e which
resembles the proof of equivalence between λ→2e and λ→2

given in [PW95]. Besides the differences in the explicit
system mentioned earlier, we add here a term constructor
pop. This means that typing derivations for valid terms are
unique and the compilation from implicit to explicit terms is
deterministic, avoiding some unpleasant problems concern-
ing coherence.

The intuition for this system comes from the multiple-
world or Kripke semantics for modal logic [Kri63]. We think
of a world as representing a stage of the computation. Com-
putation is postponed to another stage by applying the box
operator to a term M to generate code. Code may be used
in the current stage with the unbox operator, or in any
future stage by repeated application of the pop operator.
These correspond to reflexivity and transitivity of the ac-
cessibility relation between worlds in the Kripke semantics,
further motivating our choice of the particular modal logic
S4. For some applications, such as the two-level λ-calculus,
weaker modal logics such as K are sufficient, as described in
Section 4.4.

It may be helpful to consider the modal fragment of
the implicit language to be a statically typed analog to the
quasiquote mechanism in Scheme. Then box corresponds
to quasiquote (‘) and unbox (pop ·) to unquote (,).
unbox alone corresponds to eval, while pop alone corre-
sponds to quoting an expression generated with unquote.
Note however that this analogy can also sometimes be mis-
leading, and the actual behavior of code is closer to the
quotations of a “semantically rationalized dialect” of Lisp
called 2-Lisp [Smi84].

3.1 Syntax

Types A ::= nat | A1 → A2 | A1 ×A2 | 2A
Terms M ::= x | λx:A. M | M1 M2

| fix x:A. M
| 〈M1,M2〉 | fst M | snd M
| z | s M
| (case M1 of z⇒M2 | s x⇒ M3)
| box M | unbox M | pop M

Contexts Γ ::= · | Γ, x:A
Context Stacks Ψ ::= · | Ψ; Γ

3.2 Typing Rules

In this section we present typing rules for Mini-ML2 using
context stacks. The typing judgement has the form:

Ψ; Γ `i M : A
Term M has type A in local
context Γ under stack Ψ.

Intuitively, each element ∆ of the context stack Ψ cor-
responds to a computation stage. The variables declared
in ∆ are the ones whose values will be available during the
corresponding evaluation phase. When we encounter a term
box M during typing we enter a new evaluation stage, since
M will be frozen during evaluation of the current stage. In
this new phase, we are not allowed to refer to variables of the

prior phases, since they may not be available when M is un-
frozen using unbox. Thus, variables may only be looked up
in the current, context Γ (rule tpi var) which is initialized as
empty when we enter the body of a box (rule tpi box). How-
ever, code generated in the current or earlier stages may be
used, which is represented by the rules tpi unbox and tpi pop.

λ-calculus Fragment

x:A in Γ
tpi var

Ψ; Γ `i x : A

Ψ; (Γ, x:A) `i M : B
tpi lam

Ψ; Γ `i λx:A. M : A→ B

Ψ; Γ `i M : A→ B Ψ; Γ `i N : A
tpi app

Ψ; Γ `i MN : B

Mini-ML Fragment

Ψ; (Γ, x:A) `i M : A
tpi fix

Ψ; Γ `i fix x:A. M : A

Ψ; Γ `i M1 : A1 Ψ; Γ `i M2 : A2
tpi pair

Ψ; Γ `i 〈M1,M2〉 : A1 × A2

Ψ; Γ `i M : A1 × A2
tpi fst

Ψ; Γ `i fst M : A1

Ψ; Γ `i M : A1 × A2
tpi snd

Ψ; Γ `i snd M : A2

tpi z
Ψ; Γ `i z : nat

Ψ; Γ `i M : nat
tpi s

Ψ; Γ `i sM : nat

Ψ; Γ `i M1 : nat Ψ; Γ `i M2 : A Ψ; (Γ, x:nat) `i M3 : A
tpi case

Ψ; Γ `i (case M1 of z⇒M2 | s x⇒M3) : A

Modal Fragment

Ψ; Γ; · `i M : A
tpi box

Ψ; Γ `i box M : 2A

Ψ; Γ `i M : 2A
tpi unbox

Ψ; Γ `i unbox M : A

Ψ; ∆ `i M : 2A
tpi pop

Ψ; ∆; Γ `i pop M : 2A

3.3 Examples in Implicit Form

We now show how we can define the power function in
Mini-ML2 in a simpler form than in Mini-ML2e , though still
with type nat → 2(nat → nat). We use unboxi M as syn-
tactic sugar for unbox (popi M).

power ≡ fix p:nat→ 2(nat→ nat).
λn:nat. case n

of z ⇒ box (λx:nat. s z)
| s m⇒ box (λx:nat. times x

(unbox1 (p m) x))

As another example, we show how to define a function of
type nat→ 2nat that returns a box’ed copy of its argument:

5

liftnat ≡ fixf :nat→ 2nat.
λx:nat. case x

of z ⇒ box z
| s x′ ⇒ box (s (unbox1 (f x′)))

A similar term of type A → 2A that returns a box’ed
copy of its argument exists exactly when every → in A is
enclosed by a 2. This justifies the inclusion of the lift prim-
itive for base types in two-level languages such as in [GJ91]
and, in a more realistic version of our language, we would
also include it as a primitive.

3.4 Translation to Explicit Language

We do not define an operational semantics for Mini-ML2 di-
rectly; instead we depend upon a translation to Mini-ML2e .
This translation recursively extracts terms inside n nested
pop constructors and binds their translation to new vari-
ables, bound with a let box outside the nth enclosing box
constructor. Variables thus bound occur exactly once.

The compilation from implicit to explicit terms is per-
haps most easily described and understood if we restrict pop
to occur only immediately underneath an unbox or another
pop. On the pure fragment terms then follow the grammar

Terms M ::= x | λx:A. M |M1 M2 | box M | unbox P
Pops P ::= M | pop P

The extension to the full language including recursion is te-
dious but straightforward. Any term can be transformed
to one satisfying our restriction by replacing isolated occur-
rences of pop M by box (unbox (pop (pop M))). We
also define environments and stacks which bind patterns of
the form box x to explicit terms E.

Environments ρ ::= · | ρ,box x = E
Environment Stacks R ::= · | R; ρ

We abstract over an environment by means of nested
let box expressions.

Let(·)(E) = E
Let(ρ,box x = E′)(E) = Let(ρ)(let box x = E′ in E)

The merge operation on environment stacks just appends
the corresponding environments:

· | R = R | · = R
(R1; ρ1) | (R2; ρ2) = (R1 | R2); (ρ1, ρ2)

There are two primary judgements:

M 7→ R > E M compiles to term E under stack R
P 7→x R > ρ P compiles to environment ρ

under stack R binding x

On the fragment we are considering they are defined by the
following rules:

P 7→y R > ρ
pr pop

pop P 7→y (R; ρ) > ·

M 7→ R >E
pr tm

M 7→y R > box y = E

tr var
x 7→ · > x

M 7→ R >E
tr lam

λx:A. M 7→ R > λx:A. E

M1 7→ R1 >E1 M2 7→ R2 >E2
tr app

M1 M2 7→ (R1 | R2) > E1 E2

M 7→ (R; ρ) > E
tr box

box M 7→ R > Let(ρ)(box E)

P 7→y R > ρ
tr unboxy

unbox P 7→ R > Let(ρ)(y)

In the rule tr unboxy the variable y must be new, that is,
it may not occur free in the conclusion. The environment ρ
will always either be empty (in which case y is bound in R)
or a singleton of the form box y = E. Recall that in the
former case, Let(·)(y) = y.

The correctness proof for this translation requires defi-
nitions of well-typed environments and environment stacks.
The latter ties in the context stacks of the implicit system.
We use Θ to range over contexts.

∆; Γ `e ρ : Θ Environment ρ satisfies Θ
in contexts ∆ and Γ

Ψ |=e R : ∆ Environment stack R satisfies ∆
under context stack Ψ

tpv empty
∆; Γ `e · : ·

∆; Γ `e ρ : Θ ∆; Γ `e E : 2A
tpv bind

∆; Γ `e (ρ,box x = E) : (Θ, x:A)

tpr empty
Ψ |=e · : ·

Ψ |=e R : ∆ ∆; Γ `e ρ : Θ
tpr env

Ψ;Γ |=e (R; ρ) : (∆,Θ)

We require a few straightforward properties of environments,
but we explicitly state only the derived typing rule for envi-
ronment abstractions.

∆; Γ `e ρ : Θ (∆,Θ); Γ `e E : B
tpi env

∆; Γ `e Let(ρ)(E) : B

Theorem 3 (Correctness of Compilation)

1. For any M there exist unique R and E such that
M 7→ R > E.

2. For any P and y there exist unique R and ρ such that
P 7→y R > ρ.

3. If Ψ; Γ `i M : A and M 7→ R >E then for some ∆ we
have Ψ |=e R : ∆ and ∆; Γ `e E : A.

4. If Ψ;Γ `i P : 2A and P 7→y R > ρ then for some ∆
and Θ we have Ψ |=e R : ∆ and ∆; Γ `e ρ : Θ with y : A
in ∆ or Θ.

6

Proof: Propositions 1 and 2 are trivial, since the trans-
lations are defined structurally on M with unique results
(modulo renaming of bound variables, of course). Proposi-
tions 3 and 4 follow by mutual induction on the structure of
the derivations of M 7→ R >E and M 7→y R >ρ. The proof
requires a few simple lemmas such as weakening for `e and
some immediate properties of R1 | R2 and Let(ρ)(E) which
we do not state here explicitly. We show only one critical
case in the proof of property 3.
Case:

T =

T1

M1 7→ (R; ρ) > E1

tr box
box M1 7→ R > Let(ρ)(box E1)

By inversion we also have A = 2A1 and

D =

D1

Ψ; Γ; · `i M1 : A1

tpi box
Ψ; Γ `i box M1 : 2A1

By induction hypothesis on T1 and D1 we know there are
∆1 and derivations

V1

Ψ;Γ |=e (R; ρ) : ∆1
and

E1
∆1; · `e E1 : A1

By inversion on V1 we find that ∆1 = (∆′1,Θ) and

V ′1
Ψ |=e R : ∆′1

and
F ′1

∆′1; Γ `e ρ : Θ

Using the derived rule for environment abstraction we have

F ′1
∆′1; Γ `e ρ : Θ

E1
∆′1,Θ; · `e E1 : A1

tpe box
∆′1,Θ; Γ `e box E1 : 2A1

tpi env
∆′1; Γ `e Let(ρ)(box E1) : 2A1

At this point the desired conclusion follows with ∆ = ∆′1
from V ′1 and this derivation.

As an example of the compilation, it maps the definition
of power from Section 3.3 to the one in Section 2.4. Note
that the restructuring achieved by the compiler is similar to
a staging transformation [JS86].

The operational semantics induced by the translation
is very different from the obvious ones defined directly on
Mini-ML2. In [MM94] a simple reduction semantics is in-
troduced for a system similar to the pure fragment of our
implicit system. It does not reflect staging, and is instead
used to prove a Church-Rosser theorem and strong normal-
ization for a pure modal λ-calculus. Similarly, in [PW95]
an algorithm for converting pure modal λ-terms in implicit
form to long normal form is given and proven correct. This
algorithm bears no resemblance to the staged computation
achieved via Mini-ML2e . We also have constructed a direct
operational semantics for Mini-ML2 generalizing [Hat95]
that does capture staging, but prefer the compilation be-
cause it makes operational properties more evident.

4 A Two-level Language

In this section we define Mini-ML2, a two-level functional
language very close to the one described in [NN92]. We
then define a simple translation into Mini-ML2 and prove
that binding-time correctness in Mini-ML2 is equivalent to
modal correctness of the translation in Mini-ML2.

Our language differs slightly from [NN92] in that we in-
ject all run-time types into compile-time types, instead of
just function types. This follows [GJ91], where there is no
such restriction. Also, we find it convenient to divide the
variables and contexts into run-time and compile-time. All
other differences to [NN92] are due to minor differences be-
tween their underlying language and Mini-ML.

4.1 Syntax

Run-time Types τ ::= nat | τ1→τ2 | τ1×τ2
Compile-time Types σ ::= nat | σ1→σ2 | σ1×σ2 | τ

Terms e ::= x | λx:τ. e | e1@e2

| fix x:τ. e
| 〈 e1, e2 〉 | fst e | snd e

| z | s e
| (case e1 of z⇒ e2 | s x⇒ e3)

| y | λy:σ. e | e1@e2

| fix y:σ. e

| 〈 e1, e2 〉 | fst e | snd e
| z | s e
| (case e1 of z⇒ e2 | s y⇒ e3)

Run-time Contexts Γ ::= · | Γ, x:τ
Compile-time Contexts ∆ ::= · | ∆, y:σ

4.2 Typing Rules

Run-time Typing

x:τ in Γ
tpr var

∆; Γ `r x : τ

∆; (Γ, x:τ2) `r e : τ
tpr lam

∆; Γ `r λx:τ2. e : τ2→τ

∆; Γ `r e1 : τ2→τ ∆; Γ `r e2 : τ2
tpr app

∆; Γ `r e1@e2 : τ

∆; (Γ, x:τ) `r e : τ
tpr fix

∆; Γ `r fix x:τ. e : τ

∆; Γ `r e1 : τ1 ∆; Γ `r e2 : τ2
tpr pair

∆; Γ `r 〈 e1, e2 〉 : τ1×τ2
∆; Γ `r e : τ1×τ2

tpr fst
∆; Γ `r fst e : τ1

∆; Γ `r e : τ1×τ2
tpr snd

∆; Γ `r snd e : τ2

tpr z
∆; Γ `r z : nat

∆; Γ `r e : nat
tpr s

∆; Γ `r se : nat

∆; Γ `r e1 : nat ∆; Γ `r e2 : τ ∆; (Γ, x : nat) `r e3 : τ
tpr case

∆; Γ `r (case e1 of z⇒ e2 | s x⇒ e3) : τ

7

∆ `c e : τ
down

∆; Γ `r e : τ

Compile-time Typing

y:σ in ∆
tpc var

∆ `c y : σ

∆, y:σ2 `c e : σ
tpc lam

∆ `c λy:σ2. e : σ2→σ

∆ `c e1 : σ2→σ ∆ `c e2 : σ2
tpc app

∆ `c e1@e2 : σ

∆, y:σ `c e : σ
tpc fix

∆ `c fix y:σ. e : σ

∆ `c e1 : σ1 ∆ `c e2 : σ2
tpc pair

∆ `c 〈 e1, e2 〉 : σ1×σ2

∆ `c e : σ1×σ2
tpc fst

∆ `c fst e : σ1

∆ `c e : σ1×σ2
tpc snd

∆ `c snd e : σ2

tpc z
∆ `c z : nat

∆ `c e : nat
tpc s

∆ `c se : nat

∆ `c e1 : nat ∆ `c e2 : σ ∆, y : nat `c e3 : σ
tpc case

∆ `c (case e1 of z⇒ e2 | s y ⇒ e3) : σ

∆; · `r e : τ
up

∆ `c e : τ

Note that we remove run-time assumptions at the down
rule, while in [NN92] this is done later at the up rule. This
change is justified since by the structure of their rules, such
assumptions can never be used in the compile-time deduc-
tion in between.

4.3 Translation to Implicit Language

The translation to Mini-ML2 is now very simple. We trans-
late both run-time and compile-time Mini-ML fragments di-
rectly, and insert 2, box , unbox and pop to represent the
changes between phases. We define two mutually recursive
functions to do this: ‖ · ‖ is the run-time translation and | · |
is the compile-time translation. We overload this notation
between types, terms, and contexts. We write e and e to
match any term whose top constructor matches the phase
annotation.

Type Translation

‖nat‖ = nat |nat| = nat
‖τ1→τ2‖ = ‖τ1‖ → ‖τ2‖ |σ1→σ2| = |σ1| → |σ2|
‖τ1×τ2‖ = ‖τ1‖ × ‖τ2‖ |σ1×σ2| = |σ1| × |σ2|

|τ | = 2‖τ‖

Term Translation

‖x‖ = x |y| = y

‖λx:τ. e‖ = λx:‖τ‖. ‖e‖ |λy:σ. e| = λy:|σ|. |e|
‖e1@e2‖ = ‖e1‖ ‖e2‖ |e1@e2| = |e1| |e2|

‖fix x:τ. e‖ = fix x:‖τ‖. ‖e‖ |fix y:σ. e| = fix y:|σ|. |e|
‖〈 e1, e2 〉‖ = 〈‖e1‖, ‖e2‖〉 |〈 e1, e2 〉| = 〈|e1|, |e2|〉
‖fst e‖ = fst ‖e‖ |fst e| = fst |e|
‖snd e‖ = snd ‖e‖ |snd e| = snd |e|
‖z‖ = z |z| = z
‖s e‖ = s ‖e‖ |s e| = s |e|

‖case e1 of z⇒ e2 | s x⇒ e3‖ =
case ‖e1‖ of z⇒ ‖e2‖ | s x⇒ ‖e3‖

|case e1 of z⇒ e2 | s y ⇒ e3| =
case |e1| of z⇒ |e2| | s y ⇒ |e3|

‖e‖ = unbox (pop |e|) |e| = box ‖e‖

Context Translation

‖ · ‖ = · | · | = ·
‖Γ, x:τ‖ = ‖Γ‖, x:‖τ‖ |∆, y:σ| = |∆|, y:|σ|

4.4 Equivalence of Binding Time Correct-
ness and Modal Correctness

In this section we state our main theorem, which is that
binding-time correctness is equivalent to modal correctness
of the translation to Mini-ML2. We write D :: (J) if D is a
derivation of judgment J .

Theorem 4 (Conservative Embedding)

1. If ‖e‖ = M then:

(a) if Dr :: (∆; Γ `r e : τ) then
we have Di :: (|∆|; ‖Γ‖ `i M : ‖τ‖);

(b) if Di :: (|∆|; ‖Γ‖ `i M : A) then
we have Dr :: (|∆|; ‖Γ‖ `r e : τ) with ‖τ‖ = A.

2. If |e| = M then:

(a) if Dc :: (∆ `c e : σ) then
we have Di :: (|∆| `i M : |σ|);

(b) if Di :: (|∆| `i M : A) then
we have Dc :: (∆ `c e : σ) with |σ| = A.

Proof: By simultaneous induction on the definitions of ‖e‖
and |e|. Note that we can take advantage of strong inversion
properties, since we have exactly one typing rule for each
term constructor in Mini-ML2 and Mini-ML2, plus the up
and down rules to connect the `c and `r judgements.

We only show the two cases involving both definitions,
since all others are easy. Note that for variables we need to
rely on the phase annotations.
Case: ‖e‖ = unbox (pop |e|). To show part 1a we note
that by inversion we have

Dr =

D′c
∆ `c e : τ

down
∆; Γ `r e : τ

8

Applying part 2a of the induction hypothesis to D′c yields
D′i from which we construct

Di =

D′i
|∆| `i |e| : 2‖τ‖

tpi pop
|∆|;‖Γ‖ `i pop |e| : 2‖τ‖

tpi unbox
|∆|; ‖Γ‖ `i unbox (pop |e|) : ‖τ‖

Now, to show part 1b we note that we can reverse the
roles of the inversion and proof construction above, and use
part 2b of the induction hypothesis.
Case: |e| = box ‖e‖ To show part 2a we note that by
inversion we have

Dc =

D′r
∆; · `r e : τ

up
∆ `c e : τ

Applying part 1a of the induction hypothesis to D′r yields
D′i from which we construct

Di =

D′i
|∆|; · `i ‖e‖ : ‖τ‖

tpi box
|∆| `i box ‖e‖ : 2‖τ‖

Now, to show part 2b we note that again we can reverse
the roles of the inversion and proof construction and use
part 1b of the induction hypothesis.

The translation and proof can be easily generalized from
a two-level language to a B-level language [NN92] with an
infinite linear ordering. In this case the image of the transla-
tion on well-typed terms is exactly the fragment Mini-ML2K ,
where unbox and pop are replaced by a combined construc-
tor unbox1. This fragment corresponds to a weaker modal
logic, K, in which we drop the assumption in S4 that the ac-
cessibility relation is reflexive and transitive [MM94]. Thus
a corollary of the generalized theorem is that Mini-ML2K is
equivalent to a B-level language, since the translation is then
a typing-preserving bijection.

5 Examples

We now present some standard examples from partial eval-
uation to illustrate the expressiveness of our language
Mini-ML2. We use let x = E1 in E2 to introduce (non-
polymorphic) top-level definitions; it may be considered as
syntactic sugar for (λx:A. E2) E1.

5.1 Ackermann’s Function

We now present a program for calculating Ackermann’s
function that specializes to the first argument. It is based
on the following program:

let ackermann =
fix acker:nat→ nat→ nat.
λm:nat. case m

of z ⇒ λn:nat. sn
| s m′⇒ λn:nat. case n

of z ⇒ acker m′ (s z)
| s n′⇒ (acker m′ (acker m n′))

in . . .

Now, if we attempt to directly insert the modal con-
structors to divide this program into two stages, we get the
following:

let ackermann =
fix acker:nat→ 2(nat→ nat).
λm:nat. case m

of z ⇒ box (λn:nat. sn)
| s m′⇒ box (λn:nat. case n

of z ⇒ (unbox1 (acker m′)) (s z)
| s n′⇒ (unbox1 (acker m′))

((unbox1 (acker m))
n′))

in . . .

Unfortunately, when applied to the first argument, this
function generally will not terminate. This is a common
problem in partial evaluation, and the usual solution is to
employ memoization during specialization, which works for
many programs. Here we will simply note that the problem
in this case is a recursive call to acker m while calculating
acker m, which can be removed by adding an additional fix
as follows.

let ackermann =
fix acker:nat→ 2(nat→ nat).
λm:nat. case m

of z ⇒ box (λn:nat. s n)
| s m′⇒ box (fix ackm. λn:nat.

case n
of z ⇒ (unbox1 (acker m′)) (s z)
| s n′⇒ (unbox1 (acker m′))

(ackm n′))
in . . .

This function will always terminate. The recursive appli-
cations appearing inside unbox_1 constructors are evaluated
when the first argument is given. The compilation of this
function to Mini-ML2e makes this more explicit:

let ackermann =
fix acker:nat→ 2(nat→ nat).
λm:nat. case m

of z ⇒ box (λn:nat. s n)
| s m′⇒ let box f = acker m′ in

let box g = acker m′ in
box (fix ackm. λn:nat.
case n

of z ⇒ f (s z)
| s n′⇒ g (ackm n′))

in . . .

Notice that acker m’ is unnecessarily calculated twice.
This would be avoided if memoization was employed during
the compilation or if we had explicitly bound a variable to
the result of this computation.

5.2 Inner Products

In [GJ95] the calculation of inner products is given as an
example of a program with more than two phases. We now
show how this example can be coded in Mini-ML2. We as-
sume a data type vector in the example, along with a func-
tion sub:nat → vector → nat to access the elements of a
vector.

9

Then, the inner product example without staging is ex-
pressed in Mini-ML as follows:

let iprod =
fix ip:nat→ vector→ vector→ nat.
λn:nat. case n
of z ⇒ λv:vector. λw:vector. z
| s n′⇒ λv:vector. λw:vector.

plus (times (sub n v) (sub n w))
(ip n′ v w)

in . . .

We add in 2, box and unboxi to get a function with
three computation stages, which is shown in Figure 1. We
assume a function liftnat as defined earlier and a function
sub′:nat → 2(vector → nat) which is a specializing version
of sub, that perhaps pre-computes some pointer arithmetic
based on the array index. We first define a staged version
times ′ of times which avoids the multiplication in the spe-
cialization if the first argument is zero. This will speed up
application of iprod ′ to its third argument, particularly in
the case that the second argument is a sparse vector.

The last four lines show how to execute the result of a
specialization using unbox without pop (corresponding to
eval in Lisp). Also, the occurrence of unbox2 indicates code
used at the third stage but generated at the first. These two
aspects could not be expressed within a multi-level language.

Note the erasure of the unboxi and box constructors
in iprod ′ leaves iprod , except that we used a different ver-
sion of multiplication. The operational semantics of the two
programs is of course quite different.

5.3 Regular Expression Matching

We now present a program for regular expression matching
that specializes to a particular regular expression. We use
the full Standard ML language, augmented with our modal
constructors. Our program is based on the non-specializing
one in Figure 2, which makes use of a continuation function
that is called with the remaining input if the current match-
ing succeeds. We assume the following datatype declaration:

datatype regexp
= Empty
| Plus of regexp * regexp
| Times of regexp * regexp
| Star of regexp
| Const of string

Note that there is a recursive call to acc (Star(r)) in
the case for acc (Star(r)) which we can transform using
a local definition, similar to the fix introduced in the Ack-
ermann function example. This must be done so that spe-
cialization with respect to the regular expression terminates.
The resulting code for this case is:

| acc (Star(r)) k s =
let fun accStar k s =

k s orelse
acc r

(fn ss => if s = ss then false
else accStar k ss)

s
in

accStar k s
end

Then, we can add in modal constructors to get the staged
program in Figure 3 with the following types (using $ here
to represent 2)

val acc2 : regexp -> $((string list -> bool) ->
(string list -> bool))

val accept2 : regexp -> $(string list -> bool)

These types indicate that the required staging is achieved
by the program. Inserting the modal constructors re-
quires breaking up the function arguments, but is other-
wise relatively straightforward. We use ‘ for box and ^
for unbox1 ≡ unbox (pop ·). More generally, we suggest
using ^n for unboxn ≡ unbox (popn ·).

We can now use our compilation to the explicit language
Mini-ML2e to get an equivalently staged program. We can
then further translate to a program in pure Standard ML,
which is staged in the same way, but without the modal an-
notations, as shown in Figure 4. It is unnecessary to replace
$A by unit -> A in this case, since ‘ is only applied to val-
ues. We show this program only to demonstrate the staging
described by the the modal annotated program. The pro-
gram in Mini-ML2e has the potential to be more efficient,
since optimized code can be generated by a sophisticated
implementation.

6 Conclusion and Future Work

In this paper we have proposed a logical interpretation of
binding times and staged computation in terms of the in-
tuitionistic modal logic S4. We first presented an explicit
language Mini-ML2e (including recursion, natural numbers,
and pairs) and its natural operational semantics. We contin-
ued by defining an implicit language Mini-ML2 which might
serve as the core for an extension of a language with the
complexity of Standard ML, perhaps with the addition of
some syntactic sugar along the lines of Lisp’s backquote and
comma notation. The operational semantics of Mini-ML2 is
given by a type-preserving compilation to Mini-ML2e . Fur-
ther, Mini-ML2 generalizes Nielson & Nielson’s two-level
functional language [NN92] which is demonstrated by a con-
servative embedding theorem, the main technical result of
this paper.

Our investigation remains at a relatively abstract level,
thus providing a general framework in which various stag-
ing mechanisms may be studied from a new point of view.
Concrete instances such as partial evaluation, runtime code
generation, or macro expansion will require some additional
considerations for their effective use and efficient implemen-
tation.

For example, the two-level language we consider,
Mini-ML2, is directly based on the one in [NN92]. This
has a stricter binding-time correctness criterion than used,
for example, in [GJ91], even taking into account that the
run-time part of the latter is dynamically typed. Essen-
tially, this restriction may be traced to the fact that our
underlying evaluation model applies only to closed terms,
while [GJ91] requires manipulation of code with free vari-
ables. Thus, our system allows the inclusion of the unbox
operator to evaluate closed code fragments, with no danger
of encountering unbound variables.

Glück and Jørgensen [GJ95] have presented a multi-level
binding-time analysis, along with practical motivations for
multi-level partial evaluation, and also use the less strict
binding-time correctness criterion. In other work [Dav95]

10

let times ′:2(nat→ 2(nat→ nat)) =
box (λm:nat. case m

of z ⇒ box (λn:nat. z)
| s m′⇒ box (λn:nat. times n (unbox1 (liftnat m))))

in let iprod ′ = fix ip:nat→ 2(vector → 2(vector→ nat)).
λn:nat. case n

of z ⇒ box (λv:vector. box (λw:vector. z))
| s n′⇒ box (λv:vector. box (λw:vector.

plus (unbox1 (unbox1 times ′(unbox1 (sub′ n) v))
(unbox2 (sub′ n) w))

(unbox1 (unbox1 (ip n′) v) w)))
in let iprod3 : 2(vector → 2(vector→ nat)) = iprod ′ 3
in let iprod3a : 2(vector→ nat) = unbox iprod3 [7, 0, 9]
in let iprod3b : 2(vector → nat) = unbox iprod3 [7, 8, 0]
in . . .

Figure 1: Staged code for inner product.

one of the present authors has shown that the © (“next”)
operator from non-branching temporal logic exactly mod-
els this looser correctness criterion. In future work we will
consider how aspects of both type systems can be combined
to allow both manipulation of code with free variables and
type-safe evaluation of code in the same language.

Sheard and Nelson [SN95] have investigated a two-level
extension of Standard ML based on [NN92], with the par-
ticular aim of statically typing program generators. They
show that a form of dependent types allow a larger class of
program generators to be typed. The use of two-level pro-
gram generators is similar to using Mini-ML2 to perform
macro expansion, however Mini-ML2 would also allow more
general forms of computation staging. It is interesting to
consider whether it would useful to add a form of depen-
dent types to Mini-ML2.

We have shown how some standard examples of special-
ization can be expressed in Mini-ML2. More complicated
examples would generally require polyvariant specialization,
which could be provided to the programmer as a library
function that memoized when generating code. Further,
this approach could be extended to prevent code copying
during specialization. See [BW93] for a description of a re-
alistic partial evaluator for Standard ML and [JGS93] for
an overview of standard techniques and examples of partial
evaluation.

Our language Mini-ML2 requires the insertion of the
box, unbox and pop operators into a functional program.
These operators may be considered implicit coercions in a
system of subtypes, where type inference corresponds to
a form of generalized, polyvariant binding-time analysis.
Principal types will only exist if we add restricted intersec-
tions, yielding a form of refinement types [FP91], but such a
system would nonetheless raise serious coherence problems.
Practical experience with larger examples will have to show
how much inference along these lines is desirable and feasi-
ble.

We have omitted polymorphism in this paper, though
ML-style polymorphism would only require the addition of
a let construct. Variables thus bound would be restricted
in the same way as λ-bound variables. Polymorphic code
could be manipulated by also generalizing the types of vari-
ables bound by the let box elimination construct, with the
familiar restrictions required in a call-by-value setting. Ex-

plicit polymorphism could also be added easily, following
work on higher-order modal logics. Further, we expect our
type system to interact very well with SML’s module sys-
tem. In fact, part of our original motivation was to provide
the programmer with means to specify binding-time infor-
mation in a signature and thus propagate it beyond module
boundaries.

Our approach provides a general logically motivated
framework for staged computation that includes aspects of
both partial evaluation and run-time code generation. As
such it allows efficient code to be generated within a declar-
ative style of programming, and provides an automatic check
that the intended staging is achieved. We have implemented
a simple version of Mini-ML2 in the logic programming lan-
guage Elf [Pfe91]. To date we have only experimented with
small examples, but we are planning a more realistic imple-
mentation to carry out larger experiments.

7 Acknowledgements

We gratefully acknowledge discussions with Lars Birkedal,
Olivier Danvy, Joëlle Despeyroux, Andrzej Filinski, Robert
Glück, Bob Harper, Fritz Henglein, Neil Jones, Jesper
Jørgensen, Peter Lee, Mark Leone, Karoline Malmkjær,
Greg Morrisett, Jens Palsberg, Morgan Price, Michael
Schwartzbach, Morten Welinder, Hao-Chi Wong and David
Wright regarding the subject of this paper.

11

(* val acc : regexp -> (string list -> bool) ->
(string list -> bool) *)

fun acc (Empty) k s = k s
| acc (Plus(r1,r2)) k s = acc r1 k s orelse

acc r2 k s
| acc (Times(r1,r2)) k s =

acc r1 (fn ss => acc r2 k ss) s
| acc (Star(r)) k s =

k s orelse
acc r (fn ss => if s = ss then false

else acc (Star(r)) k ss) s
| acc (Const(str)) k (x::s) =

(x = str) andalso k s
| acc (Const(str)) k (nil) = false

(* val accept : regexp -> (string list -> bool) *)
fun accept r s =

acc r (fn nil => true | (x::l) => false) s

Figure 2: Unstaged regular expression matcher

(* val acc2 : regexp -> $((string list -> bool) ->
(string list -> bool)) *)

fun acc2 (Empty) = ‘ fn k => fn s => k s
| acc2 (Plus(r1,r2)) = ‘ fn k => fn s =>

^(acc2 r1) k s orelse
^(acc2 r2) k s

| acc2 (Times(r1,r2)) = ‘ fn k => fn s =>
^(acc2 r1) (fn ss => ^(acc2 r2) k ss) s

| acc2 (Star(r)) = ‘ fn k => fn s =>
let fun acc2Star k s =

k s orelse
^(acc2 r)

(fn ss => if s = ss then false
else acc2Star k ss)

s
in

acc2Star k s
end

| acc2 (Const(str)) = ‘ fn k =>
(fn (x::ss) =>

(x = ^(lift_string str))
andalso k ss

| nil => false)

(* val accept2 : regexp ->
$(string list -> bool) *)

fun accept2 r = ‘ fn s =>
^(acc2 r) (fn nil => true | (x::l) => false) s

Figure 3: Modally staged regular expression matcher

(* val acc3 : regexp -> (string list -> bool)
-> (string list -> bool) *)

fun acc3 (Empty) = (fn k => fn s => k s)
| acc3 (Plus(r1,r2)) =

let val a1 = acc3 r1
val a2 = acc3 r2

in
(fn k => fn s => a1 k s orelse a2 k s)

end
| acc3 (Times(r1,r2)) =

let val a1 = acc3 r1
val a2 = acc3 r2

in
(fn k => fn s => a1 (fn ss => a2 k ss) s)

end
| acc3 (Star(r1)) =

let val a1 = acc3 r1
fun acc3Star k s =

k s orelse
a1 (fn ss => if s = ss then false

else acc3Star k ss)
s

in
(fn k => fn s => acc2 k s)

end
| acc3 (Const(str)) =

(fn k => (fn (x::s) => (x = str) andalso k s
| nil => false))

(* val accept3 : regexp ->(string list -> bool) *)
fun accept3 r =

acc3 r (fn nil => true | (x::l) => false)

Figure 4: Pure SML staged regular expression matcher

12

References

[BdP92] Gavin Bierman and Valeria de Paiva. Intu-
itionistic necessity revisited. In Proceedings of
the Logic at Work Conference, Amsterdam, Hol-
land, December 1992.

[BW93] Lars Birkedal and Morten Welinder. Partial
evaluation of Standard ML. Master’s thesis,
University of Copenhagen, Department of Com-
puter Science, 1993. Available as Technical Re-
port DIKU-report 93/22.

[CDDK86] Dominique Clément, Joëlle Despeyroux, Thierry
Despeyroux, and Gilles Kahn. A simple applica-
tive language: Mini-ML. In Proceedings of the
1986 Conference on LISP and Functional Pro-
gramming, pages 13–27. ACM Press, 1986.

[Dav95] Rowan Davies. A temporal-logic approach to
binding-time analysis. Research Series RS-95-
51, BRICS, Department of Computer Science,
University of Aarhus, October 1995.

[FP91] Tim Freeman and Frank Pfenning. Refinement
types for ML. In Proceedings of the SIGPLAN
’91 Symposium on Language Design and Im-
plementation, Toronto, Ontario, pages 268–277.
ACM Press, June 1991.

[GJ91] Carsten Gomard and Neil Jones. A partial eval-
uator for the untyped lambda-calculus. Journal
of Functional Programming, 1(1):21–69, January
1991.

[GJ95] Robert Glück and Jesper Jørgensen. Effi-
cient multi-level generating extensions for pro-
gram specialization. In S.D. Swierstra and
M. Hermenegildo, editors, Programming Lan-
guages, Implementations, Logics and Programs,
pages 259–278. Springer-Verlag LNCS 982,
September 1995.

[Hat95] John Hatcliff. Mechanically verifying the cor-
rectness of an offline partial evaluator. In
S.D. Swierstra and M. Hermenegildo, editors,
Programming Languages, Implementations, Log-
ics and Programs. Springer-Verlag LNCS 982,
September 1995.

[Hen91] Fritz Henglein. Efficient type inference
for higher-order binding-time analysis. In
J. Hughes, editor, Functional Programming Lan-
guages and Computer Architecture, 5th ACM
Conference, pages 448–472. Springer-Verlag
LNCS 523, 1991.

[JGS93] Neil D. Jones, Carsten Gomard, and Peter Ses-
toft. Partial Evaluation and Automatic Program
Generation. Prentice Hall, 1993.

[Jon91] Neil D. Jones. Efficient algebraic operations
on programs. In T. Rus, editor, AMAST Pre-
liminary Proceedings, University of Iowa, April
1991. A version appears as a chapter in [JGS93].

[JS86] Ulrik Jørring and William L. Scherlis. Compil-
ers and staging transformations. In Conference
Record of the Thirteenth Annual ACM Sympo-
sium on Principles of Programming Languages,
pages 86–96, St. Petersburg Beach, Florida, Jan-
uary 1986.

[KEH93] David Keppel, Susan J. Eggers, and Robert R.
Henry. A case for runtime code generation.
Technical Report TR 93-11-02, Department of
Computer Science and Engineering, University
of Washington, November 1993.

[Kri63] Saul A. Kripke. Semantic analysis of modal
logic. I: Normal propositional calculi. Zeitschrift
für Mathematische Logik und Grundlagen der
Mathematik, 9:67–96, 1963.

[LL94] Mark Leone and Peter Lee. Deferred compila-
tion: The automation of run-time code genera-
tion. In Proceedings of the Workshop on Par-
tial Evaluation and Semantics-based Program
Manipulation (PEPM’94), Orlando, June 1994.
An earlier version appears as Carnegie Mellon
School of Computer Science Technical Report
CMU-CS-93-225, November 1993.

[MM94] Simone Martini and Andrea Masini. A com-
putational interpretation of modal proofs. In
H. Wansing, editor, Proof theory of Modal Log-
ics. Kluwer, 1994. Workshop proceedings.

[Mog89] Eugenio Moggi. Computational lambda calculus
and monads. In Proceedings of the Fourth Sym-
posium on Logic in Computer Science, pages 14–
23, Asilomar, California, June 1989. IEEE Com-
puter Society Press.

[NN92] Flemming Nielson and Hanne Riis Nielson. Two-
Level Functional Languages. Cambridge Univer-
sity Press, 1992.

[Pal93] Jens Palsberg. Correctness of binding time
analysis. Journal of Functional Programming,
3(3):347–363, July 1993.

[Pfe91] Frank Pfenning. Logic programming in the LF
logical framework. In Gérard Huet and Gordon
Plotkin, editors, Logical Frameworks, pages 149–
181. Cambridge University Press, 1991.

[PW95] Frank Pfenning and Hao-Chi Wong. On a modal
λ-calculus for S4. In S. Brookes and M. Main,
editors, Proceedings of the Eleventh Conference
on Mathematical Foundations of Programming
Sematics, New Orleans, Louisiana, March 1995.

[Smi84] Brian Cantwell Smith. Reflection and semantics
in Lisp. In Proceedings of the Eleventh Annual
ACM Symposium on Principles of Programming
Languages, Salt Lake City, pages 23–35. ACM,
January 1984.

[SN95] Tim Sheard and Neal Nelson. Type safe ab-
stractions using program generators. Technical
Report OGI-TR-95-013, Oregon Graduate Insti-
tute of Science and Technology, Department of
Computer Science, 1995.

13

