
An Approach to Teaching to Write Safe and Correct Imperative
Programs — even in C∗

Iliano Cervesato
Carnegie Mellon University

iliano@cmu.edu

Thomas J. Cortina
Carnegie Mellon University

tcortina@cs.cmu.edu

Frank Pfenning
Carnegie Mellon University

fp@cs.cmu.edu

Saquib Razak
Carnegie Mellon University

srazak@cmu.edu

ABSTRACT
C is widely used for low-level system programming. As such, it is a
staple of systems courses. Manual memory management, undefined
behaviors and the many other vagaries of C make it challenging
to learn (and teach). In this paper, we describe our approach to
teaching safe and correct imperative programming in C. It is based
on first exposing students to a custom programming language that
is a small safe subset of C, augmented with a layer of executable
contracts. These contracts allow students to express the pre- and
post-conditions of functions, to write loop invariants, and to capture
data structure invariants. Contracts help students gain a deeper
understanding of their code, thereby preempting many unsafe or
incorrect statements. Being executable, contracts allow them to
quickly identify remaining bugs. Once students have mastered
writing safe and correct code in this language, we transition them
to C.We have adapted our introductory data structures course (CS2)
to use this custom language. This experience report is based on
teaching this course for the last eight years to many thousand CS
majors and non-majors.

CCS CONCEPTS
• Social and professional topics → Computing education; •
Theory of computation → Program reasoning; • Software
and its engineering→ Imperative languages;

KEYWORDS
Teaching C; Imperative Programming; Safety; Correctness; Exe-
cutable contract

1 INTRODUCTION
The C programming language [10] remains as popular as ever for
writing low-level system code.1 Therefore, many curricula that
teach hands-on courses on networking, embedded system, oper-
ating systems and the like need to acquaint their students with
the C programming language. Teaching students to become pro-
ficient in C is a challenge as they encounter, often for the first
time, the well-known complexities of this language, such as manual
memory management, undefined behavior on out-of-bounds array
accesses, arithmetic overflow, and implicit casts, which confound
even experienced programmers [18].

∗Draft manuscript, January 2019
1According to the August 2018 TIOBE index, C is the second most popular program-
ming language overall, just after Java and well ahead of C++ and Python.

The purpose of this paper is to describe the approach that our
university has taken to address this challenge at the undergraduate
level. This approach revolves around three main ideas:
• We separate the task of teaching students low-level impera-
tive programming from exposing them to the idiosyncrasies of
the C language. We achieve the former by starting them off
in a safe subset of C called C0 (pronounced “C-naught”). C0 is
garbage-collected, checks for out-of-bounds array accesses and
null-pointer dereferences, permits no casts, and has an unam-
biguous semantics for arithmetic expressions based on modular
arithmetic. Once students have mastered writing substantial pro-
grams in C0, we transition them to full-fledged C: it is at this point
that they learn to manage memory explicitly, become acquainted
with some of the more common undefined and implementation-
defined behaviors of C, and get exposed to popular idioms and
pitfalls of this language. Students hone their C programming
skills on several more projects.

• One of the difficulties of writing imperative code is keeping
track of the many moving parts of a program or even a mid-
size function. Failure to do so results in programs that crash
unexpectedly or compute incorrect answers. Beginners are par-
ticularly affected, as they have not yet gained the experience
and developed techniques to mitigate these problems. This re-
sults in long and frustrating debugging seances, often rooted in
trial and error. We addressed this issue by engineering a layer of
executable contracts [11] into our language. The contract layer
supports writing pre- and post-conditions, loop invariants as well
as generic assertions. Contracts achieve two purposes: first, by
having them write contracts in their code, students are trained
to think about what they want this code to do, which gives them
the deep understanding needed to write safe and correct pro-
grams; second, because contracts in C0 are executable, they help
students quickly identify and fix many lingering bugs. We call
this approach deliberate programming. We have written a small
contract library for C, which allows students to continue using
these tools once they transition to C.

• Given that several of our advanced undergraduate courses rely on
C, a question is when to teach this language within our curricu-
lum. We postulated that a good place to do so is in our introduc-
tion to data structures course — essentially our CS2. Therefore,
students at our university learn to use and implement stacks,
hash tables, trees and other data structures at the same time as
they learn C. More precisely, they learn the majority of these
data structures using C0, which is safe and well behaved, with

https://www.tiobe.com/tiobe-index/

Iliano Cervesato, Thomas J. Cortina, Frank Pfenning, and Saquib Razak

just a few additional data structures (mainly graphs) taught after
the transition to C. This course is taken by CS majors and non-
majors alike. In fact, nowadays, approximately two thirds of all
students who start at our university each year take this course,
most during their freshman year.

Our university has relied on this approach to teaching C, as well as
basic data structures, for the past eight years. As we rolled it into
our curriculum (initially just for CS majors), student performance
in our systems courses did not decline and in fact has improved as
more non-majors started taking them. This experiment is now well
beyond its pilot phase at our university and we postulate that it can
be adapted or even replicated at other institutions. In fact, we are
in the process of producing an online version of our introduction
to data structure course, which will facilitate adoption.

The rest of this paper is structured as follows: after reviewing
related work in Section 2, we elaborate on the three main ideas of
our experiment, the design of C0 in Section 3, deliberate program-
ming in Section 4, and highlights of our data structures course in
Section 5. We then proceed to an evaluation of our approach in
section 6. We discuss directions of future work in Section 7.

2 RELATEDWORK
Contracts have been used in programming languages for quite
some time. Design-by-contract is a technique that describes the
interface between a client and a library in terms of what the library
expects and what it delivers [13–15]. These specifications are not
executed in most programming languages and it is the responsibil-
ity of the programmer to check for these contracts using assertions.
Our work is most closely related to design-by-contract techniques
implemented as part of the Eiffel programming language [11, 12].
Eiffel presents design-by-contract in the context of object-oriented
design where subtasks use pre-conditions that the clients of the
code need to fulfil and specify post-conditions as the deliverables
for these subtasks. The class invariants aim to keep the state of
each object consistent with its purpose. In the course presented in
this paper, we focus on using contracts to prove the correctness of
code at the algorithmic level using loop-invariants to prove post-
conditions and data-structure invariants to specify consistency of
data structures. The focus is to help students develop good program-
ming habits in the imperative domain. Although the importance
of teaching introductory programming through contracts was em-
phasised more than two decades back in [20], to the best of our
knowledge, the course design presented in this paper is the first
time contracts are incorporate as an intrinsic part of a whole course
on imperative programming.

Work has been done to add functionality to existing languages
in order to provide executable contract support. Handshake is a
library that adds contracts to Java without any modification to
the Java Virtual Machine or library classes [6]. The Java Modeling
Language (JML) provides specification constructs like pre- and
post-conditions and invariants [5]. C0 was heavily inspired by JML.

Language subsetting is another area of active work in teaching
introductory programming courses. In language subsetting, a subset
of a standard programming language is used to introduce students
to programming concepts. One of the most common examples
of language subsetting is Dr. Scheme used to teaching functional

paradigm to students [8]. MiniJava is a subset of Java that allows
students to focus on the fundamental concepts of object-oriented
programming rather than onmundane details [17]. Cyclone is a safe
dialect of C that performs static analysis of code in order to prevent
safety violations [9]. Cyclone adds run-time checks in compiled
code in places where static analysis cannot determine the safety of a
program.Where Cyclone takes on the responsibility of checking for
code safety, design of C0 forces the students/programmers to think
about code safety, while making sure that language specification
itself does not allow for undefined behavior. Nina et al. designed a
CS1 course where “programming by contract” was a fundamental
principle of the course [16]. This course focused on the “object first”
approach to teaching object-oriented programming to students
with no programming background. The course used an external
library to check for the validity of pre-conditions. In the design
of our course, we focus on safety and correctness of programs
and algorithms using loop invariants to prove post-condition for
correctness in functions and imposing invariants preserve data
struture consistency in the imperative domain.

3 LANGUAGE DESIGN
Central to our approach to teaching C is our reliance on C0. This
language is largely a subset of C, so that students program in C
from day one2. It protects students from the vagaries of C by being
free of undefined behaviors: executing an instruction in C0 either
works like in C (or is compatible with the C99 standard) or it aborts
execution.

In this section, we review the structure of C0 and justify various
design decisions. The contract sublanguage of C0 is the subject of
Section 4. We provide the students with a compiler and an inter-
preter for C0 as well as several small libraries, mostly dealing with
input/output and strings. The current compiler performs parsing,
type checking, and verifies some properties of the static semantics
(for example, that variables are initialized before they are used),
and then produces C code as output, which is in turn compiled to
an executable. The interpreter performs the same checks but then
executes the program directly.

3.1 Type Structure
The type structure of C0 is as simple as we could reasonably make
it and still write natural programs to implement many common
algorithms and data structures.
• int. Integers are interpreted in modular arithmetic with a 32-bit
two’s complement representation. They also support bit-wise
operations so one can implement, for example, image manipu-
lations using integer arrays in the ARGB color model. A salient
difference to C is that the results of all operations are defined.
The behavior of integer operations is therefore consistent with
the C specification.

• bool. Booleans have just two values, true and false, and can
be tested with conditionals as well as the usual short-circuiting
conjunction && and disjunction ||. While consistent with C (the
C library <stdbool> provides the type bool), booleans are not
conflated with ints, avoiding common mistakes and providing a

2A handful of the most perilous primitives of C have been given new names in C0 to
avoid confusion when later transitioning to C.

Teaching to Write Safe and Correct Imperative Programs — even in C

clear foundation for contracts which are expressed as boolean
expressions (see Section 4).

• t[], arrays of values of type t . C0 distinguishes arrays from point-
ers. Arrays have a fixed size determined at allocation time, and
are compiled so that array accesses can be dynamically checked
to be in array bounds. In C, the type t[] would be written as t*,
and does not provide the opportunity for bounds checks.

• t*, pointers to cells holding values of type t . Pointers may be
NULL. Unlike C, we cannot perform any pointer arithmetic on
values of type t*. C0 supports generic pointers, whose type is
void*, that need to be converted to a concrete pointer type (for
example int*) before they can be accessed. Non-null pointers
of type void* are internally tagged with the actual type of the
cell they point to (for example int*) and attempting to access
them as pointers of a different type aborts execution. Tags can
be checked (only) in contracts to ensure safety.

• struct s, the type of structs (also called records) with name s .
Structs must be explicitly declared.

• char. These are ASCII characters as in C, restricted on the range
from 0 to 127. They cannot be cast to or from ints.

• string. String are an immutable abstract type, but the runtime
system provides library functions to convert between strings and
character arrays (char[]). This design spares novices from the
pitfalls of the representation of strings in C as NUL-terminated
character sequences.

• Function types. Just like in C, the functions declared in a pro-
gram can be passed as argument to other functions and stored in
data structures. This supports forms of abstractions like defining
generic hash tables, where the hashing function depends on the
type of the value to be hashed.

Absent are different-size integers, which are best introduced when
transitioning to C, floating point numbers which make reasoning
about code difficult due to rounding errors, and advanced type
constructors such as unions.

Because we distinguish arrays and pointers, and consequently
array access and pointer dereference, and further disallow pointer
arithmetic, C0 permits a simple type-safe and memory-safe im-
plementation. In particular, it is amenable to garbage collection,
avoiding the problems of malloc and free. We currently use the
conservative Boehm-Weiser collector [4]. This is of significant ben-
efit to the students, who can write complex data structures without
having to worry about obscure segmentation faults or bus errors.

3.2 Control Structure
The control structure of C0 is quite conventional. C0 separates
expressions from statements, where assignments are considered
statements, eliminating yet another class of nefarious bugs. Unlike
C, expressions are guaranteed to be evaluated from left to right,
eliminating another source of implementation-dependent — thus
unpredictable — behavior. Variables must be declared and initialized
before use, which is checkedwith a simple dataflow analysis. Arrays,
when allocated, are initialized with default values for each type.
We have conditionals (if and if/else) and loops (while and for).
Functions take a fixed number of arguments of fixed types, and
either return a value of fixed type or no value (void).

3.3 Transition to C
As we said, C0 programs are for the most part valid C programs.
The effort to turn a valid C0 program into a syntactically correct
C program is minimal: replace [] by *, replace the primitives for
allocating arrays and pointers with malloc, and change string to
char*. In other words, students are secretly using and learning
(almost) C all along! In this way, we follow Felleisen’s advice [7] to
present a language in enforced layers. On the other hand, wanting
to reason soundly about programs means that C0 cannot always
be semantically compatible with some concrete C compilers. For
example, an overflowing addition must be handled according to
modular arithmetic laws in C0, but the result is undefined for C.

The transition to C is then centered on pointing out a few major
differences.
Undefined behaviors of C. We highlight the most common un-
defined behaviors of C and teach safe programming practices. Many
of these are consistent with good C0 practice. An important tool,
especially on out-of-bounds memory accesses and NULL pointer
dereferences, is a set of C macros we provide for the students that
emulate contracts (see Section 4) through assertions.
Manual memory management. We introduce the students to
manual memory management with malloc and free, heavily rely-
ing on the Valgrind tool [19] to detect memory bugs and leaks. We
also discuss stack allocation and the address-of operator (&) which
has important safety consequences.
Additional language constructs. We highlight a few important
additional features of C not present in C0, such as integer types of
different ranges and switch statements. However, our coverage is
not complete, relying on students to be able to read sample code,
tutorials, or the standard reference [10] to discover the rest of the
language for themselves.
We have found that students learn to navigate the differences be-
tween the two languages by converting one of their C0 programs
to C and only then completing projects just in C.

4 DELIBERATE PROGRAMMING
An important aspect of C0 is that it embeds a language of executable
contracts that promote a deliberate approach to writing code. We
use “delibrate programming” as the term to describe our process of
using design-by-contract and the implementation considerations
of this design. The user can decide at compilation time whether
contracts are to be checked (in which case contract failure aborts
execution) or ignored (in which case they are treated as comments).
The contract language is loosely based on a tiny subset of JML [5]
and Spec# [1]. Preconditions for functions are expressed in clauses
of the form //@requires e;, where e is a boolean condition. A call
to the function is considered unsafe if e evaluates to false. Post-
conditions for functions are expressed as //@ensures e;, where
e may mention the special variable \result. A function is con-
sidered to be incorrect if it returns a value that does not satisfy
the postcondition when given arguments that satisfy the precondi-
tion. The contract language also supports loop invariants, written
as //@loop_invariant e; just before a loop body, and assertions
//@assert e; which can appear anywhere a statement is allowed.

Here is a simple example, the fast (logarithmic) power function,
which makes use of all four types of contracts available in C0.

Iliano Cervesato, Thomas J. Cortina, Frank Pfenning, and Saquib Razak

1 int fast_power(int x, int y)
2 //@requires y >= 0;
3 //@ensures POW(x, y) == \result;
4 {
5 int b = x;
6 int e = y;
7 int r = 1;
8 while (e > 0)
9 //@loop_invariant e >= 0;
10 //@loop_invariant POW(b, e) * r == POW(x, y);
11 {
12 if (e % 2 == 1) {
13 r = b * r;
14 }
15 b = b * b;
16 e = e / 2;
17 }
18 //@assert e == 0;
19 return r;
20 }

The precondition simply expects the exponent to be non-negative.
The postcondition states that the returned value of fast_power(x,y)
should be equal to xy , which we express as POW(x,y): this user-
defined function (not shown) implements the standard recursive
(linear-time) definition of integer exponentiation. Here, POW plays
the role of a specification function — it too requires that the ex-
ponent be non-negative. Pre- and post-conditions summarize to a
caller what the function expects and promises.

The second loop invariant, on line 10, captures the workings of
the loop: it notes that, as the values of b, e and r are modified by the
loop, the expression ber remains constant and equal to xy . The first
loop invariant illustrates a use of contract to reason about code: how
dowe know that the two calls to POW on line 10 are safe, i.e., that their
second argument (the exponent) is non-negative? For POW(x,y), we
can simply point to line 2 since y is not modified anywhere in the
function. For POW(b,e), one possible argument would go as follows:
“since e starts non-negative (by lines 2 and 6) and is always divided
by 2, it will stay non-negative”. This type of arguments, which we
label “operational”, are error-prone as they expect the students to
build a mental model of all possible executions. A simpler approach
is to spin off this reasoning into a separate loop invariant (line 9).
The safety of POW(b,e) is then supported by pointing to line 9. We
teach students simple techniques for showing that loop invariants,
like the ones on line 9 and 10, are valid.

A loop invariant is checked just before the loop guard. Thus,
(valid) loop invariants must hold once we exit the loop. As such
they play a critical role in showing that a function is correct. Here,
the first loop invariant tells us that at this point in the execution
e ≥ 0. Since we have exited the loop, the loop guard is false and
therefore e ≤ 0. Combining these two pieces of information, we
deduce that e = 0, which we (somehow pedantically) record as the
assertion on line 18. By plugging this information in the second
loop invariant (line 10), we get that xy = ber = b0r = r , and r
(which must be equal to xy) is exactly what the function returns on
line 19. As this example shows, contracts in C0 and the “point-to”
approach to reasoning about code are central to infusing students
with a deliberate programming mindset.

When designing C0, we limited the language of contracts to the
standard boolean expressions of a typical imperative programming
language (and of C0 in particular). The advantage is that students
do not have to learn a dedicated specification language, and that
contracts remain effectively checkable. Alternatively, we could have
embedded a more complex specification logic in C0 — for example
JML [5] has bounded quantifiers — thereby supporting more pow-
erful annotations. We feel that the benefits of staying with a simple,
uniform, executable language outweigh the loss of succinctness.

As a second example, we consider binary search for an integer
x through a sorted array A of length n. Binary search, although
intuitively simple, has tripped generations of programmers [2]. The
function search starts as follows:

1 int search(int x, int[] A, int n)
2 //@requires n == \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (\result == -1 && !is_in(x, A, 0, n))
5 || (0 <= \result && \result < n && A[\result] == x);
6 @*/
7 {
8 int lo = 0;
9 int hi = n;
10

11 while (lo < hi)

The preconditions state that n is the length of A (the C0 primi-
tive \length can only be used in contracts) and that this array
is sorted in increasing order. We provide students with a small
library of specifications functions about array segments; for exam-
ple is_sorted(A,0,n) checks that the segment A[0,n) of array A
between indices 0 inclusive and n exclusive is sorted. The postcon-
dition (typically developed in an earlier lecture about linear search)
expresses that either x < A[0,n), in which case the function returns
-1, or it returns an index in the range [0,n) where x occurs in the
array.

At this point in the discussion of binary search, we turn to the
loop. After exploring some concrete examples, it is common to draw
a picture such as the following:

We are in some arbitrary iteration of the loop and we have de-
termined that x is larger than any element in the array segment
A[0, lo) — abbreviated A[0, lo) < x — and smaller than any element
in A[hi,n) — or x < A[hi,n). The segment A[lo, hi) is where we are
still hoping to find x , if it occurs at all inA. This pictorial knowledge
can be immediately converted into loop invariants that will help us
write a correct body for this loop:

12 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
13 //@loop_invariant gt_seg(x, A, 0, lo);
14 //@loop_invariant lt_seg(x, A, hi, n);

The first invariant captures the expected ordering of the indices.
The last two use specification functions from our library to express
that A[0, lo) < x and x < A[hi,n).

Teaching to Write Safe and Correct Imperative Programs — even in C

Our understanding of binary search tells us that we need to pick
the midpoint of the interval [lo, hi) and our loop invariants help
us correctly update the indices lo and hi. For emphasis, we record
everything we know about the code in assertions.

15 {
16 int mid = (lo + hi)/2; // Tentative
17 //@assert lo <= mid && mid < hi;
18

19 if (A[mid] == x) return mid;
20 if (A[mid] < x) {
21 //@assert mid + 1 <= hi;
22 //@assert gt_seg(x, A, 0, mid+1);
23 lo = mid+1;
24 } else { //@assert A[mid] > x;
25 //@assert lt_seg(x, A, mid, n);
26 hi = mid;
27 }
28 }

The assertion on line 17 describes what we expect to hold of the
midpoint of the interval [lo, hi). But is it true? It turns out that
this assertion does not hold for very large arrays, when lo+hi

overflows [3]. A way to calculate the midpoint that is immune from
this problem is as mid = lo + (hi - lo)/2: this is shown using a
simple argument rooted in properties of modular arithmetic.

The correctness of this function is easy to show when it returns
on line 19. But what happens when we exit the loop? The negation
of the loop guard and the first loop invariant (on line 12) force us to
conclude that lo = hi. This and the other two loop invariants entail
that x < A[0, lo) and x < A[hi,n). There is nowhere else for x to
hide in the array A[0,n), and therefore the function shall return -1,
thereby satisfying the postcondition clause on line 4. The annotated
code is as follows:

29 //@assert lo == hi;
30 //@assert !is_in(x,A,0,n);
31 return -1;
32 }

This example shows how the contract language of C0 allows stu-
dents to convert a pictorial intuition into correct code by leveraging
contracts. We call this approach contract-based programming. The
overall development of this example takes about an hour of lecture
time, and enables students to tackle similarly tricky code on their
own.

As our last example, we briefly show how contracts can be lever-
aged to express, and check, data structure invariants. We consider
an implementation of queues based on linked lists terminated by a
dummy node. In this implementation, a queue is a struct with two
fields: front pointing to the front of the queue, and back pointing
to the dummy node which is just one past the last element of the
queue. Here is the code for dequeuing an element:

1 elem deq(queue* Q)
2 //@requires is_queue(Q);
3 //@requires !queue_empty(Q);
4 //@ensures is_queue(Q);
5 {
6 elem s = Q->front->data;
7 Q->front = Q->front->next;
8 return s;
9 }

The data structure invariant for this implementation of queues
is captured by the specification function is_queue. It checks that
front and back are non-null, that the linked list starting at front
is acyclic, and that it is connected to back.

5 COURSE DESIGN AND IMPLEMENTATION
Because our university offers several undergraduate systems courses
that rely on C, it made sense to incorporate the gradual approach
to teaching C seen in Section 3 and the emphasis on deliberate pro-
gramming of Section 4 as part of our introduction to data structures
course — essentially our version of CS2. It should be clear, however,
that other choices are possible. For example, C0 could also be used
at the core of a standalone introduction to C programming, or our
progression could be embedded in a course devoted to systems
programming.

Aside from using C0 and C and embracing deliberate program-
ming, our introduction to data structure course is quite conven-
tional: students learn about computational thinking, abstraction,
asymptotic complexity analysis, traditional problem solving strate-
gies, basic algorithms, and of course many data structures. Our
emphasis on deliberate programming taught through C0’s exe-
cutable contracts opens new opportunities however. In particular,
it guides students towards programming with intent rather than
trial and error. Key to this is the explicit nature of contracts and
the simplicity of C0, which allow reasoning about large parts of
programs independently. It also provides a solid introduction to
computer science by having students practice computational think-
ing, programming skills, and algorithms and data structures at the
same time. We believe that each of these three component in iso-
lation is difficult to master without at least some exposure to the
other two.

Our course introduces C0 and deliberate programming right
away while discussing basic concepts such as searching and sorting.
This part of the course emphasizes safety and correctness through
point-to reasoning as exemplified in Section 4. The course then
moves on to data structures, which are introduced using C0. By this
point in the course, writing contracts has become second nature
for most students. This helps develop correct implementations
quickly, in particular when dealing with data structures that feature
complex invariants and algorithms that temporarily violate them
— a prime example is insertion in an AVL tree, which violates the
height invariant before restoring it by means of rotations. Around
two thirds through the course, we take the training wheels off
and transition from C0 to C proper. It takes several lectures to
pinpoint the differences and develop techniques to mitigate the
added complexity and unpredictability of C. The students master
their newly acquired knowledge of C by learning about additional
data structures and algorithms in this language.

Students cement the concepts they learn in lecture by means
of labs and recitations led by experienced teaching assistants. The
bulk of the practice happens by completing weekly homework,
which take two forms in our course. On the one hand, conceptual
homework focuses on giving students confidence on the more ab-
stract aspects of the material, for example in verbalizing safety and
correctness arguments through point-to reasoning. On the other
hand, programming projects give them the opportunity to apply

Iliano Cervesato, Thomas J. Cortina, Frank Pfenning, and Saquib Razak

those techniques to the task of developing actual code. Example
projects include image manipulations, writing a rudimentary editor,
implementing Huffman compression (and submitting their solution
in compressed form!), and writing a virtual machine for C0 itself.
We emphasize testing as a complement to deliberate programming.
Projects are mostly autograded, which provides immediate feed-
back to students. If this appears ambitious for a second course in
computer science with mild programming prerequisites, it is! We
are the first to marvel at our students’ ability to master the skills to
write such complex programs in the span of just a few short months.
We witness this for majors and non-majors alike, and regardless of
the nature of their prior programming experience.

6 DISCUSSION
The innovations discussed in the last three sections were intro-
duced in our current curriculum eight years ago as part of a larger
redesign. The introductory data structure course outlined in Sec-
tion 5 replaced two core courses in our previous curriculum: the
first was a conventional data structures course taught in Java and
the second was a course on the C programming language which
also introduced students to the UNIX environment.

We are starting to collect data in a formal manner to evalu-
ate the effectiveness of our approach and will report results in
a future paper. Students who took subsequent systems courses
reported benefiting (a lot) from being trained to program delib-
erately — in particular they continued writing contracts in their
projects. The instructors of these same courses told us that students
who had learned C in our course were much better prepared than
(mostly master-level) students who had learned it in conventional
ways [redacted]. Our approach was first tested on our CS majors.
We then opened our introductory data structures to non-majors,
who started taking it in larger and larger numbers — nowadays it
is consistently either the largest or the second-largest course at our
university. Over the years, the changes we made to the C0 language
and to our course have been rather modest.

Word about this course spread and, to our knowledge, versions
have been adopted by two universities — [redacted] and [redacted].
We are taking steps, outlined in Section 7, to ease further adoption.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we have outlined the approach that our university
has adopted for teaching safe and correct programming in C at the
undergraduate level. It revolves around a gradual exposure to C
through C0, a safe andwell-behaved subset of C, and an emphasis on
teaching a deliberate attitude to writing programs that is supported
by a layer of executable contracts in C0. We concretely deployed
this approach in our introductory data structure course, which is
nowadays taken by all CS majors and many non-majors in our
university. Students who go on to taking our systems courses are
reported to be well prepared [redacted].

Programming with contracts (especially if the contracts are exe-
cuted with code) forces the students to write out the constraints
and thoughts that they normally track only in their heads. Get-
ting in the practice of thinking about memory bounds each time
an array element is accessed and reasoning about the validity of
memory being referred to by pointers leads to safe programming.

Reasoning that loop invariants are valid and, in the end, imply post-
conditions are also fundamental to writing correct code. Our pro-
gramming projects show students the practical value of contracts
letting them appreciate the time-saving benefits of deliberately
reasoning through their code.

We are in the early stages of creating an online version of our
data structure course. This online version is designed to promote
student-centered, measurable and adaptable learning. Lectures are
replaced by modules aimed at achieving specific learning objectives
and skill sets. Each module alternates expository content and low-
stakes hands-on exercises, and ends with a high-stakes assessment.
Low stakes assessment allow students to practice concepts they
just learned and relate them to concepts they mastered in previous
modules. In this, they subsume the labs and recitations the current
course delivery relies on for practice. We designed them to be
dynamic, so that for example a student can summon new instances
of an exercise to test his/her understanding of a concept if desired.
Many also encourage experimentation by allowing students to use
a new browser-based interpreter — this allows students for example
to discover NULL as the default value of pointer types. High-stakes
assessments correspond to our conceptual homework and can be
generated dynamically on a per-student basis if desired. We do
not plan to integrate programming projects in our online platform:
students will carry them out just like they do currently.

To date, about one third of the course has been ported to our
online platform. As a pilot study, we replaced an early lecture in
the summer 2018 edition of our course with three modules (without
high-stakes assessments). After some initial confusion about this
new modality, students voiced appreciation for the finer control on
their learning that this offered as opposed to the traditional lecture
experience. Their performance on conceptual and programming
homework that relied on this material was indistinguishable from
other offerings of our course.

We expect to complete the online version of our course within
two years. As newmodules are completed, we will make them avail-
able to students, initially for the sole purpose of getting feedback,
then as supplementary material (for some of the concepts they find
most challenging) and eventually as core material.

The immediate objective of this effort is to have a baseline course
for students admitted to our various masters’ programs: they cur-
rently take a variant of our introductory systems course the summer
before joining our university, but this is more specialized than some
need. A CS2 course is more appropriate, but we do not currently
have a remote modality. A second objective is to simplify sharing
our experience and curriculum with other institutions, worldwide.
We received a number of inquiries in recent years, but setting up
our existing infrastructure was more than what most of these in-
stitutions were prepared to do. A course that is largely available
through an online platform will go a long way towards eliminating
this difficulty. A final objective is to incorporate the online modality
within our own approach to teaching this course, something we
plan to do gradually and very carefully.

REFERENCES
[1] Mike Barnett, Manuel Fähndrich, K. Rustan M. Leino, Peter Müller, Wolfram

Schulte, and Herman Venter. 2011. Specification and Verification: the Spec#
Experience. Communcations of the ACM 6, 54 (2011), 81–91.

Teaching to Write Safe and Correct Imperative Programs — even in C

[2] Jon Bentley. 2000. Programming Pearls. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA.

[3] Joshua Bloch. 2006. Nearly All Binary Searches and Mergesorts
are Broken. Google AI Blog. https://ai.googleblog.com/2006/06/
extra-extra-read-all-about-it-nearly.html

[4] Hans-Juergen Boehm and Mark Weiser. 1988. Garbage Collection in an Uncoop-
erative Environment. Software Practice & Experience (Sept. 1988), 807–820.

[5] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and Erik Poll. 2005. Beyond
Assertions: Advanced Specification and Verification with JML and ESC/Java2.
In Formal Methods for Components and Objects (FMCO’05). Springer LNCS 4011,
342–363.

[6] Andrew Duncan and Urs Hölzle. 1998. Adding contracts to Java with Handshake.
(1998).

[7] Matthias Felleisen. 2011. TeachScheme!. In Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education (SIGCSE 2011). Dallas, Texas, 1–2.
Keynote talk.

[8] Robert Bruce Findler, Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi,
and Matthias Felleisen. 1997. DrScheme: A pedagogic programming environment
for Scheme. In International Symposium on Programming Language Implementa-
tion and Logic Programming. Springer, 369–388.

[9] Trevor Jim, J Gregory Morrisett, Dan Grossman, Michael W Hicks, James Cheney,
and Yanling Wang. 2002. Cyclone: A Safe Dialect of C.. In USENIX Annual
Technical Conference, General Track. 275–288.

[10] Brian W. Kernighan and Dennis M. Ritchie. 1988. The C Programming Language
(second ed.). Prentice Hall.

[11] Bertrand Meyer. 1992. Applying “Design by Contract”. IEEE Computer 25, 10
(Oct. 1992), 40–51.

[12] Bertrand Meyer. 1992. Eiffel the language Prentice Hall object-oriented series.
Prentice hall Upper Saddle River, NJ, USA.

[13] Bertrand Meyer. 2000. Contracts for Components-Interface Definition Languages
as we know them today are doomed. Software Development 8, 7 (2000), 51–56.

[14] Nikola Milanovic and Miroslaw Malek. 2004. Extracting functional and non-
functional contracts from Java Classes and Enterprise Java Beans. In Proceedings
of the Workshop on Architecting Dependable Systems (WADS 2004). Citeseer.

[15] Jan Newmarch. 1998. Adding contracts to Java. In Technology of Object-Oriented
Languages, 1998. TOOLS 27. Proceedings. IEEE, 2–7.

[16] Jaime Niño and Fred Hosch. [n. d.]. Introducing programming with objects in
CS1. In Fifth Workshop on Pedagogies and Tools for Assimilating Object Oriented
Concepts. Citeseer.

[17] Eric Roberts. 2001. An overview of MiniJava. ACM SIGCSE Bulletin 33, 1 (2001),
1–5.

[18] Robert C. Seacord. 2006. Secure Coding in C and C++. Addison-Wesley Profes-
sional.

[19] Julian Seward and Nicholas Nethercote. 2005. Using Valgrind to Detect Undefined
Value Errors with Bit Precision. In Proceedings of the USENIX’05 Annual Technical
Conference. Anaheim, California.

[20] Wing C. Tam. 1992. Teaching Loop Invariants to Beginners by Examples. In
Proceedings of the Twenty-third SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’92). ACM, New York, NY, USA, 92–96. https://doi.org/10.
1145/134510.134530

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://doi.org/10.1145/134510.134530
https://doi.org/10.1145/134510.134530

	Abstract
	1 Introduction
	2 Related Work
	3 Language Design
	3.1 Type Structure
	3.2 Control Structure
	3.3 Transition to C

	4 Deliberate Programming
	5 Course Design and Implementation
	6 Discussion
	7 Conclusions and Future Work
	References

