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We study the interaction of structural subtyping with parametric polymorphism and recursively defined type

constructors. Although structural subtyping is undecidable in this setting, we describe a notion of parametricity

for type constructors and then exploit it to define parametric subtyping, a conceptually simple, decidable,

and expressive fragment of structural subtyping that strictly generalizes nominal subtyping. We present and

prove correct an effective saturation-based decision procedure for parametric subtyping, demonstrating its

applicability using a variety of examples. An implementation of this decision procedure is available in an

online repository.
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1 INTRODUCTION
Recursive types, parametric polymorphism (also called generics), and subtyping are all essential

features for modern programming languages across numerous paradigms. Recursive types describe

unbounded data structures; parametric polymorphism provides type-level modularity by allowing

programmers to use instantiations of list[𝛼] rather than separate monomorphic types for integer

and boolean lists, for example; and subtyping provides flexibility in the ways that objects and

terms can be used, enabling code reuse. Structural subtyping, in particular, is especially flexible

and expressive and, in principle, relatively lightweight for programmers to incorporate.

This combination of features is present to varying degrees in many of today’s widely used

languages, such as Go, Rust, TypeScript and Java, but the combination is difficult to manage. For

example, subtyping for generics in Java is known to be undecidable [Grigore 2017], so various

restrictions on types’ structure have been proposed, such as material-shape separation [Greenman

et al. 2014; Mackay et al. 2020], and the prohibition of contravariance, unbounded expansion of

types, or multiple instantiation inheritance [Kennedy and Pierce 2006], to name a few.

We contend that these restrictions are often either too limiting or too unintuitive for programmers

to readily reason about. A reconstruction of the interaction between recursive types, parametric

polymorphism, and structural subtyping from first principles is needed, accompanied by a clear,

relatively simple declarative characterization of subtyping. However, to the best of our knowledge,

no such work has been undertaken thus far. This paper fills that gap.

In prior unpublished work by the present authors [Das et al. 2021], structural subtyping has

been proven undecidable in the presence of recursive types and parametric polymorphism.
1
Given

1
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this undecidability, our goal is to identify an expressive, practical fragment of structural subtyping

that has three key properties:

(1) The fragment should have a relatively simple declarative characterization, so that the valid

subtypings are readily predictable by the programmer.

(2) The fragment should be decidable, with an effective algorithm that performs well on the

kinds of subtyping problems that arise in practice.

(3) The fragment should generalize nominal subtyping, preserving all subtypings that already

hold under a nominal treatment of type constructors.

It is not immediately clear that such a fragment of structural subtyping should even exist, as

seemingly innocent variations of the problem are already undecidable or impractical. Solomon

[1978] showed that structural equality for parametric polymorphism can be reduced to equivalence

of deterministic pushdown automata, but it took more than 20 additional years to establish decid-

ability [Sénizergues 2001; Stirling 2001a,b], albeit by an intractable algorithm. As another example,

even without recursive types, bounded quantification is undecidable [Pierce 1994].

Nevertheless, in this paper, we are able to achieve our goal: we propose a notion of parametricity

for pairs of type constructors that forms the basis of a suitable fragment of structural subtyping, a

fragment that we call parametric subtyping. Parametric pairs of constructors will map subtyping-

related arguments to subtyping-related results, echoing Reynolds’s characterization of parametric

functions [1983]. Moreover, by exploiting parametricity, we avoid unintuitive restrictions on types’

structure and can support even non-regular types [Bird and Meertens 1998; Mycroft 1984].

Because of its fundamental nature, our notion of parametric subtyping and associated decision

procedure could be applied to a wide variety of languages: object-oriented systems; lazy and eager

functional languages; imperative languages; mixed inductive/coinductive languages, such as call-

by-push-value [Levy 2001]; session-typed languages [Caires and Pfenning 2010; Gay and Hole

2005; Honda et al. 1998; Silva et al. 2023]; and so on.
2

In this paper, we do not address subtypings such as 0 ⩽ 1 and 1 ⩽ 0→ 1 that arise when some

types are uninhabited [Ligatti et al. 2017], instead interpreting all types coinductively, which makes

them all (including 0) inhabited. However, the parametric subtyping rules in this paper are sound

even in languages where some types are interpreted inductively. Moreover, we want to examine

the fundamental core of parametric subtyping: had we insisted on an inductive treatment of some

types, parametric subtyping would be unsound for lazy functional and session-typed languages.

1.1 Overview of parametric subtyping
To provide the reader with some intuition for our notion of parametric subtyping, we will now

sketch, at a high level, how parametric subtyping satisfies the three desired properties.

(1) Relatively simple declarative characterization. A pair of type constructors, 𝑡 [ ®𝛼] and𝑢 [ ®𝛽], will
be considered parametric if the subtyping problem 𝑡 [ ®𝛼] ⩽ 𝑢 [ ®𝛽] can be reduced to finitely

many subtyping problems among the arguments ®𝛼 and
®𝛽 alone.

As an example, consider an interface for stack objects (or, from a functional perspective,

a record type for stacks), parameterized by a type 𝛼 of stack elements:

stack[𝛼] ≜ N{push : 𝛼 → stack[𝛼], pop : option[𝛼 × stack[𝛼]]}

2
Of course, when applied to a given language, there will be additional language-specific considerations, e.g., interaction

with intersection types in TypeScript or type classes in Haskell. We do not claim to address such considerations here.
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where option[𝛽] ≜ +{none : 1, some : 𝛽}. Programmers sometimes want to ensure that a

stack be used according to a particular protocol. For example, when implementing a queue

using a pair of stacks (as sometimes done in functional languages), the protocol in which

all pushes must occur before any pops can be expressed by the types

qstack1 [𝛽] ≜ N{push : 𝛽 → qstack1 [𝛽], pop : option[𝛽 × qstack2 [𝛽]]}
qstack2 [𝛽] ≜ N{ pop : option[𝛽 × qstack2 [𝛽]]} .

By virtue of having definitions with compatible structures, stack[−] is a subtype of itself,
qstack1 [−], and qstack2 [−] according to the admissible subtyping rules

𝛼 ⩽ 𝛽 𝛽 ⩽ 𝛼

stack[𝛼] ⩽ stack[𝛽] ,
𝛼 ⩽ 𝛽 𝛽 ⩽ 𝛼

stack[𝛼] ⩽ qstack1 [𝛽] , and

𝛼 ⩽ 𝛽

stack[𝛼] ⩽ qstack2 [𝛽]

Specifically, these are valid parametric subtyping rules because the premises involve only

arguments, 𝛼 and 𝛽 . Rules such as “𝑡 [𝛼] ⩽ 𝑢 [𝛽] if 𝛼 ⩽ 1” or “𝑡 [𝛼] ⩽ 𝑢 [𝛽] if 𝛽 ⩽ 𝑡 ′ [𝛼]”
would not be parametric because their premises are not subtypings among arguments alone.

Given such rules, parametric subtyping is conceptually rather straightforward: A subtyp-

ing between types, such as stack[stack[𝜏]] ⩽ qstack2 [qstack1 [𝜎]], holds if it has a finite
derivation from the admissible parametric subtyping rules.

In Section 3, we present an equivalent characterization of parametric subtyping that is

more amenable to metatheoretic proofs. A series of examples in Section 7 demonstrates that

the valid parametric subtypings are readily predictable by the programmer and expressive

enough for many subtypings desired in practice.

(2) Decidable. In Section 5, we prove that parametric subtyping is decidable by giving a saturation

algorithm that is sound and complete with respect to the declarative characterization of

parametric subtyping (Theorems 5.2 and 5.4). The algorithm infers, for each pair of type

constructors, the most general parametric subtyping rule, if one exists. Moreover, when no

such parametric rule exists, the algorithm determines whether the cause is a fundamental

violation of structural subtyping or merely a violation of parametricity. After inferring

all such admissible rules, a given subtyping problem can be decided by backward proof

construction of a finite derivation using the inferred rules.

We have implemented this decision procedure, and it is available in the supplementary

materials (and intended for later submission as an artifact).

(3) Generalizes nominal subtyping. Nominal subtyping is characterized by those parametric

rules that relate identical type constructors, such as the above rule for stack[𝛼] ⩽ stack[𝛽].
Our notion of parametric subtyping is indeed strictly more general than nominal subtyping,

in that it also admits those parametric rules that relate distinct type constructors.

The most closely related work is that on refinement types, specifically datasort refinements [Free-

man and Pfenning 1991]; there are significant differences, however. First, whereas the refinement

system refines a nominal type into a collection of structural sorts, we use a single-layer, fully struc-

tural system. Second, Davies [2005, Section 7.4] defines an algorithm for subsorting parameterized

sort constructors that respects parametricity, but requires explicit declarations for the constructors’

variance and handles only very limited cases of nested sorts. (On the other hand, he deals with

general pattern matching, module boundaries, and intersections that are beyond the scope of the

present work.) Third, Skalka [1997] gives an algorithm to decide the emptiness of refinement types,

but does not give a subtyping algorithm and handles only regular type constructors. Last, whereas

the nominal core of refinement types means that a defined type cannot later be widened into a

supertype, our fully structural system has the advantage of naturally permitting widening.
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In summary, the contributions of this paper are: to identify several minimal fragments for which

structural subtyping is undecidable (Section 2.3); to give a simple, declarative characterization of

parametric subtyping, as a fragment of structural subtyping (Section 3); to present a saturation

algorithm for deciding parametric subtyping for parametric polymorphism (Section 5), as well

as proofs of its soundness and completeness with respect to the declarative characterization

(Theorems 5.2 and 5.4); to implement this decision procedure (Section 6); and to give, as a special

case of this decision procedure, a saturation-based decision procedure for structural subtyping of

monomorphic types that has several advantages over existing algorithms (Section 4).

2 STRUCTURAL SUBTYPING FOR PARAMETRIC POLYMORPHISM
In this section, we describe the syntax of types, present a declarative characterization of structural

subtyping, and show that it is undecidable in the presence of recursively defined type constructors.

2.1 Syntax of types
Programmers write types in the form to which they are accustomed, such as in the type definition

list[𝛼] ≜ +{nil : 1, cons : 𝛼 × list[𝛼]}. However, throughout this paper, it will often be convenient

to work with types in a normal form that maintains a strict distinction and alternation between

named types, 𝜏 , and structural types, 𝐴. For this reason, the user-defined types will be normalized in

a preliminary elaboration phase that inserts additional type constructors, in a manner reminiscent

of the conversion of context-free grammars to Greibach normal form [1965] and Huet’s syntax

used in deciding extensional equality of total Böhm trees [1998]. Details of this elaboration are

postponed to Section 6.

For types in normal form, the syntax is as follows. In addition to these syntactic categories, we

use 𝛼 for type constructor parameters, and 𝑥 for explicitly quantified type variables.

Named types 𝜏, 𝜎 F 𝑡 [𝜃 ] | 𝛼 | 𝑥
Type substitutions 𝜃, 𝜙 F (·) | 𝜃, 𝜏/𝛼
Structural types 𝐴, 𝐵 F 𝜏1 × 𝜏2 | 1 | +{ℓ : 𝜏ℓ }ℓ∈𝐿 | ∃𝑥 .𝜏

| 𝜏1 → 𝜏2 | N{ℓ : 𝜏ℓ }ℓ∈𝐿 | ∀𝑥 .𝜏
Signatures Σ F (·) | Σ, 𝑡 [ ®𝛼] ≜ 𝐴

2.1.1 Structural types. The structural types, 𝐴, consist of: product types 𝜏1 × 𝜏2 and the unit

type 1; variant record types +{ℓ : 𝜏ℓ }ℓ∈𝐿 , indexed by (possibly empty) finite sets 𝐿 of alternatives ℓ ;

existentially quantified types ∃𝑥 .𝜏 ; function types 𝜏1 → 𝜏2; record types N{ℓ : 𝜏ℓ }ℓ∈𝐿 , again indexed

by (possibly empty) finite sets 𝐿; and universally quantified types ∀𝑥 .𝜏 . The somewhat nonstandard

feature of this syntax is that it enforces the first part of the strict alternation between structural

and named types that is prescribed by the normal form: here, structural types 𝐴 have only named

types 𝜏 as immediate subformulas.

2.1.2 Named types and signatures. Named types 𝜏 are primarily type constructor instantiations

of the form 𝑡 [𝜃 ], where 𝑡 is a defined type constructor
3
and 𝜃 is a type substitution. Such type

constructors 𝑡 are recursively defined
4
in a signature Σ. The signature provides finitely many

definitions of the form 𝑡 [ ®𝛼] ≜ 𝐴, exactly one for each defined type constructor, where the structural

type 𝐴 may contain free occurrences of the parameters ®𝛼 but must be otherwise closed. The

3
Defined type constructors 𝑡 are distinct from structural type constructors like →. However, in the remainder of this paper,

we will frequently drop the ‘defined’ qualifier for conciseness and simply use ‘type constructor’ to refer exclusively to

defined type constructors.

4
We could have chosen to use a recursion operator 𝜇 and explicit folds and unfolds, but by using definitions, we avoid the

complication of comparing 𝜇-types for equality. We also find definitions easier to read and closer to actual practice.
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substitution 𝜃 in 𝑡 [𝜃 ] then serves to instantiate the type parameters ®𝛼 used in 𝑡 ’s definition. (In

examples, we use an application-like syntax in place of substitutions, such as 𝑡 [𝜏] instead of 𝑡 [𝜏/𝛼].)
Notice that definitions enforce the other part of the strict alternation between structural types

and named types that is prescribed by this normal form: here, type constructors 𝑡 [ ®𝛼] are defined
only in terms of structural types 𝐴, not named types 𝜏 . Moreover, this ensures that all definitions

are contractive [Gay and Hole 2005].

Given the shallow syntax of structural types, named types 𝜏 must also include type parameters 𝛼 ,

so that the structural body of a definition 𝑡 [ ®𝛼] ≜ 𝐴 may indeed contain occurrences of parameters

®𝛼 . Similarly, named types 𝜏 also include type variables 𝑥 bound by the ∀ and ∃ quantifiers.

2.1.3 Type substitutions. In structural subtyping, definitions 𝑡 [ ®𝛼] ≜ 𝐴 will be interpreted transpar-

ently, with 𝑡 [𝜃 ] and its unfolding, 𝜃 (𝐴), being treated indistinguishably (aside from belonging to

distinct syntactic categories). Because such type definitions are closed apart from their parameters

®𝛼 , the domains of type substitutions 𝜃 consist only of type parameters 𝛼 . Moreover, substitutions

map these parameters to named types 𝜏 , not to structural types, so that the instantiation of a

structural type, 𝜃 (𝐴), is itself a well-formed structural type.

2.1.4 Examples. Here we present two examples to which we will repeatedly return in this paper.

Even and odd natural numbers. As a simple example of a type, the programmer could write the

following type definitions to describe a unary representation of natural numbers, as well as even

and odd natural numbers. (We omit [] when a defined type takes no parameters.)

nat ≜ +{z : 1, s : nat} , even ≜ +{z : 1, s : odd} , and odd ≜ +{s : even}

The elaboration phase would normalize these types by introducing an auxiliary type name, one,
and revising the definitions of nat and even so that structural and named types alternate:

one ≜ 1 , nat ≜ +{z : one, s : nat} , even ≜ +{z : one, s : odd} , and odd ≜ +{s : even} .

To avoid the bureaucracy of having to write types in normal form, future examples given in this

paper presume that types will be normalized during elaboration.

The even and odd natural numbers are, of course, subsets of the natural numbers. So, taking a

sets-of-values interpretation of subtyping, we ought to have even and odd as subtypes of nat, but
we ought not to have nat as a subtype of even and odd.

Context-free languages. As a more complex example, we consider the type of words belonging

to the context-free language {L𝑛R𝑛$ | 𝑛 ≥ 0}. (The terminal symbol, $, is necessary to make

the language prefix-free [Korenjak and Hopcroft 1966] and thereby represent the empty word in

a typable way.) To aid intuition, we show both the context-free grammar (in Greibach normal

form [1965]) for this language and the corresponding, quite parallel, type definitions.

𝑒0 → L 𝑒 end | $ end → $ e0 ≜ +{L : e[end], $ : one} end ≜ +{$ : one}
𝑒 → L 𝑒 𝑟 | R 𝑟 → R e[𝜅] ≜ +{L : e[r[𝜅]], R : 𝜅} where r[𝜅] ≜ +{R : 𝜅}

Here, the type e0 relies on the constructor e[𝜅], which describes the language {L𝑛R𝑛+1𝜅 | 𝑛 ≥ 0};
that is, the parameter 𝜅 maintains a continuation to be used when the unmatched R is produced.

Because the type e0 refers to e[−] only after producing an initial L, the words described by e0 are
indeed a string of Ls followed by the same number of Rs (followed by $).
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𝑡 [ ®𝛼] ≜ 𝐴 𝑢 [ ®𝛽] ≜ 𝐵 𝜃 (𝐴) ⩽ 𝜙 (𝐵)
𝑡 [𝜃 ] ⩽ 𝑢 [𝜙] unf-s

𝑥 ⩽ 𝑥
var-s

𝜏1 ⩽ 𝜎1 𝜏2 ⩽ 𝜎2
𝜏1 × 𝜏2 ⩽ 𝜎1 × 𝜎2 ×s 1 ⩽ 1 1s

(𝐿 ⊆ 𝐾) ∀ℓ ∈ 𝐿 : 𝜏ℓ ⩽ 𝜎ℓ
+{ℓ : 𝜏ℓ }ℓ∈𝐿 ⩽ +{𝑘 : 𝜎𝑘 }𝑘∈𝐾

+s

𝜎1 ⩽ 𝜏1 𝜏2 ⩽ 𝜎2
𝜏1 → 𝜏2 ⩽ 𝜎1 → 𝜎2

→s

(𝐾 ⊆ 𝐿) ∀𝑘 ∈ 𝐾 : 𝜏𝑘 ⩽ 𝜎𝑘
N{ℓ : 𝜏ℓ }ℓ∈𝐿 ⩽ N{𝑘 : 𝜎𝑘 }𝑘∈𝐾

Ns

(𝑧 fresh) [𝑧/𝑥]𝜏 ⩽ [𝑧/𝑦]𝜎
∀𝑥 .𝜏 ⩽ ∀𝑦.𝜎 ∀s

(𝑧 fresh) [𝑧/𝑥]𝜏 ⩽ [𝑧/𝑦]𝜎
∃𝑥 .𝜏 ⩽ ∃𝑦.𝜎 ∃s

Fig. 1. Structural subtyping rules (s for ‘structural’). These inference rules are interpreted coinductively.

In a similar way the context-free grammar (again in Greibach normal form) and the type d0
given below describe the ($-terminated) Dyck language of balanced delimiters, here L and R.

𝑑0 → L𝑑 𝑑0 | $ d0 ≜ +{L : d[d0], $ : one}
𝑑 → L𝑑 𝑑 | R d[𝜅′] ≜ +{L : d[d[𝜅′]], R : 𝜅′}

The type d0 relies on the type constructor d[𝜅′], which describes the context-free language of

“nearly balanced” delimiters, in which words of balanced delimiters are followed by one additional

unmatched R; once again, the type parameter 𝜅 maintains a continuation to be used when that

unmatched R is produced. The type d0 refers to d[−] only after producing an initial L, so the words
described by d0 are indeed balanced.

Because {L𝑛R𝑛$ | 𝑛 ≥ 0} is a subset of the $-terminated Dyck language, we ought to have e0 as a
subtype of d0, but not d0 as a subtype of e0.

2.2 Structural subtyping
Because our normalized types are separated into named types and structural types, structural

subtyping will be given a declarative characterization in terms of derivations of two judgments:

𝜏 ⩽ 𝜎 for named type 𝜏 a subtype of named type 𝜎 , and 𝐴 ⩽ 𝐵 for structural type 𝐴 a subtype of

structural type 𝐵. Derivations of the 𝜏 ⩽ 𝜎 and𝐴 ⩽ 𝐵 judgments will be defined coinductively. That

is, these derivations may be infinitely deep (but will be finitely wide). Stated differently, subtyping’s

coinductive nature and underlying greatest fixed point mean that a subtyping relationship holds in

the absence of a counterexample, and that absence is witnessed by a potentially infinite derivation.
5

Returning to the first of our running examples, for even to be a subtype of nat, we must be able

to construct infinite derivations of even ⩽ nat. On the other hand, because nat ought not to be a

subtype of even, there must not exist a derivation of nat ⩽ even.
The entire set of inference rules used to construct (potentially) infinite derivations of subtyping

judgments can be found in Fig. 1. These rules are interpreted coinductively and are most clearly

read bottom-up, from conclusion to premises. We will now comment on a few of the rules.

2.2.1 Structural subtyping of named types. Structural subtyping treats type definitions in an entirely
transparent way: when 𝑡 [ ®𝛼] ≜ 𝐴 and 𝑢 [ ®𝛽] ≜ 𝐵, the type 𝑡 [𝜃 ] is a subtype of 𝑢 [𝜙] exactly when

the same subtyping relationship holds for their unfoldings, 𝜃 (𝐴) and 𝜙 (𝐵), respectively. This is
expressed by the unf-s rule. Additionally, a type variable 𝑥 is considered to be a subtype of only

itself, as captured in the var-s rule.

5
For monomorphic subtyping, merely circular derivations [Brotherston and Simpson 2010], which are finite representations

of regular infinite derivations, would suffice [Lakhani et al. 2022].
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2.2.2 Structural subtyping of structural types. Aside from the alternation of structural and named

types, the rules for structural subtyping of structural types, 𝐴 ⩽ 𝐵, are standard [Pierce 2002].

The rules decompose the structural types into their immediate subformulas and then require

certain subtyping relationships on those subformulas. For example, the +s rule for variant record
types is standard (see e.g. [Gay and Hole 2005; Pierce 2002]). For +{ℓ : 𝜏ℓ }ℓ∈𝐿 to be a subtype of

+{𝑘 : 𝜎𝑘 }𝑘∈𝐾 , the condition 𝐿 ⊆ 𝐾 demands that the latter type offer at least as many alternatives

as, but possibly more than, the former type, thereby accounting for width subtyping of variant

record types. Moreover, by requiring that 𝜏ℓ ⩽ 𝜎ℓ holds for all alternatives ℓ shared by the two

types, this rule also accounts for covariant depth subtyping of variant record types.

Subtyping for the explicit polymorphic quantifiers ∀𝑥 .𝜏 and ∃𝑥 .𝜏 is also standard. However,

we do not currently support subtyping for implicit polymorphism [Odersky and Läufer 1996], in

which ∀𝑥 .𝜏 ⩽ [𝜎/𝑥]𝜏 and [𝜎/𝑥]𝜏 ⩽ ∃𝑥 .𝜏 would hold for all 𝜎 . Neither do we currently support

bounded quantification [Cardelli et al. 1994; Cardelli and Wegner 1985]. Because our interest is in

the interaction of subtyping, parametric polymorphism, and recursion, these are outside the scope

of this paper and left as future work.

2.2.3 Examples. We now return to the running examples in the context of structural subtyping.

Even and odd natural numbers. For even and odd to be subtypes of nat, we must be able to

construct derivations of even ⩽ nat and odd ⩽ nat. Because structural subtyping derivations are
(potentially) infinite, they cannot be directly written down in their entirety. A finite, constructive

proof of their existence instead suffices, and a useful proof technique here is coinduction. For

example, for even ⩽ nat and odd ⩽ nat, mutual coinduction can be used:

1 ⩽ 1 1s

one ⩽ one
unf-s

odd ⩽ nat
+{z : one, s : odd} ⩽ +{z : one, s : nat} +s

even ⩽ nat
unf-s

and

even ⩽ nat
+{s : even} ⩽ +{z : one, s : nat} +s

odd ⩽ nat
unf-s

We use a dotted line to indicate the coinductive appeals to odd ⩽ nat and even ⩽ nat, which can

also be thought of as admissible structural subtyping rules that can always be unfolded to the

corresponding infinite derivations. Each of these appeals is guarded by the unf-s and +s rules.
Here, the full expressive power of infinite derivations is not needed. Because the types are

monomorphic, circular derivations [Brotherston and Simpson 2010], which are finite representations

of regular infinite derivations, would suffice [Lakhani et al. 2022]: For even ⩽ nat, the right-hand
derivation segment could be inlined within the left-hand segment, with the inlined coinductive

appeal to even ⩽ nat then circling back to even ⩽ nat at the “root”. Then odd ⩽ nat is similar.

As a negative example, we cannot derive nat ⩽ odd because, after unfolding nat and odd with

the unf-s rule, we would need to show that {z, s} ⊆ {s}, which is simply false. Similarly, we cannot

derive nat ⩽ even because, after unfolding nat and even, we would need to derive nat ⩽ odd.

Context-free languages. Recall that {L𝑛R𝑛$ | 𝑛 ≥ 0} is a subset of the Dyck language and that the

type e0 should accordingly be a subtype of d0; there ought therefore to exist a derivation of e0 ⩽ d0.
However, direct application of coinduction is not enough to establish e[end] ⩽ d[d0] because it
produces an infinite stream of subgoals, e[end] ⩽ d[d0], e[r[end]] ⩽ d[d[d0]], . . . , none of which
is a direct instance of any preceding one. Instead, we generalize the coinductive hypothesis, proving

that 𝜅 ⩽ 𝜅′ implies e[𝜅] ⩽ d[𝜅′] for all named types 𝜅 and 𝜅′. Then, because end ⩽ d0, derivations
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of e[end] ⩽ d[d0] and hence of e0 ⩽ d0 indeed exist.

1 ⩽ 1 1s

+{$ : 1} ⩽ +{L : d[d0], $ : 1}
+s

end ⩽ d0
unf-s

e[end] ⩽ d[d0] 1 ⩽ 1 1s

+{L : e[end], $ : 1} ⩽ +{L : d[d0], $ : 1}
+s

e0 ⩽ d0
unf-s

and

𝜅 ⩽ 𝜅′

+{R : 𝜅} ⩽ +{L : d[d[𝜅′]], R : 𝜅′}
+s

r[𝜅] ⩽ d[𝜅′]
unf-s

e[r[𝜅]] ⩽ d[d[𝜅′]] 𝜅 ⩽ 𝜅′

+{L : e[r[𝜅]], R : 𝜅} ⩽ +{L : d[d[𝜅′]], R : 𝜅′}
+s

e[𝜅] ⩽ d[𝜅′]
unf-s

In other words, the rules marked with dotted lines are admissible and can always be unfolded to

the partial derivation on the right-hand side above.

This example demonstrates why circular derivations do not suffice for subtyping of recursively

defined type constructors that employ non-regular recursion: In the right-hand derivation, we

cannot directly close a cycle from e[r[𝜅]] ⩽ d[d[𝜅′]] back to e[𝜅] ⩽ d[𝜅′]. The former is indeed

an instance of the latter, but the subtyping depends on having 𝜅 ⩽ 𝜅′ and so we are required to

show the instance r[𝜅] ⩽ d[𝜅′]: we need the expressive power of non-regular infinite derivations.

Given that {L𝑛R𝑛$ | 𝑛 ≥ 0} and the Dyck language are context-free languages, perhaps it is not

surprising that the regularity of circular derivations is insufficiently expressive to establish e0 ⩽ d0.

2.3 Undecidability of structural subtyping
A priori, it seems possible that structural subtyping in the presence of recursively defined type

constructors might be decidable. After all, structural equality for coinductively interpreted types is

decidable [Das et al. 2022], using a reduction from trace equivalence for deterministic first-order

grammars, which is itself decidable but intractable [Jančar 2021]. However, structural subtyping is

undecidable in the presence of recursively defined type constructors, as we will now show.

Our strategy for proving its undecidability will be to give a reduction from simulation of guarded

Basic Process Algebra (BPA) processes [Bergstra and Klop 1984] to structural subtyping. Because

simulation of guarded BPA processes is undecidable [Groote and Hüttel 1994], this reduction will

witness the undecidability of structural subtyping.

2.3.1 Background on basic process algebra. Guarded BPA processes are defined by a set of guarded

equations. For our purposes, a general definition of guardedness is unimportant; what is important

is that any set of guarded BPA equations can be put into the following Greibach normal form [Baeten

et al. 1993]:

𝑋 ≜
∑︁
ℓ∈𝐿

(ℓ · 𝑝′ℓ ) , where 𝐿 is nonempty and 𝑝, 𝑞 F 𝜖 | 𝑌 · 𝑝 .

As usual for process algebras, there is a labeled transition system to describe process behavior.

When restricted to processes in Greibach normal form, the labeled transition system consists of a

single rule:

𝑋 ≜
∑
ℓ∈𝐿 (ℓ · 𝑝′ℓ ) (𝑎 ∈ 𝐿)

𝑋 · 𝑞 𝑎−→ 𝑝′𝑎 ⊙ 𝑞
(no rule for 𝜖)

where

𝜖 ⊙ 𝑞 = 𝑞

(𝑋 · 𝑝) ⊙ 𝑞 = 𝑋 · (𝑝 ⊙ 𝑞) .

The simulation (or “is-simulated-by”) relation, ≲, for BPA processes is the largest relation such

that whenever 𝑝 ≲ 𝑞 and 𝑝
𝑎−→ 𝑝′ hold, there exists a process 𝑞′ for which 𝑝′ ≲ 𝑞′ and 𝑞

𝑎−→ 𝑞′

hold. In particular, 𝜖 ≲ 𝑞 holds for all processes 𝑞 because 𝜖 cannot make any transitions.

2.3.2 Reduction of BPA simulation to structural subtyping. For each guarded BPA equation in

Greibach normal form, 𝑋 ≜
∑
ℓ∈𝐿 (ℓ · 𝑝′ℓ ) where 𝐿 is nonempty, we define a corresponding type
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constructor 𝑡𝑋 [𝛼] that encodes the behavior of process variable 𝑋 , parametrically in a type 𝛼 that

describes the behavior to follow that of 𝑋 :

𝑡𝑋 [𝛼] ≜ N{ℓ : 𝑝′ℓ # 𝛼}ℓ∈𝐿 where 𝜖 # 𝜏 = 𝜏 and (𝑋 · 𝑝) # 𝜏 = 𝑡𝑋 [𝑝 # 𝜏] .
(𝑝 # 𝜏 yields a type in normal form because 𝑝 is finite and 𝜏 is a named type.) The ideas behind

this encoding are twofold. First, width subtyping of N ensures that a process 𝑌 · 𝑞 can match any

transition that 𝑋 · 𝑝 can take: width subtyping ensures that the type 𝑡𝑌 [𝛽] offers at least those
alternatives that the type 𝑡𝑋 [𝛼] does. Second, depth subtyping for N ensures that this simulation

holds hereditarily for the processes to which 𝑋 · 𝑝 and 𝑌 · 𝑞 transition. We can prove the following.

Theorem 2.1. Let 𝑡 ≜ N{ }. Then 𝑝 ≲ 𝑞 if and only if (𝑞 # 𝑡) ⩽ (𝑝 # 𝑡), for all processes 𝑝 and 𝑞.

The key properties of 𝑡 necessary for the proof are: that (𝑞 # 𝑡) ⩽ 𝑡 , for all processes 𝑞; and

that 𝑡 ⩽ (𝑝 # 𝑡) implies 𝑝 = 𝜖 , for all processes 𝑝 . Because simulation for BPA processes is

undecidable [Groote and Hüttel 1994], we therefore have the following corollary.

Corollary 2.2. In the presence of record types with no alternatives and recursively defined type

constructors, structural subtyping is undecidable.

Although they make for an arguably cleaner proof, record types with no alternatives are not at all

essential. Even if all record types must have at least one alternative, structural subtyping is still

undecidable. The encoding can be revised to include an endmarker, $, as an additional alternative

for each 𝑡𝑋 . Let 𝑡0 be any closed type, such as 𝑡0 ≜ N{$ : 𝑡0} or 𝑡0 ≜ 1 (among others), and define

𝑡𝑋 [𝛼] ≜ N{ℓ : 𝑝′ℓ # 𝛼}ℓ∈𝐿 N {$ : 𝑡0} ,
where 𝑝 # 𝜏 is defined as above. With the revised encoding, we can prove the following theorem.

Theorem 2.3. Let 𝑡 ≜ N{$ : 𝑡0}. Then 𝑝 ≲ 𝑞 if and only if (𝑞 # 𝑡) ⩽ (𝑝 # 𝑡), for all processes 𝑝 and 𝑞.

Corollary 2.4. In the presence of record types and recursively defined type constructors, structural

subtyping is undecidable.

Furthermore, becausewe assign a coinductive interpretation to all types, virtually the same theorems

hold for variant record types, with + substituted forN in the definitions of 𝑡𝑋 [𝛼] – only the subtyping
direction changes to “𝑝 ≲ 𝑞 if and only if (𝑝 # 𝑡) ⩽ (𝑞 # 𝑡).” That is, structural subtyping remains

undecidable in the presence of variant record types and recursively defined type constructors, even

if there are no record types at all.
6

3 PARAMETRIC SUBTYPING FOR PARAMETRIC POLYMORPHISM
In this section, we identify a fragment of structural subtyping for parametric polymorphism that

has a relatively simple declarative characterization. (Section 5 will show that this fragment is also

decidable.) We call this fragment parametric subtyping, for its basis in a notion of parametricity.

Recall the context-free languages example from Section 2.2.3 in which we were trying to prove

that the type e0, corresponding to {L𝑛R𝑛$ | 𝑛 ≥ 0}, is a subtype of the type d0, corresponding
to the Dyck language. We could not use direct coinduction to prove the existence of a deriva-

tion of e0 ⩽ d0 because that led to an infinite stream of subgoals, e[end] ⩽ d[d0], e[r[end]] ⩽
d[d[d0]], e[r[r[end]]] ⩽ d[d[d[d0]]], . . . , none of which is an instance of any preceding one. We

somehow need to quotient this space into finitely many subproblems, each of which is decidable.

6
In a mixed inductive/coinductive setting, where variant record types would be interpreted inductively, we conjecture that

structural subtyping would remain undecidable even in the purely inductive fragment (i.e., without record types), and that

this could be proved by reducing from BPA language inclusion [Friedman 1976; Groote and Hüttel 1994], not simulation.
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The key insight behind this quotienting comes in revisiting the coinductive generalization that

we used to prove e0 ⩽ d0: in Section 2.2.3, we instead proved that 𝜅 ⩽ 𝜅′ implies e[𝜅] ⩽ d[𝜅′] for
all named types 𝜅 and 𝜅′. This statement could also be viewed as an admissible inference rule:

𝜅 ⩽ 𝜅′

e[𝜅] ⩽ d[𝜅′]
This rule looks very much like the kind of rules around which nominal subtyping [Kennedy and

Pierce 2006] is based, with a key difference: nominal subtyping requires such rules to use the same

type constructor on both sides of the conclusion. Importantly for our purposes, this admissible rule

is parametric, in the sense that the type constructors e[−] and d[−] map related arguments, 𝜅 ⩽ 𝜅′,
to related results, e[𝜅] ⩽ d[𝜅′]. This echoes Reynolds’s characterization of parametric functions as

mapping related arguments to related results [1983].

The importance of parametricity in the coinductive generalization used in this example suggests

that we ought to consider a notion of subtyping that uses parametric rules, i.e., rules of the form

𝛼𝑖1 ⩽ 𝛽 𝑗1 · · · 𝛼𝑖𝑚 ⩽ 𝛽 𝑗𝑚 𝛽 𝑗𝑚+1 ⩽ 𝛼𝑖𝑚+1 · · · 𝛽 𝑗𝑚+𝑛 ⩽ 𝛼𝑖𝑚+𝑛

𝑡 [ ®𝛼] ⩽ 𝑢 [ ®𝛽] but not rules like

𝛼 ⩽ 1 𝑡 ′ [𝛼] ⩽ 𝛽
𝑡 [ ®𝛼] ⩽ 𝑢 [ ®𝛽] ,

as a candidate for being a decidable fragment of structural subtyping with a relatively simple

declarative characterization.

3.1 Declarative characterization of parametric subtyping
The requirement that the candidate fragment use only parametric rules could already serve as a

relatively simple declarative characterization. However, to develop a decision procedure and prove

its correctness, it is very useful to devise an equivalent declarative characterization that is more

closely aligned with the presentation of structural subtyping. Before doing so, it is helpful to see

why structural subtyping, as defined in Fig. 1, violates parametricity.

Consider the type definition snat[𝜅] ≜ +{z : 𝜅, s : snat[𝜅]}, which generalizes the type nat via
the structural subtyping nat ⩽ snat[1]. (The name snat, for “serialized nat”, alludes to serialized

data structures, as discussed in Section 7.3.) However, the admissible rule for nat and snat[𝜅]
would be the non-parametric rule “nat ⩽ snat[𝜅] if 1 ⩽ 𝜅.” The unf-s rule of structural subtyping
cannot detect non-parametric judgments, such as 1 ⩽ 𝜅 here, because unfolding eagerly applies

substitutions and free type parameters do not appear: by the time that structural subtyping reaches

this non-parametric judgment, it will be 1 ⩽ [1/𝜅]𝜅 = 1, with the non-parametricity no longer

apparent in the judgment.

Therefore, instead of eagerly applying substitutions when unfolding, we need to postpone the

substitutions, applying them only after determining that they do not conceal any non-parametricity.

The idea of postponing substitutions in this way is inspired by the Girard–Reynolds logical relation

for parametricity [Girard 1972; Reynolds 1983]. The judgments 𝜏 ⩽ 𝜎 and 𝐴 ⩽ 𝐵 are revised to

postpone substitutions by pushing them onto stacks when unfolding type constructor instantiations.

Substitution stacks are given by the grammar

Substitution stacks Θ,ΦF (·) | 𝜃 ;Θ
and we thus arrive at the judgments 𝜏 ⟨Θ⟩ ⩽ 𝜎 ⟨Φ⟩ and 𝐴⟨Θ⟩ ⩽ 𝐵⟨Φ⟩ for parametric subtyping.

As with structural subtyping, a parametric subtyping judgment holds if there exists a (potentially

infinite) derivation of that judgment using the rules found in Fig. 2. These declarative rules are

again interpreted coinductively and are most clearly read bottom-up, from conclusion to premises.

To better understand these rules, it can be helpful to imagine constructing a (potentially infinite)

derivation of 𝑡 [𝜃 ]⟨Θ⟩ ⩽ 𝑢 [𝜙]⟨Φ⟩, where 𝑡 [ ®𝛼] ≜ 𝐴 and 𝑢 [ ®𝛽] ≜ 𝐵. That would proceed as follows.
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𝑡 [ ®𝛼] ≜ 𝐴 𝑢 [ ®𝛽] ≜ 𝐵 𝐴⟨𝜃 ;Θ⟩ ⩽ 𝐵⟨𝜙 ;Φ⟩
𝑡 [𝜃 ]⟨Θ⟩ ⩽ 𝑢 [𝜙]⟨Φ⟩ inst-p

𝜃 (𝛼)⟨Θ⟩ ⩽ 𝜙 (𝛽)⟨Φ⟩
𝛼 ⟨𝜃 ;Θ⟩ ⩽ 𝛽 ⟨𝜙 ;Φ⟩ param-p

(no rules for 𝛼 ⟨Θ⟩ ⩽ 𝜏 ⟨Φ⟩ and 𝜏 ⟨Θ⟩ ⩽ 𝛽 ⟨Φ⟩ if 𝜏 is not a parameter) 𝑥 ⟨Θ⟩ ⩽ 𝑥 ⟨Φ⟩ var-p

𝜏1⟨Θ⟩ ⩽ 𝜎1⟨Φ⟩ 𝜏2⟨Θ⟩ ⩽ 𝜎2⟨Φ⟩
𝜏1 × 𝜏2⟨Θ⟩ ⩽ 𝜎1 × 𝜎2⟨Φ⟩

×p
1⟨Θ⟩ ⩽ 1⟨Φ⟩ 1p

(𝐿 ⊆ 𝐾) ∀ℓ ∈ 𝐿 : 𝜏ℓ ⟨Θ⟩ ⩽ 𝜎ℓ ⟨Φ⟩
+{ℓ : 𝜏ℓ }ℓ∈𝐿 ⟨Θ⟩ ⩽ +{𝑘 : 𝜎𝑘 }𝑘∈𝐾 ⟨Φ⟩

+p

𝜎1⟨Φ⟩ ⩽ 𝜏1⟨Θ⟩ 𝜏2⟨Θ⟩ ⩽ 𝜎2⟨Φ⟩
𝜏1 → 𝜏2⟨Θ⟩ ⩽ 𝜎1 → 𝜎2⟨Φ⟩

→p

(𝐾 ⊆ 𝐿) ∀𝑘 ∈ 𝐾 : 𝜏𝑘 ⟨Θ⟩ ⩽ 𝜎𝑘 ⟨Φ⟩
N{ℓ : 𝜏ℓ }ℓ∈𝐿 ⟨Θ⟩ ⩽ N{𝑘 : 𝜎𝑘 }𝑘∈𝐾 ⟨Φ⟩

Np

(𝑧 fresh) [𝑧/𝑥]𝜏 ⟨Θ⟩ ⩽ [𝑧/𝑦]𝜎 ⟨Φ⟩
∀𝑥 .𝜏 ⟨Θ⟩ ⩽ ∀𝑦.𝜎 ⟨Φ⟩ ∀p

(𝑧 fresh) [𝑧/𝑥]𝜏 ⟨Θ⟩ ⩽ [𝑧/𝑦]𝜎 ⟨Φ⟩
∃𝑥 .𝜏 ⟨Θ⟩ ⩽ ∃𝑦.𝜎 ⟨Φ⟩ ∃p

Fig. 2. Parametric subtyping rules (p for ‘parametric’). These rules are interpreted coinductively.

(1) This judgment can only be derived by the inst-p rule, which is parametric subtyping’s

answer to structural subtyping’s unf-s rule. It unfolds 𝑡 [𝜃 ] and 𝑢 [𝜙], but it does not apply
the substitutions 𝜃 and 𝜙 eagerly, instead postponing them by pushing them onto their

respective stacks, Θ and Φ. The unfoldings, i.e., structural types 𝐴 and 𝐵, are then compared

under the extended stacks, (𝜃 ;Θ) and (𝜙 ;Φ), respectively. Notice that 𝐴 and 𝐵 will, in

general, contain free occurrences of the respective parameters ®𝛼 and
®𝛽 .

(2) Next, these structural types 𝐴 and 𝐵 are decomposed according to parametric subtyping’s

rules for structural types, such as ×p and→p. These rules are virtually the same as structural

subtyping’s rules for structural types, with the only difference being that substitution stacks

are threaded through, unchanged, from conclusion to premises. After decomposing 𝐴 and

𝐵, there are several parametric subtyping subgoals of the form 𝜏 ⟨𝜃 ;Θ⟩ ⩽ 𝜎 ⟨𝜙 ;Φ⟩ (or, in the

case of the →p rule’s first premise, of the form 𝜎 ⟨𝜙 ;Φ⟩ ⩽ 𝜏 ⟨𝜃 ;Θ⟩).
(3) Depending on the structure of the named types 𝜏 and 𝜎 , there are several possibilities for

each such judgment:

• If both 𝜏 and 𝜎 are type constructor instantiations, then the judgment can only be

derived by the inst-p rule, returning us to step (1).

• If 𝜏 and 𝜎 are type parameters 𝛼 and 𝛽 , then there is no violation of parametricity here,

and the judgment can be derived by the param-p rule. The substitutions 𝜃 and 𝜙 are

popped from their respective stacks and finally applied; the resulting subgoal is of the

form 𝜃 (𝛼)⟨Θ⟩ ⩽ 𝜙 (𝛽)⟨Φ⟩. In types in normal form, substitutions map parameters to

named types only (recall Section 2.1.3), so one of these three cases will again apply.

• If either 𝜏 or 𝜎 is a type parameter and the other one is not, this judgment violates

parametricity. Accordingly, there is no rule that can derive this judgment, and therefore

𝑡 [𝜃 ]⟨Θ⟩ ⩽ 𝑢 [𝜙]⟨Φ⟩ does not hold.
The notion of parametric subtyping given in Fig. 2 is sound with respect to structural subtyping

as defined in Fig. 1. The substitutions postponed in stacks Θ and Φ can instead be composed and

applied eagerly, transforming instances of the inst-p rule into instances of the unf-s rule and

eliminating occurrences of the param-p rule.

Theorem 3.1 (Soundness of parametric subtyping). If 𝜏 ⟨Θ⟩ ⩽ 𝜎 ⟨Φ⟩, then Θ(𝜏) ⩽ Φ(𝜎).
Likewise, if 𝐴⟨Θ⟩ ⩽ 𝐵⟨Φ⟩, then Θ(𝐴) ⩽ Φ(𝐵).
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Proof sketch. Using themixed induction and coinduction proof technique described byDaniels-

son and Altenkirch [2010]. Specifically, the proof is by lexicographic mixed induction and coinduc-

tion, first by coinduction on the (potentially infinite) structural subtyping derivation, and then by

induction on the finite substitution stack Θ. □

However, the converse does not hold: parametric subtyping is incomplete with respect to structural

subtyping, as the above example involving nat and snat[1] demonstrates.

Theorem 3.2 (Incompleteness of parametric subtyping). 𝜏 and 𝜎 exist such that the structural

subtyping 𝜏 ⩽ 𝜎 holds but the parametric subtyping 𝜏 ⟨Θ⟩ ⩽ 𝜎 ⟨Φ⟩ does not, for any Θ and Φ.

4 DECIDING STRUCTURAL SUBTYPING FOR MONOMORPHIC TYPES
In the next section, we will present a saturation-based decision procedure for parametric subtyping

for parametric polymorphism. But parameterized type constructors involve some complications, so

in this section, we will provide a gentle introduction to the algorithm by presenting a saturation-

based decision procedure for structural subtying of monomorphic types – that is, recursively

defined types that do not take parameters nor use the structural types ∀𝑥 .𝜏 and ∃𝑥 .𝜏 .
Establishing the decidability of structural subtyping for monomorphic types is not a contribution

of this paper. One existing decision procedure (see, e.g., [Lakhani et al. 2022]) directly employs

backward search for a derivation of the structural subtyping judgment 𝑡 ⩽ 𝑢, using the subtyping

rules themselves (Fig. 1). This procedure crucially depends on three properties: for monomorphic

types, merely circular derivations suffice to characterize structural subtyping; circular derivations

are finite; and there are finitely many subtyping problems involving named monomorphic types.

For polymorphic types, these key properties will no longer hold – which is why we will introduce

a forward-inference, saturation-based procedure here. But even if one is uninterested in polymorphic

types, this forward-inference procedure offers several distinct advantages over the backward-search

algorithm (with one potentially mitigable shortcoming), as we will discuss below.

4.1 A forward-inference decision procedure for monomorphic structural subtyping
To devise a decision procedure for monomorphic subtyping based on forward inference, we will

exploit the fact that subtyping is a safety property and return to the idea that, in keeping with the

safety slogan “nothing bad ever happens,” a subtyping relationship 𝑡 ⩽ 𝑢 holds when there is no

counterexample. Very roughly speaking, our algorithm proceeds as a kind of automated refutation

by contradiction, assuming that a derivation of 𝑡 ⩽ 𝑢 exists and repeatedly inverting that assumed

derivation to check that no violations of subtyping occur (i.e., that nothing bad happens) before

reaching another subtyping problem, 𝑡 ′ ⩽ 𝑢′. Because the signature contains finitely many type

definitions 𝑡 ≜ 𝐴 and 𝑢 ≜ 𝐵 and there are therefore finitely many subtyping problems 𝑡 ⩽ 𝑢, we
can check each problem in this way.

More precisely, the forward-inference procedure uses three judgments: the primary judgment,

𝑡 ≼ 𝑢 ⇒ ⊥; and two intermediate judgments, 𝑡 ≼ 𝑢 ⇒ 𝐴 ≼ 𝐵 and 𝑡 ≼ 𝑢 ⇒ 𝜏 ≼ 𝜎 . (Notice that
we use ≼ to distinguish these from the declarative ⩽.) Ultimately, the judgment 𝑡 ≼ 𝑢 ⇒ ⊥ will

be inferred if and only if 𝑡 ⩽̸ 𝑢, allowing us to decide the structural subtyping 𝑡 ⩽ 𝑢 by running

forward inference to saturation and checking that 𝑡 ≼ 𝑢 ⇒ ⊥ has not been inferred. (Saturation

is guaranteed, as we will prove in Theorem 4.3 below.) The judgments 𝑡 ≼ 𝑢 ⇒ 𝐴 ≼ 𝐵 and

𝑡 ≼ 𝑢 ⇒ 𝜏 ≼ 𝜎 are inferred if and only if 𝐴 ⩽ 𝐵 and 𝜏 ⩽ 𝜎 , respectively, would necessarily occur as

subderivations of any derivation of 𝑡 ⩽ 𝑢 (assuming such a derivation exists).

Alternatively, these judgments can be seen as describing necessary consequences of 𝑡 ⩽ 𝑢. From
yet another perspective, these judgments can be seen as stating those constraints that must hold for

the structural subtyping 𝑡 ⩽ 𝑢 to be derivable, with ⊥ being the unsatisfiable constraint. This last
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𝑡 ≜ 𝐴 𝑢 ≜ 𝐵
𝑡 ≼ 𝑢 ⇒ 𝐴 ≼ 𝐵

init-f
𝑡 ≼ 𝑢 ⇒ 𝑡 ′ ≼ 𝑢′ 𝑡 ′ ≼ 𝑢′ ⇒ ⊥

𝑡 ≼ 𝑢 ⇒ ⊥ compose-f⊥

𝑡 ≼ 𝑢 ⇒ 𝜏1 × 𝜏2 ≼ 𝜎1 × 𝜎2 (𝑖 ∈ {1, 2})
𝑡 ≼ 𝑢 ⇒ 𝜏𝑖 ≼ 𝜎𝑖

×f (no 1f rule for 𝑡 ≼ 𝑢 ⇒ 1 ≼ 1)

𝑡 ≼ 𝑢 ⇒ +{ℓ : 𝜏ℓ }ℓ∈𝐿 ≼ +{𝑘 : 𝜎𝑘 }𝑘∈𝐾 (ℓ ∈ 𝐿 ⊆ 𝐾)
𝑡 ≼ 𝑢 ⇒ 𝜏ℓ ≼ 𝜎ℓ

+f

𝑡 ≼ 𝑢 ⇒ 𝜏1 → 𝜏2 ≼ 𝜎1 → 𝜎2
𝑡 ≼ 𝑢 ⇒ 𝜎1 ≼ 𝜏1

→f1

𝑡 ≼ 𝑢 ⇒ 𝜏1 → 𝜏2 ≼ 𝜎1 → 𝜎2
𝑡 ≼ 𝑢 ⇒ 𝜏2 ≼ 𝜎2

→f2

𝑡 ≼ 𝑢 ⇒ N{ℓ : 𝜏ℓ }ℓ∈𝐿 ≼ N{𝑘 : 𝜎𝑘 }𝑘∈𝐾 (𝑘 ∈ 𝐾 ⊆ 𝐿)
𝑡 ≼ 𝑢 ⇒ 𝜏𝑘 ≼ 𝜎𝑘

Nf

𝑡 ≼ 𝑢 ⇒ +{ℓ : 𝜏ℓ }ℓ∈𝐿 ≼ +{𝑘 : 𝜎𝑘 }𝑘∈𝐾 (𝐿 ⊈ 𝐾)
𝑡 ≼ 𝑢 ⇒ ⊥ ++f⊥

𝑡 ≼ 𝑢 ⇒ N{ℓ : 𝜏ℓ }ℓ∈𝐿 ≼ N{𝑘 : 𝜎𝑘 }𝑘∈𝐾 (𝐾 ⊈ 𝐿)
𝑡 ≼ 𝑢 ⇒ ⊥ NNf⊥

𝑡 ≼ 𝑢 ⇒ 𝐴 ≼ 𝐵 𝐴 y 𝐵
𝑡 ≼ 𝑢 ⇒ ⊥ mismatch-f⊥

Fig. 3. Forward inference rules for deciding structural subtyping of monomorphic types (f for ‘forward’). These
rules are interpreted inductively. The notation 𝐴 y 𝐵 means that 𝐴 and 𝐵 use distinct top-level structural
type constructors, such as + and 1.

perspective will prove particularly useful in Section 3 and the decision procedure for parametric

subtyping of polymorphic types presented there.

4.1.1 Forward inference. Forward inference proceeds according to the rules found in Fig. 3. Unlike

the structural subtyping rules of Fig. 1, these algorithmic rules are interpreted inductively and

most clearly read top-down, from premises to conclusion. To provide some intuition for this

forward-inference decision procedure, we will walk through a few of the rules in detail.

The init-f rule. Suppose that the premises 𝑡 ≜ 𝐴 and 𝑢 ≜ 𝐵 hold. If 𝑡 ⩽ 𝑢 is derivable, then,

by inversion, it must have been derived by applying the unf-s structural subtyping rule to a

subderivation of 𝐴 ⩽ 𝐵. That is, 𝐴 ⩽ 𝐵 would necessarily occur as a subderivation of 𝑡 ⩽ 𝑢 when 𝑡

and 𝑢 are defined by 𝑡 ≜ 𝐴 and 𝑢 ≜ 𝐵, justifying the inference of 𝑡 ≼ 𝑢 ⇒ 𝐴 ≼ 𝐵 by the init-f rule.

The +f and ++f⊥ rules. Suppose that the shared premise 𝑡 ≼ 𝑢 ⇒ +{ℓ : 𝜏ℓ }ℓ∈𝐿 ≼ +{𝑘 : 𝜎𝑘 }𝑘∈𝐾
has already been inferred – that is, that any derivation of 𝑡 ⩽ 𝑢 would necessarily contain a

subderivation of +{ℓ : 𝜏ℓ }ℓ∈𝐿 ⩽ +{𝑘 : 𝜎𝑘 }𝑘∈𝐾 . By inversion, this subderivation can only be formed

by applying the +s structural subtyping rule with subderivations of 𝜏ℓ ⩽ 𝜎ℓ , for all ℓ ∈ 𝐿, and only

when 𝐿 ⊆ 𝐾 . Therefore, when 𝐿 ⊆ 𝐾 , the inference of 𝑡 ≼ 𝑢 ⇒ 𝜏ℓ ≼ 𝜎ℓ , for all ℓ ∈ 𝐿, by the +f rule
is justified. On the other hand, when 𝐿 ⊈ 𝐾 , the subtypings +{ℓ : 𝜏ℓ }ℓ∈𝐿 ⩽ +{𝑘 : 𝜎𝑘 }𝑘∈𝐾 and hence

𝑡 ⩽ 𝑢 are not derivable, justifying the inference of 𝑡 ≼ 𝑢 ⇒ ⊥ by the ++f⊥ rule.

The compose-f⊥ rule. Suppose that the premises 𝑡 ≼ 𝑢 ⇒ 𝑡 ′ ≼ 𝑢′ and 𝑡 ′ ≼ 𝑢′ ⇒ ⊥ have already

been inferred. Thus, any derivation of 𝑡 ⩽ 𝑢 would necessarily contain a subderivation of 𝑡 ′ ⩽ 𝑢′,
and moreover 𝑡 ′ ⩽ 𝑢′ is not derivable. Therefore, 𝑡 ⩽ 𝑢 is also not derivable, justifying the inference

of 𝑡 ≼ 𝑢 ⇒ ⊥ by the compose-f⊥ rule.

The mismatch-f⊥ rule. Suppose that the premises 𝑡 ≼ 𝑢 ⇒ 𝐴 ≼ 𝐵 and 𝐴 y 𝐵 have already been

inferred, where 𝐴 y 𝐵 indicates that 𝐴 and 𝐵 have distinct top-level structural type constructors,

such as +{ℓ : 𝜏ℓ }ℓ∈𝐿 y 1. Because the first premise has been inferred, any derivation of 𝑡 ⩽ 𝑢 would
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necessarily contain a subderivation of𝐴 ⩽ 𝐵. Because𝐴 y 𝐵, inversion shows there is no structural

subtyping rule that could possibly form this subderivation. Hence 𝑡 ⩽ 𝑢 is not derivable, justifying

the inference of 𝑡 ≼ 𝑢 ⇒ ⊥ by the mismatch-f⊥ rule.

4.1.2 Example. Returning to our running example of even and odd natural numbers, we can

examine the inferences made by our algorithm. By virtue of the init-f rule, the following judgments,

among others, will be inferred:

even ≼ nat ⇒ +{z : one, s : odd} ≼ +{z : one, s : nat};
odd ≼ nat ⇒ +{s : even} ≼ +{z : one, s : nat}; and
one ≼ one ⇒ 1 ≼ 1 .

Because {z, s} ⊆ {z, s} as well as {s} ⊆ {z, s}, the +f rule then allows us to infer

even ≼ nat ⇒ one ≼ one and even ≼ nat ⇒ odd ≼ nat; as well as

odd ≼ nat ⇒ even ≼ nat

as necessary consequences of the initial judgments about even ≼ nat and odd ≼ nat. At this point,
saturation has been reached: no inference deduces any judgment that has not already been inferred.

Because even ≼ nat ⇒ ⊥ has not been inferred upon saturation, we may conclude that even ⩽ nat
is derivable – i.e., that even is a subtype of nat. Likewise, we conclude that odd is a subtype of nat.

4.2 Correctness of the forward-inference decision procedure
The forward-inference algorithm is both sound and complete with respect to (the monomorphic

fragment of) structural subtyping as defined in Fig. 1. The proof of soundness relies on a key lemma.

Lemma 4.1. Upon saturation:

(1) If 𝑡 ≼ 𝑢 ⇒ 𝜏 ≼ 𝜎 and 𝑡 ≼ 𝑢 Y⇒ ⊥, then 𝜏 ⩽ 𝜎 .
(2) If 𝑡 ≼ 𝑢 ⇒ 𝐴 ≼ 𝐵 and 𝑡 ≼ 𝑢 Y⇒ ⊥, then 𝐴 ⩽ 𝐵.

Proof sketch. By mutual coinduction on the derivations of 𝜏 ⩽ 𝜎 and 𝐴 ⩽ 𝐵. □

Theorem 4.2 (Soundness and completeness). Upon saturation, 𝑡 ≼ 𝑢 Y⇒ ⊥ if and only if 𝑡 ⩽ 𝑢.

Proof sketch. From left to right, by appealing to Lemma 4.1; from right to left, by induction

on the finite derivation of 𝑡 ≼ 𝑢 ⇒ ⊥ to establish a (meta-)contradiction. □

We do not provide further details of these specific proofs here because this forward-inference

procedure for structural subtyping of monomorphic types will be subsumed by the decision

procedure for parametric subtyping of polymorphic types that will eventually be presented in

Section 5.

The preceding theorem establishes that the above forward-inference algorithm is a semi-decision

procedure. However, in this setting, forward inference is, in fact, guaranteed to saturate, making

our algorithm a full-fledged decision procedure for structural subtyping of monomorphic types.

Theorem 4.3 (Termination). Forward inference according to the rules of Fig. 3 always saturates.

Proof sketch. Finitely many definitions of the form 𝑡 ≜ 𝐴 and 𝑢 ≜ 𝐵 can be drawn from

a given signature Σ. For each such pair of structural types 𝐴 and 𝐵, there are finitely many

subformulas (without unfolding type definitions). Each of the rules found in Fig. 3 infers a judgment

𝑡 ≼ 𝑢 ⇒ 𝜏 ≼ 𝜎 only if either 𝜏 and 𝜎 are subformulas of 𝐴 and 𝐵, respectively, or 𝜏 and 𝜎 are

subformulas of 𝐵 and 𝐴, respectively (again, without unfolding definitions). Therefore, only finitely

many judgments can be inferred, so forward inference must eventually saturate. □
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4.3 Further remarks
With respect to a backward-search decision procedure for structural subtyping of monomorphic

types (see, e.g., [Lakhani et al. 2022]), the above forward-inference algorithm has two advantages.

First, it is naturally incremental and compositional: If additional type definitions are introduced

later in the program, inferences involving only prior definitions still hold and need not be performed

again; only inferences involving the newly introduced definitions need to be performed. Second,

the forward-inference algorithm can take advantage of inferences made along one branch when

considering another branch.

With respect to the backward-search algorithm, our forward-inference algorithm, as formulated

in Fig. 3, does have one shortcoming: it does not account for structural subtypings that arise from

uninhabited types that exist when types’ interpretation is inductive or mixed inductive/coinductive,

such as those that appear in work by Ligatti et al. [2017] and Lakhani et al. [2022]. In this paper,

we choose to work only with types that are interpreted coinductively. Because all such types

are inhabited, the above forward-inference algorithm needs not account for such subtypings. We

conjecture that the algorithm can be extended to inductive andmixed inductive/coinductive settings,

but we leave that as future work.

5 DECIDING PARAMETRIC SUBTYPING FOR PARAMETRIC POLYMORPHISM
Leveraging the structure of the forward-inference algorithm for deciding structural subtyping of

monomorphic types presented in the preceding section, we will now present a related algorithm

for deciding parametric subtyping of polymorphic types.

At a high level, the algorithm uses saturating forward inference to derive the most general

admissible parametric rules for each pair of defined type constructors, such as “e[𝜅] ⩽ d[𝜅′] if
𝜅 ⩽ 𝜅′”. Then, once these rules have been derived, a parametric subtyping problem can be decided

by a second, backward proof construction phase that builds a finite derivation using the rules

derived during the first phase.

5.1 Details of the decision procedure
As in the special case algorithm for monomorphic types (Section 4), there are three judgments for

necessary consequences of a subtyping relationship between two types involving type constructors.

However, now that type constructors may take parameters, these judgments must account for those

parameters. Also, we choose to explicitly incorporate variances into the judgments for convenience.

Possible variances 𝜉 and 𝜁 are co- and contravariance, which we write as + and −, respectively.
(Bivariance is handled as mutual co- and contravariance, and nonvariance is handled implicitly by

the algorithm.) An operation, ¬, on variances, given by ¬(+) = − and ¬(−) = +, is also useful.

Because the forward inference judgments will use explicit variances and because we will want

to relate them to the declarative characterization of parametric subtyping, it is helpful to define the

abbreviation 𝜏 ⟨Θ⟩ ⩽𝜉 𝜎 ⟨Φ⟩ such that: 𝜏 ⟨Θ⟩ ⩽+ 𝜎 ⟨Φ⟩ if and only if 𝜏 ⟨Θ⟩ ⩽ 𝜎 ⟨Φ⟩; and 𝜏 ⟨Θ⟩ ⩽− 𝜎 ⟨Φ⟩
if and only if 𝜎 ⟨Φ⟩ ⩽ 𝜏 ⟨Θ⟩. The abbreviation 𝐴⟨Θ⟩ ⩽𝜉 𝐵⟨Φ⟩ is defined analogously.

We finally arrive at the following three judgments for forward inference. (We again use ≼ for

distinction.) The judgment 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥ will be inferred if and only if there are no

substitutions 𝜃 and 𝜙 and stacks Θ and Φ for which a derivation of 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩ exists. The
judgments 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏 ≼ 𝜎 # 𝜉 ′ and 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝐴 ≼ 𝐵 # 𝜉 ′ will be inferred if

and only if 𝜏 ⟨𝜃 ;Θ⟩ ⩽𝜉 ′ 𝜎 ⟨𝜙 ;Φ⟩ and 𝐴⟨𝜃 ;Θ⟩ ⩽𝜉 ′ 𝐵⟨𝜙 ;Φ⟩, respectively, would necessarily occur as

subderivations of any derivation of 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩ (assuming such a derivation exists).

5.1.1 Phase 1: Forward inference. Forward inference proceeds according to the rules found in

Fig. 4. Once again, these rules are interpreted inductively and are more clearly read top-down, from
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𝑡 [ ®𝛼] ≜ 𝐴 𝑢 [ ®𝛽] ≜ 𝐵
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝐴 ≼ 𝐵 # 𝜉

init-f

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏1 × 𝜏2 ≼ 𝜎1 × 𝜎2 # 𝜉 ′ (𝑖 ∈ {1, 2})
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏𝑖 ≼ 𝜎𝑖 # 𝜉

′
×f (no 1f rule for 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 1 ≼ 1 # 𝜉 ′)

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ +{ℓ : 𝜏ℓ }ℓ∈𝐿 ≼ +{𝑘 : 𝜎𝑘 }𝑘∈𝐾 # 𝜉 ′ (𝐿 ⊆𝜉 ′ 𝐾) (ℓ ∈ 𝐿 ∩ 𝐾)

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏ℓ ≼ 𝜎ℓ # 𝜉
′

+f

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏1 → 𝜏2 ≼ 𝜎1 → 𝜎2 # 𝜉
′

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏1 ≼ 𝜎1 # ¬𝜉 ′
→f1

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏1 → 𝜏2 ≼ 𝜎1 → 𝜎2 # 𝜉
′

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏2 ≼ 𝜎2 # 𝜉
′

→f2

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ N{ℓ : 𝜏ℓ }ℓ∈𝐿 ≼ N{𝑘 : 𝜎𝑘 }𝑘∈𝐾 # 𝜉 ′ (𝐾 ⊆𝜉 ′ 𝐿) (𝑘 ∈ 𝐿 ∩ 𝐾)

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏𝑘 ≼ 𝜎𝑘 # 𝜉 ′
Nf

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ∀𝑥 .𝜏 ≼ ∀𝑦.𝜎 # 𝜉 ′ (𝑧 fresh)
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ [𝑧/𝑥]𝜏 ≼ [𝑧/𝑥]𝜎 # 𝜉 ′

∀f
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ∃𝑥 .𝜏 ≼ ∃𝑦.𝜎 # 𝜉 ′ (𝑧 fresh)

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ [𝑧/𝑥]𝜏 ≼ [𝑧/𝑥]𝜎 # 𝜉 ′
∃f

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝑡 ′ [𝜃 ′] ≼ 𝑢′ [𝜙 ′] # 𝜉 ′ 𝑡 ′ [ ®𝛼 ′] ≼ 𝑢′ [ ®𝛽′] # 𝜉 ′ ⇒ 𝛼 ′ ≼ 𝛽′ # 𝜁

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜃 ′ (𝛼 ′) ≼ 𝜙 ′ (𝛽′) # 𝜁
compose-f

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝑡 ′ [𝜃 ′] ≼ 𝑢′ [𝜙 ′] # 𝜉 ′ 𝑡 ′ [ ®𝛼 ′] ≼ 𝑢′ [ ®𝛽′] # 𝜉 ′ ⇒ ⊥
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥

compose-f⊥

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝜎 # 𝜉 ′ (𝜎 ≠ 𝛽)
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥

param-l-f⊥
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏 ≼ 𝛽 # 𝜉 ′ (𝜏 ≠ 𝛼)

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥
param-r-f⊥

(no rule for 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝑥 ≼ 𝑥 # 𝜉 ′)

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝑥 ≼ 𝜏 # 𝜉 ′ (𝜏 ≠ 𝑥)
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥

var-l-f⊥
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏 ≼ 𝑥 # 𝜉 ′ (𝜏 ≠ 𝑥)

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥
var-r-f⊥

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ +{ℓ : 𝜏ℓ }ℓ∈𝐿 ≼ +{𝑘 : 𝜎𝑘 }𝑘∈𝐾 # 𝜉 ′ (𝐿 ⊈𝜉 ′ 𝐾)

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥
++f⊥

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ N{ℓ : 𝜏ℓ }ℓ∈𝐿 ≼ N{𝑘 : 𝜎𝑘 }𝑘∈𝐾 # 𝜉 ′ (𝐾 ⊈𝜉 ′ 𝐿)

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥
NNf⊥

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝐴 ≼ 𝐵 # 𝜉 ′ 𝐴 y 𝐵

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥
mismatch-f⊥

Fig. 4. Forward inference rules for phase 1 of deciding parametric subtyping for parametric polymorphism (f
for ‘forward’). These rules are interpreted inductively. The notation 𝐴 y 𝐵 means that 𝐴 and 𝐵 use distinct
top-level structural type constructors, such as + and 1. Also, 𝐿 ⊆+ 𝐾 iff 𝐿 ⊆ 𝐾 ; and 𝐿 ⊆− 𝐾 iff 𝐿 ⊇ 𝐾 .

premises to conclusion. Many of the rules are carried over from the decision procedure for structural

subtyping of monomorphic types that was described in Fig. 3 of Section 4, with the addition of

parameters and variances. For example, the essential aspects of the ×f, +f, and mismatch-f⊥ rules

are unchanged from Fig. 3. We will detail a few of the other rules.
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The compose-f rule. The most important difference between the rules of Fig. 4 and those of

Fig. 3 is that it is now possible to infer judgments of the form 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝛽 # 𝜉 ′.
These represent constraints that must hold of any instantiation 𝑡 [𝜃 ] ≼ 𝑢 [𝜙] # 𝜉 of type con-

structors 𝑡 and 𝑢. This idea is captured in the compose-f rule: Suppose that the first premise,

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝑡 ′ [𝜃 ′] ≼ 𝑢′ [𝜙 ′] # 𝜉 ′, has already been inferred – that is, that any derivation

of 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩ would necessarily contain a subderivation of 𝑡 ′ [𝜃 ′]⟨𝜃 ;Θ⟩ ⩽𝜉 ′ 𝑢′ [𝜙 ′]⟨𝜙 ;Φ⟩.
Furthermore, suppose that the premise 𝑡 ′ [ ®𝛼 ′] ≼ 𝑢′ [ ®𝛽 ′] # 𝜉 ′ ⇒ 𝛼 ′ ≼ 𝛽 ′ # 𝜁 has already been

inferred – that is, that any derivation of 𝑡 ′ [𝜃 ′]⟨𝜃 ;Θ⟩ ⩽𝜉 ′ 𝑢′ [𝜙 ′]⟨𝜙 ;Φ⟩ would necessarily contain a

subderivation of 𝛼 ′⟨𝜃 ′; (𝜃 ;Θ)⟩ ⩽𝜁 𝛽 ′⟨𝜙 ′
; (𝜙 ;Φ)⟩. It then follows from the param-p rule and transi-

tivity of containment that 𝜃 ′ (𝛼 ′)⟨𝜃 ;Θ⟩ ⩽𝜁 𝜙 ′ (𝛽 ′)⟨𝜙 ;Φ⟩ would necessarily occur as a subderivation

of 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩, thereby justifying the inference of 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜃 ′ (𝛼 ′) ≼ 𝜙 ′ (𝛽 ′) # 𝜁 .

The param-l-f⊥ and param-r-f⊥ rules. Suppose that the premise 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝜎 # 𝜉 ′

of the param-l-f⊥ rule has already been inferred, with 𝜎 not a parameter 𝛽 . That is, any derivation

of 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩ would necessarily contain a subderivation of 𝛼 ⟨𝜃 ;Θ⟩ ⩽𝜉 ′ 𝜎 ⟨𝜙 ;Φ⟩. However,
because 𝜎 is not a parameter, there is no rule in Fig. 2 that could have derived that subderivation.

Therefore, no derivation of 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩ can exist, thereby justifying the inference of

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥ by the param-l-f⊥ rule. The param-r-f⊥ rule is analogous, as are the

var-l-f⊥ and var-r-f⊥ rules.

5.1.2 Example. Returning to our running example of context-free languages, we can examine the

inferences made by our algorithm to infer admissible subtyping rules for pairs of type constructors.

By virtue of the init-f rule, the following judgments, among others, will be inferred.

(1) e[𝜅] ≼ d[𝜅′] # + ⇒ +{L : e[r[𝜅]], R : 𝜅} ≼ +{L : d[d[𝜅′]], R : 𝜅′} # +
(2) r[𝜅] ≼ d[𝜅′] # + ⇒ +{R : 𝜅} ≼ +{L : d[d[𝜅′]], R : 𝜅′} # +
(3) e0 ≼ d0 # + ⇒ +{L : e[end], $ : one} ≼ +{L : d[d0], $ : one} # +
(4) end ≼ d0 # + ⇒ +{$ : one} ≼ +{L : d[d0], $ : one} # +
(5) one ≼ one # + ⇒ 1 ≼ 1 # +

Because {R} ⊆ {L,R} ⊆ {L,R} and {$} ⊆ {L, $} ⊆ {L, $}, the +f rule then allows us to infer

(6) e[𝜅] ≼ d[𝜅′] # + ⇒ e[r[𝜅]] ≼ d[d[𝜅′]] # + (9) e0 ≼ d0 # + ⇒ e[end] ≼ d[d0] # +
(7) e[𝜅] ≼ d[𝜅′] # + ⇒ 𝜅 ≼ 𝜅′ # + (10) e0 ≼ d0 # + ⇒ one ≼ one # +
(8) r[𝜅] ≼ d[𝜅′] # + ⇒ 𝜅 ≼ 𝜅′ # + (11) end ≼ d0 # + ⇒ one ≼ one # +

as necessary consequences of the initial judgments. The compose-f rule can be applied to (6) and
(7), as well as to (9) and (7), to infer

(12) e[𝜅] ≼ d[𝜅′] # + ⇒ r[𝜅] ≼ d[𝜅′] # +
(13) e0 ≼ d0 # + ⇒ end ≼ d0 # + .

(The compose-f rule could also be applied to (12) and (8) to infer e[𝜅] ≼ d[𝜅′] # + ⇒ 𝜅 ≼ 𝜅′ # +,
but that has already been inferred as (7).) At this point, saturation has been reached for all pairs

of constructors above. Because no such pair has had ⊥ inferred as a consequence by the time

saturation occurs, admissible subtyping rules for all such pairs do exist. Collecting the respective

atomic constraints, namely (7) and (8), we see that these admissible rules are

𝜅 ≼ 𝜅′ # +
e[𝜅] ≼ d[𝜅′] # + ,

𝜅 ≼ 𝜅′ # +
r[𝜅] ≼ d[𝜅′] # + , e0 ≼ d0 # + , end ≼ d0 # + , and one ≼ one # + .
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𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 Y⇒ ⊥ ∀(𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝛽 # 𝜁 ) : 𝜃 (𝛼) ≼ 𝜙 (𝛽) # 𝜁
𝑡 [𝜃 ] ≼ 𝑢 [𝜙] # 𝜉

compose-b

𝑥 ≼ 𝑥 # 𝜉
var-b

Fig. 5. Backward proof construction rules for phase 2 of deciding parameteric subtyping for parametric
polymorphism (b for ‘backward’). These rules are interpreted inductively.

5.1.3 Phase 2: Backward proof construction. Having inferred themost general admissible parametric

rule for each pair of type constructors, the second, backward proof construction phase begins. For

this phase, we introduce a judgment 𝜏 ≼ 𝜎 # 𝜉 . Given a parametric subtyping problem 𝜏 ≼ 𝜎 # 𝜉 ,
the types 𝜏 and 𝜎 are examined, searching for a derivation according to the rules of Fig. 5.

Because parameters can only appear free within type definitions, neither 𝜏 nor 𝜎 can be a

parameter. Also, a type variable is a subtype of only itself, so there are no rules for 𝑥 ≼ 𝑢 [𝜙] # 𝜉
nor 𝑡 [𝜃 ] ≼ 𝑥 # 𝜉 . If 𝜏 is 𝑡 [𝜃 ] and 𝜎 is 𝑢 [𝜙], then the algorithm checks that 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥
has not been inferred during the forward-inference phase. Provided that is the case, then all atomic

constraints 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝛽 # 𝜁 are gathered. Backward proof construction continues by

building derivations of each 𝜃 (𝛼) ≼ 𝜙 (𝛽) # 𝜁 that corresponds to an atomic constraint on 𝑡 [ ®𝛼] and
𝑢 [ ®𝛽]. Backward proof construction terminates here because the types become smaller.

5.1.4 Example. Given the admissible rules for the context-free languages example that were

inferred in the first phase of the algorithm, wemay conclude that e0 ⩽ d0 holds. Moreover, backward

proof construction over these admissible rules can be used to decide other subtying problems. For

example, e[e[e0]] ≼ d[d[d0]] # + can be confirmed when backward proof construction builds the

following derivation.

e0 ≼ d0 # + compose-b

e[e0] ≼ d[d0] # + compose-b

e[e[e0]] ≼ d[d[d0]] # + compose-b

5.2 Correctness of the decision procedure for parametric subtyping
The algorithm described above is both sound and complete with respect to the declarative charac-

terization of parametric subtyping given in Fig. 2. We give only sketches of the proofs here; details

can be found in Appendix A of the supplementary materials.

Following the pattern laid out for monomorphic types, the proof of soundness relies on the

following key lemma that generalizes Lemma 4.1.

Lemma 5.1. Given a saturated database:

(1) If 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏 ≼ 𝜎 # 𝜉 ′; 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 Y⇒ ⊥; and 𝛼 ⟨Θ⟩ ⩽𝜁 𝛽 ⟨Φ⟩ for each
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝛽 # 𝜁 ; then 𝜏 ⟨Θ⟩ ⩽𝜉 ′ 𝜎 ⟨Φ⟩.

(2) If 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝐴 ≼ 𝐵 # 𝜉 ′; 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽]𝜉 Y⇒ ⊥; and 𝛼 ⟨Θ⟩ ⩽𝜁 𝛽 ⟨Φ⟩ for each
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝛽 # 𝜁 ; then 𝐴⟨Θ⟩ ⩽𝜉 ′ 𝐵⟨Φ⟩.

Proof sketch. By mutual coinduction on the (potentially infinite) derivations of 𝜏 ⟨Θ⟩ ⩽𝜉 ′ 𝜎 ⟨Φ⟩
and 𝐴⟨Θ⟩ ⩽𝜉 ′ 𝐵⟨Φ⟩. □

Soundness then follows by structural induction on the derivation using the rules of Fig. 5 that was

built by backward proof construction.

Theorem 5.2 (Soundness). If 𝜏 ≼ 𝜎 # 𝜉 , then 𝜏 ⟨Θ⟩ ⩽𝜉 𝜎 ⟨Φ⟩ for all stacks Θ and Φ.

Completeness also requires a lemma, but then follows by structural induction on the type 𝜏 .
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Lemma 5.3.

(1) If 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩ and 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝐴 ≼ 𝐵 # 𝜉 ′, then 𝐴⟨𝜃 ;Θ⟩ ⩽𝜉 ′ 𝐵⟨𝜙 ;Φ⟩.
(2) If 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩ and 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏 ≼ 𝜎 # 𝜉 ′, then 𝜏 ⟨𝜃 ;Θ⟩ ⩽𝜉 ′ 𝜎 ⟨𝜙 ;Φ⟩.
(3) If 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩, then 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 Y⇒ ⊥.
Proof sketch. Each part is proved as follows.

(1) Directly, noting that only the init-f rule can derive 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝐴 ≼ 𝐵 # 𝜉 ′.

(2) By induction on the finite derivation of 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏 ≼ 𝜎 # 𝜉 ′.

(3) We generalize the lemma to show that 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩ and 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥
together imply a meta-contradiction. This is proved by induction on the finite derivation of

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥. □

Theorem 5.4 (Completeness). If 𝜏 ⟨Θ⟩ ⩽𝜉 𝜎 ⟨Φ⟩, then Θ(𝜏) ≼ Φ(𝜎) # 𝜉 . As a particular case,

𝜏 ⟨·⟩ ⩽𝜉 𝜎 ⟨·⟩ implies 𝜏 ≼ 𝜎 # 𝜉 .

We must also prove that forward inference and backward proof construction terminate.

Theorem 5.5 (Termination). Forward inference and backward proof construction according to the

rules of Figs. 4 and 5, respectively, terminate.

Proof sketch. Finitely many definitions 𝑡 [ ®𝛼] ≜ 𝐴 and 𝑢 [ ®𝛽] ≜ 𝐵 can be drawn from a given

signature and combined with one of two variances. For each such triple, the structural types 𝐴 and

𝐵 have finitely many subformulas (without unfolding definitions). Each of the rules found in Fig. 4,

including the compose-f rule, infers a judgment 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏 ≼ 𝜎 # 𝜉 ′ only if 𝜏 and 𝜎 are

subformulas of 𝐴 and 𝐵, respectively (again, without unfolding definitions). Because only finitely

many judgments can be inferred, forward inference in phase 1 must terminate. Backward proof

construction in phase 2 terminates because its recursion occurs at successive subformulas. □

5.3 Nonrecursive type abbreviations
Consider the type constructors 𝑡 [𝛼] ≜ 𝛼 × 1 and 𝑢 [𝛽] ≜ 1 × 𝛽 . Purely structurally, 𝑡 [1] would
be a subtype of 𝑢 [1], with both 𝑡 [1] and 𝑢 [1] unfolding to 1 × 1 because type constructors are

treated transparently by the unf-s rule. However, when constructors are treated parametrically, this

relationship does not hold: 𝛼 ⟨1/𝛼 ;Θ⟩ ⩽ 1⟨1/𝛽 ;Φ⟩ and 1⟨1/𝛼 ;Θ⟩ ⩽ 𝛽 ⟨1/𝛽 ;Φ⟩ violate parametricity.

If we would like certain definitions to act as mere abbreviations that are (conceptually) always

expanded, then our system can easily accommodate this as long as those definitions are not

recursive. To integrate such nonrecursive type abbreviations into the declarative characterization

of parametric subtyping, we could add the following rule and restrict the inst-p to apply only when

neither type constructor is a nonrecursive abbreviation.

𝑡 [ ®𝛼] ≜ 𝐴 𝑢 [ ®𝛽] ≜ 𝐵 (𝑡 or 𝑢 is nonrecursive abbrev.) 𝜃 (𝐴)⟨Θ⟩ ⩽ 𝜙 (𝐵)⟨Φ⟩
𝑡 [𝜃 ]⟨Θ⟩ ⩽ 𝑢 [𝜙]⟨Φ⟩ unf-p

Forward inference in phase 1 and backward proof construction in phase 2 of the decision procedure

would similarly expand nonrecursive abbreviations. It is easy to see that both phases still terminate.

6 IMPLEMENTATION
Our implementation in Standard ML is available in an online repository [Pfenning et al. 2023]. It

provides a syntax for defining types, deriving parametric inference rules, and checking subtyp-

ing. All examples from this paper are available in paper.poly. Because of mutual recursion, the

implementation proceeds in two phases: first checking basic consistency and normalizing types,
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thereby extending the signature with additional, internal definitions. The second phase executes

the saturation algorithm (Section 5) and answers queries by consulting the saturated database.

There are only the following few minor points of departure from this paper.

6.1 Nonrecursive type abbreviations.
The implementation allows type definitions (which are always treated parametrically) but also

explicit type abbreviations which may be parameterized but must be nonrecursive. These abbrevia-

tions are expanded structurally, as described above. Depending on the larger language context, an

alternative would be to treat every nonrecursive type definition as an abbreviation.

6.2 Elaboration to normal form.
Before elaboration, every definition in the signature Σ has the form 𝑡 [ ®𝛼] ≜ 𝐴 where 𝐴 is structural

(which guarantees contractiveness) but may not be in normal form. We map each such definition

to 𝑡 [ ®𝛼] ≜ 𝐴∗
, using the auxiliary translation 𝐴†

in which 𝐴 need not be structural. In the process,

we may add further (internal) definitions to the signature. We show this translation only for the

types 𝑡 [𝜃 ], 𝛼 , 𝐴1 ×𝐴2, 1, and ∃𝑥 .𝐴; all others are analogous.

(𝐴1 ×𝐴2)∗ = 𝐴†
1
×𝐴†

2
(𝑡 [𝜃 ])† = 𝑡 [𝜃†]

(1)∗ = 1 (𝛼)† = 𝛼
(∃𝑥 .𝐴)∗ = ∃𝑥 . [𝑥/𝛼] ( [𝛼/𝑥]𝐴)†,

where 𝛼 fresh

(𝐴)† = 𝑡 [ ®𝛼] for 𝐴 structural, where ®𝛼 = free(𝐴)
and Σ B Σ, 𝑡 [ ®𝛼] ≜ 𝐴∗...

Here, 𝜃† is defined pointwise. Computing the free type parameters free(𝐴) avoids creating internal
definitions with unnecessary parameters. Also, notice that, during elaboration, quantified type

variables 𝑥 become parameters 𝛼 that are then instantiated with the corresponding variable 𝑥

after normalization. Therefore, no case for (𝑥)† is needed. We can also obtain additional sharing

(and therefore faster convergence of the saturation algorithm) in the clause for (𝐴)† by reusing a

definition 𝑢 [ ®𝛼] if 𝑢 [ ®𝛼] ≜ 𝐴∗
is already in the signature Σ (modulo renaming of the parameters).

6.3 Indexing in the database.
In the implementation, we combine all facts 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ · · · for a given 𝑡 , 𝑢, and 𝜉 into a

single entry 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ C, where constraints C are given by

Constraints C F ⊥ | 𝛼𝑖 ≼ 𝛽 𝑗 # 𝜁 | ⊤ | C1 ∧ C2

We keep constraints C in a normal form where no entries are repeated and any conjunction with ⊥
is reduced to ⊥. This facilitates efficient lookup and detection of saturation.

7 EXAMPLES
7.1 Lists
The polymorphic type of lists of elements of a type 𝛼 , as well as the types of empty and nonempty

lists, can be defined as follows.

list[𝛼] ≜ +{nil : 1, cons : 𝛼 × list[𝛼]} elist ≜ +{nil : 1} and nelist[𝛼] ≜ +{cons : 𝛼 × list[𝛼]}
By running our saturation algorithm and examining the atomic constraints on list[𝛼] and itself,

we can verify that list[𝛼] is covariant in 𝛼 ; we can similarly verify that nelist[𝛼] is covariant in 𝛼 .
Moreover, our algorithm confirms the parametric rules elist ⩽ list[𝛼], as well as nelist[𝛼] ⩽ list[𝛽]
if 𝛼 ⩽ 𝛽 . And lists of nonempty lists of even natural numbers are, more generally, lists of lists of

natural numbers, and our algorithm confirms that list[nelist[even]] ⩽ list[list[nat]], for example.
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7.2 Binary trees and spines
7.2.1 Trees. Similarly to lists, the polymorphic type of binary trees of 𝛽s can be defined as follows.

tree[𝛽] ≜ +{leaf : 1, node : 𝛽 × (tree[𝛽] × tree[𝛽])}
Thus, a tree of 𝛽s is either leaf with the unit value, or node with a tuple of an element of type 𝛽

and the left and right subtrees. Our saturation algorithm verifies that tree[𝛽] is covariant in 𝛽 .
Similar to those for lists, the types of empty and nonempty trees of 𝛽s are subtypes of tree[𝛽]:

etree ≜ +{leaf : 1} and netree[𝛽] ≜ +{node : 𝛽 × (tree[𝛽] × tree[𝛽])} .

7.2.2 Spines. Because the left and right spines of a tree are essentially lists, we might at first

expect to have list[𝜏] ⩽ tree[𝜎] whenever 𝜏 ⩽ 𝜎 . However, even if we were to coordinate the label

names across the two types, that subtyping relationship would not hold because it would require

list[𝛼]⟨𝜏/𝛼⟩ ⩽ (tree[𝛽] × tree[𝛽])⟨𝜎/𝛽⟩ – that is, it would require a (nonempty) sum type to be a

subtype of a product type. Indeed, saturation yields list[𝛼] ≼ tree[𝛽] # + ⇒ ⊥ for that reason.

Instead, we could define a type of left spines as follows; right spines would be symmetric.

spine[𝛼] ≜ +{leaf : 1, node : 𝛼 × (spine[𝛼] × etree)}
With this definition, we do have spine[𝜏] ⩽ tree[𝜎] when 𝜏 ⩽ 𝜎 because the product type

spine[𝛼] × etree is a subtype of tree[𝛽] × tree[𝛽] under 𝜏/𝛼 and 𝜎/𝛽 .

7.2.3 Object-oriented lists and trees. On a related note, we could take a more object-oriented

approach to lists and trees, using record types instead of eager products:

olist[𝛼] ≜ N{out : +{none : 1, some : 𝛼 × N{fst : olist[𝛼] }}, size : nat}
otree[𝛽] ≜ N{out : +{none : 1, some : 𝛽 × N{fst : otree[𝛽], snd : otree[𝛽]}}, size : nat}

Even purely structurally, olist[𝜏] ⩽ otree[𝜎] does not hold when 𝜏 ⩽ 𝜎 , but otree[𝜎] ⩽ olist[𝜏]
does when 𝜎 ⩽ 𝜏 and is in the parametric fragment. This is somewhat counterintuitive, but

nevertheless the correct relationship: any context that expects a list can use a tree’s spine instead.

7.2.4 Perfect binary trees. Taking advantage of the support for nested types, we can adapt Bird

and Meertens’s prototypical example of perfect binary trees [1998].

perfect[𝛼] ≜ +{leaf : 1, node : 𝛼 × perfect[𝛼 × 𝛼]}
Our algorithm confirms that perfect[𝛼] is covariant in 𝛼 . However, even purely structurally,

perfect[𝜏] is not a subtype of tree[𝜎] for any 𝜏 and 𝜎 . That would require perfect[𝜏 × 𝜏] to be a

subtype of tree[𝜎] × tree[𝜎], which cannot be: perfect[𝜏 × 𝜏] is a variant record type, whereas

tree[𝜎] × tree[𝜎] is a product type. Essentially, the difference amounts to one between breadth-first

and depth-first representations of trees. However, the lack of a subtyping relationship does not

mean that the type perfect[𝛼] is unusable: given the support for nested types, an explicit coercion

from perfect[𝛼] to tree[𝛼] could still be written.

7.3 Serialized binary trees and spines
7.3.1 Serialized binary trees. Here we adapt an example from Thiemann and Vasconcelos [2016]

and consider it in the context of subtyping: We may sometimes wish to serialize a binary tree to

send it across the network or write it to a file. A type that describes serialized trees is stree[𝛼, 𝜅],
parameterized by both the type of data elements, 𝛼 , and a suffix (or continuation) type, 𝜅:

stree[𝛼, 𝜅] ≜ +{leaf : 𝜅, node : 𝛼 × stree[𝛼, stree[𝛼, 𝜅]]} .
According to this type, a serialized tree is a list of leaf and node labels. A leaf is followed by a suffix

of type 𝜅; a node is followed by the pair of the tree’s root element of type 𝛼 and the serialization of
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the left subtree, which itself is followed by the serialization of the right subtree.
7
This type crucially

depends on nested types to express the invariant that stree[𝛼,𝜅] describes preorder traversals of
binary trees. Our saturation algorithm verifies that stree[𝛼,𝜅] is covariant in both 𝛼 and 𝜅.

Although unrelated to subtyping concerns, it is interesting to observe that the above type

definition can, in fact, be derived syntactically by repeatedly applying type isomorphisms to the

definition stree[𝛼,𝜅] ≜ tree[𝛼] × 𝜅:

stree[𝛼, 𝜅] ≜ tree[𝛼] × 𝜅 = +{leaf : 1, node : 𝛼 × (tree[𝛼] × tree[𝛼])} × 𝜅
≃ +{leaf : 1 × 𝜅, node : 𝛼 × (tree[𝛼] × (tree[𝛼] × 𝜅))}
≃ +{leaf : 𝜅, node : 𝛼 × (tree[𝛼] × stree[𝛼, 𝜅])}
≃ +{leaf : 𝜅, node : 𝛼 × stree[𝛼, stree[𝛼,𝜅]]} .

None of the isomorphic types in this sequence are mutual subtypes, however. In particular,

although the types stree[𝛼,𝜅] and tree[𝛼] × 𝜅 are isomorphic, we do not have tree[𝜏] as a subtype
of stree[𝜏, 1], nor vice versa, for any 𝜏 . Comparing the leaf branches of both types, we see that,

for these parametric subtyping relationships to hold, 1 ⩽ 𝜅 and 𝜅 ⩽ 1 must hold for all types 𝜅,

regardless of the fact that stree[𝜏, 1] ultimately instantiates 𝜅 with 1. This is simply not true when

𝜅 is, for example, either +{ } or 1 × 1.
Once again, the absence of subtyping relationships does not mean that the type stree[𝛼,𝜅]

cannot be related to tree[𝛼] × 𝜅. Given a term language with support for nested types, it would

still be possible to write explicit coercions between these types to serialize and deserialize trees.

7.3.2 Serialized spines. As an extension of this example, we can also define a type constructor

sspine[𝛼,𝜅] to describe serialized (left) spines:

sspine[𝛼, 𝜅] ≜ spine[𝛼] × 𝜅 ≃ +{leaf : 𝜅, node : 𝛼 × sspine[𝛼, setree[𝜅]]}
setree[𝜅] ≜ etree × 𝜅 ≃ +{leaf : 𝜅} .

The subtyping relationship between (left) spines and trees is preserved under serialization: we

have the parametric rule sspine[𝛼, 𝜅] ⩽ stree[𝛽, 𝜅′] if both 𝛼 ⩽ 𝛽 and 𝜅 ⩽ 𝜅′, as our algorithm
confirms. Notice that the inclusion of setree[𝜅] and its +{leaf : 𝜅} is essential here. Had we instead

used the definition sspine[𝛼,𝜅] ≜ +{leaf : 𝜅, node : 𝛼 × sspine[𝛼, 𝜅]}, there would be no subtyping
relationship because stree[𝛽, 𝜅′] would have one more × than sspine[𝛼, 𝜅].

7.4 Total functions and generalized tries on binary trees and spines
7.4.1 Total functions on trees. We can use the following type to describe total functions from 𝛼 trees

to 𝛽s. As for serialized trees, this definition is derivable by repeatedly applying type isomorphisms

to tree[𝛼] → 𝛽 . (Interestingly, this type is, in a sense, dual to that of serialized trees.)

treefn[𝛼, 𝛽] ≜ tree[𝛼] → 𝛽 = +{leaf : 1, node : 𝛼 × (tree[𝛼] × tree[𝛼])} → 𝛽

≃ N{leaf : 1→ 𝛽, node : 𝛼 × (tree[𝛼] × tree[𝛼]) → 𝛽}
≃ N{leaf : 𝛽, node : 𝛼 → (tree[𝛼] → (tree[𝛼] → 𝛽))}
≃ N{leaf : 𝛽, node : 𝛼 → (tree[𝛼] → treefn[𝛼, 𝛽])}
≃ N{leaf : 𝛽, node : 𝛼 → treefn[𝛼, treefn[𝛼, 𝛽]]}

7
Strictly speaking, this is not a true serialization due to the inclusion of a product type. However, as there is no uniform

way of serializing polymorphic data, this is as near to a true serialization as is possible. Moreover, for concrete instances

of tree, such as with nat data, it is possible to give true serializations that inline the serialization of their data elements:

snattree[𝜅 ] ≜ +{leaf : 𝜅, node : snat[snattree[snattree[𝜅 ] ] ] }, where snat[−] is defined as in Section 3.1.
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Thus, an object of type treefn[𝛼, 𝛽] offers two methods, leaf and node. To look up the value of a

leaf, the leaf method is invoked, resulting in the associated value of type 𝛽 . To look up a nonempty

tree, the node method is invoked with the root element of type 𝛼 , resulting in an object of type

treefn[𝛼, treefn[𝛼, 𝛽]]. Recursively, the left subtree is looked up in this object; its associated value

is an object of type treefn[𝛼, 𝛽]. Then, the right subtree is looked up in this object, and the value of

type 𝛽 associated with the entire nonempty tree is ultimately returned.

This example makes essential use of a record type to represent the object’s methods, but most

importantly, nested types are crucial to expressing the higher-order nature of lookups. In the usual

way, our algorithm confirms that treefn[𝛼, 𝛽] is contravariant in 𝛼 and covariant in 𝛽 .

7.4.2 Total functions on spines. In a similar way, we can derive a type definition for total functions

on (left) spines, using the types spine[𝛼] and etree defined in Section 7.2.2.

spinefn[𝛼, 𝛽] ≜ spine[𝛼] → 𝛽 ≃ N{leaf : 𝛽, node : 𝛼 → spinefn[𝛼, etreefn[𝛽]]}
etreefn[𝛽] ≜ etree→ 𝛽 ≃ N{leaf : 𝛽}

Once again, the subtyping relationship between (left) spines and trees is respected: we have the rule

treefn[𝛼, 𝛽] ⩽ spinefn[𝛼 ′, 𝛽 ′] if both 𝛼 ′ ⩽ 𝛼 and 𝛽 ⩽ 𝛽 ′, as our algorithm confirms. (Notice that

the subtyping direction is reversed because of contravariance in the underlying function types.)

7.4.3 Tries for trees and spines. In prior work [Connelly and Morris 1995; Hinze 2000; Wadsworth

1979], the trie data structure for lists and strings was generalized to represent partial (not total)

functions on more complex algebraic structures, such as binary trees. A type definition for tries

from keys of type tree[𝛼] to values of type 𝛽 can be derived from trie[𝛼, 𝛽] ≜ tree[𝛼] → option[𝛽],
where option[𝛽] ≜ +{none : 1, some : 𝛽}.

trie[𝛼, 𝛽] ≜ tree[𝛼] → option[𝛽] = +{leaf : 1, node : 𝛼 × (tree[𝛼] × tree[𝛼])} → option[𝛽]
≃ N{leaf : option[𝛽], node : 𝛼 → (tree[𝛼] → (tree[𝛼] → option[𝛽]))}
≃ N{leaf : option[𝛽], node : 𝛼 → (tree[𝛼] → trie[𝛼, 𝛽])}
≃ N{leaf : option[𝛽], node : 𝛼 → treefn[𝛼, trie[𝛼, 𝛽]]}

For example, tries representing sets of 𝜏 trees could be typed as trie[𝜏, 1]. Our algorithm verifies that

trie[𝛼, 𝛽] is contravariant in 𝛼 and covariant in 𝛽 . The use of nested types here is consistent with

Wadsworth’s observation [1979]. It would also be possible to similarly define a type spinetrie[𝛼, 𝛽]
of tries for (left) spines; it would be equivalent to spinefn[𝛼, option[𝛽]].

7.5 Refined stacks
The additional expressive power of nested types allows us to also define a refined type for stacks

that tracks the stack’s shape:

rstack[𝛼, 𝜅] ≜ N{push : 𝛼 → rstack[𝛼, some[𝛼 × rstack[𝛼, 𝜅]]], pop : 𝜅} ,

where some[𝛼] ≜ +{some : 𝛼}. Here, the type parameter 𝜅 serves as a continuation to be used

when popping from the stack. Pushing an element onto the stack extends this continuation to

reflect the existence (but not the identity) of the newly pushed element.

But we do not have rstack[𝜏, 𝜎] as a parametric subtype of stack[𝜏] for any 𝜏 , even when we are

guaranteed that 𝜎 ⩽ option[𝜏 × stack[𝜏]]. Nevertheless, it is possible to prove that rstack[𝜏, 𝜎] is
a structural subtype of stack[𝜏] when 𝜎 ⩽ option[𝜏 × stack[𝜏]], making this one example of how

the parametric fragment is a proper fragment of structural subtyping.
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7.6 Abstract types
We can take advantage of the ∀ and ∃ quantifiers to express module signatures as abstract types.

Here we define two signatures for abstract lists, with constructors 𝑥 and 𝛼 × 𝑥 → 𝑥 (respectively,

𝛽 × 𝑥 → 𝑥 ) for the empty list and list concatenation, parameterized by the type 𝛼 (respectively, 𝛽)

of list elements. Both signatures include a fold function, and alist′ [𝛽] also includes a size function.

alist[𝛼] ≜ ∃𝑥 . 𝑥 × (𝛼 × 𝑥 → 𝑥) × N{fold : ∀𝑧. 𝑧→ (𝛼 × 𝑧→ 𝑧) → 𝑥 → 𝑧 }
alist′ [𝛽] ≜ ∃𝑥 . 𝑥 × (𝛽 × 𝑥 → 𝑥) × N{fold : ∀𝑧. 𝑧→ (𝛽 × 𝑧→ 𝑧) → 𝑥 → 𝑧, size : nat}

Our algorithm confirms the signature subtyping relationship that derives from the additional size
function: alist′ [𝛽] ⩽ alist[𝛼] if both 𝛼 ⩽ 𝛽 and 𝛽 ⩽ 𝛼 .

8 RELATEDWORK
The most closely related work has been mentioned; we now briefly overview other related work.

Subtyping recursive types. The nature and complexity of the subtyping problem vary considerably

depending on whether types are interpreted nominally or structurally; for type equivalence, the

change from structural to nominal interpretation in non-regular types leads to a decrease in com-

plexity from doubly-exponential to linear [Mordido et al. 2023]. If recursive types are nominal, the

subtyping problem is simpler but also very limited. However, even under a nominal interpretation

of how types are defined, issues arise when datasort refinements are considered [Davies 2005;

Dunfield and Pfenning 2004; Freeman and Pfenning 1991].

Althoughwe have a broader setting, our interest in structural subtyping was influenced by session

types [Caires and Pfenning 2010; Honda et al. 1998], where types are traditionally interpreted

structurally, equirecursively, and coinductively. Subtyping in session types has been mostly treated

coinductively [Gay and Hole 2005; Silva et al. 2023] and constitutes a particular case of our system.

Developments toward structural subtyping began much earlier, regardless of whether types were

treated coinductively [Amadio and Cardelli 1993; Gay and Hole 2005; Hosoya et al. 1998] or in a

mixed inductive/coinductive setting [Brandt and Henglein 1998; Danielsson and Altenkirch 2010;

Lakhani et al. 2022; Ligatti et al. 2017]. In fact, the notion of structural subtyping dates back to 1988,

introduced by Cardelli [1988], but suggested even before [Cardelli 1984, 1985; Reynolds 1985]. In

this paper, we have not explored the presence of empty or full types [Lakhani et al. 2022; Ligatti

et al. 2017]; we leave this analysis for future work (more details are provided in Section 4.3).

Subtyping polymorphic types. In this paper, we chose to have a foundational approach, including

the features strictly necessary to handle parametric datatypes in programming languages. Bird

and Meertens [1998] and Hinze [2000] noted that implementing generalized tries required the

use of nested datatypes and non-regular recursion, which is our setting for this paper. Other type

systems have been developed to explore non-regular data structures. In the context of session

types, Thiemann and Vasconcelos [2016] proposed context-free session types with predicative

polymorphism, extended later with impredicative polymorphism [Almeida et al. 2022]; subtyping

was also explored [Silva et al. 2023]. Nested session types were proposed by Das et al. [2022] and

were proved to be more expressive than context-free session types [Das et al. 2022; Gay et al. 2022].

Inspired by the structural nature of types, these works have focused on structural subtyping and

equivalence relations. For session types, the subtyping problem has been shown to be undecid-

able [Padovani 2019; Silva et al. 2023], even though the corresponding type equality problems are

decidable [Almeida et al. 2020; Das et al. 2022; Solomon 1978]. In Section 2.3, we present the result

more generally for type systems with record types, explicitly identifying sets of minimal features

that guarantee the undecidability of subtyping. The undecidability of the subtyping relation leads to
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the design of incomplete algorithms. The parametric subtyping relation we propose allows us to both

tackle the incompleteness problem and to understand exactly to what extent the previous relations

are incomplete, distinguishing cases where parametricity is not satisfied from cases where types

actually exhibit distinct behaviors and are therefore not in (any) subtyping relation. Parametricity

materializes the idea that types behave uniformly for all possible instantiations. This notion was

first proposed by Reynolds [1983] for System F [Girard 1972], further explored by Wadler [1989]

and then extended to nested types by Johann and Ghiorzi [2021]. None of these works focused on

the subtyping relation. The combination of parametricity and subtyping is the main contribution of

our work through type constructors that map (subtyping-)related arguments to (subtyping-)related

results, in a relation that we called parametric subtyping.

Several works focus on mixing subtyping with (explicit) parametric polymorphism via bounded

quantification [Cardelli and Wegner 1985]. The most standard formulation is the second-order

lambda-calculus with bounded quantification, 𝐹≤ [Cardelli et al. 1994], but subtyping was proved

to be undecidable [Pierce 1994], even without recursion. Several 𝐹≤ fragments have been identified

as having a decidable subtyping relation [Cardelli and Wegner 1985; Castagna and Pierce 1994;

Katiyar and Sankar 1992; Mackay et al. 2020], also extended with recursion [Abadi et al. 1996; Zhou

et al. 2023] or higher-order polymorphism and polarized application [Steffen 1999]. System 𝐹≤ was

the ground for many developments in OOP [Rompf and Amin 2016]. As none of the applications

we want for our type system seem to require bounded polymorphism at its most fundamental core,

we limit our setting to parametric polymorphism and explicit quantifiers.

Semantic vs algorithmic subtyping definitions. Semantic typing and subtyping are favored in

non-regular structural type systems over their declarative versions. Initially, semantic relations

were motivated by the set-theoretic properties of types [Castagna and Frisch 2005; Frisch et al.

2002; Lakhani et al. 2022], but for non-regular types the need for a semantic relation to model the

behaviour of types was even more natural, by means of simulations and bisimulations [Das et al.

2022; Gay and Hole 2005; Silva et al. 2023].

Algorithmic approaches for monomorphic or regular (sub)typing systems, such as standard fixed-

point algorithms [Gay and Hole 2005], sequent calculus [Das et al. 2022], cyclic proofs [Brotherston

and Simpson 2010; Lakhani et al. 2022], step indexing [Ahmed 2004, 2006; Appel and McAllester

2001; Dreyer et al. 2009; Lakhani et al. 2022], sized types [Abel and Pientka 2016] or bouncing threads

[Baelde et al. 2022], are effective. However, these mechanisms are not scalable when we navigate

beyond regular types. In section 2.2.3, we illustrate the narrow scope of the above approaches

and the limitations of their application to nested types. To limit the recursion depth, a recursion

bound is usually used, leading to incompleteness [Das et al. 2022] or even unsoundness
8
. The

undecidability of structural subtyping for the non-monomorphic fragment gives us no hope of

finding a sound and complete algorithm. In this paper, we free our type system from this limitation

by proposing the novel notion of parametric subtyping, which takes advantage of parametricity

without completely abandoning structural subtyping. In an attempt to overcome the limitations of

alternatives such as bouncing threads or cyclic proofs, we end up finding a sweet spot that takes

advantage of saturation-based methods to perform forward-inference, often used in constraint

solving [Jaffar and Lassez 1987] and unification [Huet 1976; Martelli and Montanari 1982].

9 CONCLUSION
In this paper, we presented a theory of parametricity for type constructors that forms the basis for

parametric subtyping, a decidable, practical, and expressive fragment of structural subtyping for

8
TypeScript has an unsound structural subtyping: https://www.typescriptlang.org/docs/handbook/type-compatibility.html

https://www.typescriptlang.org/docs/handbook/type-compatibility.html
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parametic polymorphism. Moreover, the saturation-based decision procedure has led to an effective

implementation that performs well on a variety of practical examples.

One opportunity for future work is to extend our results to a mixed inductive/coinductive type

system, as in call-by-push-value [Levy 2001], that accounts for subtypings that rely on types being

uninhabited or full, such as +{ } ⩽ 𝜎 and 𝜏 ⩽ +{ } → 𝜎 for all 𝜏 and 𝜎 . We do already have a

prototype implementation that does so, but the decision procedure’s theory and accompanying

correctness proofs appear to bemore complicated. Other opportunities include extension to bounded

quantification, integration with intersection and union types, and development of a notion of

parametric subtyping for higher-order kinds.
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A PROOFS
Theorem 2.1. Let 𝑡 ≜ N{ }. Then 𝑝 ≲ 𝑞 if and only if (𝑞 # 𝑡) ⩽ (𝑝 # 𝑡), for all processes 𝑝 and 𝑞.

Proof. We will prove each direction separately, beginning with the left-to-right direction. Its

proof is by coinduction on the (potentially infinite) derivation of (𝑞 # 𝑡) ⩽ (𝑝 # 𝑡). We distinguish

cases on the structure of 𝑝 .

Case: Consider the case in which 𝑝 = 𝑋 · 𝑝2, where 𝑋 ≜
∑
ℓ∈𝐿 (ℓ · 𝑝′ℓ ) for some nonempty label

set 𝐿 and some processes (𝑝′ℓ )ℓ∈𝐿 and 𝑝2. Observe that 𝑝
ℓ−→ 𝑝′ℓ · 𝑝2 for all ℓ ∈ 𝐿. Because

𝐿 is nonempty and 𝑝 is simulated by 𝑞, it follows that 𝑞 can make at least one transition.

Therefore, 𝑞 = 𝑌 · 𝑞2, where 𝑌 ≜
∑
𝑘∈𝐾 (𝑘 · 𝑞′

𝑘
) for some nonempty 𝐾 and some processes

(𝑞′
𝑘
)𝑘∈𝐾 and 𝑞2. The derivation of (𝑞 # 𝑡) ⩽ (𝑝 # 𝑡) may therefore begin with

(𝐿 ⊆ 𝐾) ∀ℓ ∈ 𝐿 : (𝑞′ℓ # (𝑞2 # 𝑡)) ⩽ (𝑝′ℓ # (𝑝2 # 𝑡))
N{𝑘 : 𝑞′

𝑘
# (𝑞2 # 𝑡)}𝑘∈𝐾 ⩽ N{ℓ : 𝑝′ℓ # (𝑝2 # 𝑡)}ℓ∈𝐿

N

𝑡𝑌 [𝑞2 # 𝑡] ⩽ 𝑡𝑋 [𝑝2 # 𝑡]

Now we must establish the premises of the above N rule.

Because 𝑝 is simulated by 𝑞, it follows that 𝐿 ⊆ 𝐾 and 𝑝′ℓ · 𝑝2 ≲ 𝑞′ℓ · 𝑞2 for all ℓ ∈ 𝐿.

Appealing to the coinductive hypothesis, we have ((𝑞′ℓ · 𝑞2) # 𝑡) ⩽ ((𝑝′ℓ · 𝑝2) # 𝑡) for all
ℓ ∈ 𝐿. These appeals are justified because they are guarded by the ? and N rules. Because

((𝑞′ℓ · 𝑞2) # 𝑡) = (𝑞′ℓ # (𝑞2 # 𝑡)) and ((𝑞′ℓ · 𝑞2) # 𝑡) = (𝑞′ℓ # (𝑞2 # 𝑡)) for all ℓ ∈ 𝐿, this completes

the required derivation of (𝑞 # 𝑡) ⩽ (𝑝 # 𝑡).
Case: Consider the case in which 𝑝 = 𝜖 . In this case, (𝑝 # 𝑡) = 𝑡 and we must show that (𝑞 # 𝑡) ⩽ 𝑡 .

If 𝑞 = 𝑌 · 𝑞2 for some 𝑌 ≜
∑
𝑘∈𝐾 (𝑘 · 𝑞′

𝑘
), nonempty 𝐾 , and processes (𝑞′

𝑘
)𝑘∈𝐾 and 𝑞2, then

the following is a derivation of (𝑞 # 𝑡) ⩽ 𝑡 .

N{𝑘 : 𝑞′
𝑘

# (𝑞2 # 𝑡)}𝑘∈𝐾 ⩽ N{ } N

𝑡𝑌 [𝑞2 # 𝑡] ⩽ 𝑡

Otherwise, if 𝑞 = 𝜖 , then the following is a derivation of (𝑞 # 𝑡) ⩽ 𝑡 .

N{ } ⩽ N{ } N

𝑡 ⩽ 𝑡

Next, we will prove the right-to-left direction; the proof is by coinduction on the similarity 𝑝 ≲ 𝑞.

It suffices to show that 𝑝
𝑎−→ 𝑝′ implies 𝑞

𝑎−→≳ 𝑝′ when (𝑞 # 𝑡) ⩽ (𝑝 # 𝑡). Assume that 𝑝
𝑎−→ 𝑝′.

Because 𝑝 has a transition, there must exist an equation 𝑋 ≜
∑
ℓ∈𝐿 (ℓ · 𝑝′ℓ ) and a process 𝑝2 such

that 𝑝 = 𝑋 · 𝑝2 and 𝑝′ = 𝑝′𝑎 · 𝑝2, with 𝑎 ∈ 𝐿. We will distinguish cases on the structure of 𝑞.

Case: Consider the case in which 𝑞 = 𝑌 · 𝑞2, where 𝑌 ≜
∑
𝑘∈𝐾 (𝑘 · 𝑞′

𝑘
) for a nonempty label

set 𝐾 . Notice that 𝑞
𝑎−→ 𝑞′𝑎 · 𝑞2. By inversion on the (potentially infinite) derivation of

(𝑞 # 𝑡) ⩽ (𝑝 # 𝑡), we have 𝐿 ⊆ 𝐾 and (𝑞′ℓ # (𝑞2 # 𝑡)) ⩽ (𝑝′ℓ # (𝑝2 # 𝑡)) for all ℓ ∈ 𝐿. In particular,

((𝑞′𝑎 · 𝑞2) # 𝑡) = (𝑞′𝑎 # (𝑞2 # 𝑡)) ⩽ (𝑝′𝑎 # (𝑝2 # 𝑡)) = ((𝑝′𝑎 · 𝑝2) # 𝑡). Appealing to the coinductive

hypothesis, 𝑞′𝑎 · 𝑞2 ≲ 𝑝′𝑎 · 𝑝2. This appeal is valid because it is guarded by ??.

Case: Consider the case in which 𝑞 = 𝜖 . We have 𝑡 ⩽ (𝑝 #𝑡). By inversion, we have 𝑝 = 𝜖 . Therefore,

the result is vacuously true in this case. □

Theorem 3.1 (Soundness of parametric subtyping). If 𝜏 ⟨Θ⟩ ⩽ 𝜎 ⟨Φ⟩, then Θ(𝜏) ⩽ Φ(𝜎).
Likewise, if 𝐴⟨Θ⟩ ⩽ 𝐵⟨Φ⟩, then Θ(𝐴) ⩽ Φ(𝐵).
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Proof. Using the mixed induction and coinduction proof technique described by Danielsson and

Altenkirch [2010]. Specifically, the proof is by lexicographic mixed induction and coinduction, first

by coinduction on the (potentially infinite) structural subtyping derivation, and then by induction

on the finite substitution stack Θ.

Case: Consider the case in which the parametric subtyping derivation of 𝜏 ⟨Θ⟩ ⩽ 𝜎 ⟨Φ⟩ begins
with:

𝑡 [ ®𝛼] ≜ 𝐴 𝑢 [ ®𝛽] ≜ 𝐵 𝐴⟨𝜃 ;Θ⟩ ⩽ 𝐵⟨𝜙 ;Φ⟩
𝑡 [𝜃 ]⟨Θ⟩ ⩽ 𝑢 [𝜙]⟨Φ⟩ inst-p

Because Θ(𝑡 [𝜃 ]) = 𝑡 [Θ ◦ 𝜃 ] and Φ(𝑢 [𝜙]) = 𝑢 [Φ ◦ 𝜙], the structural subtyping derivation

may begin with

(Θ ◦ 𝜃 ) (𝐴) ⩽ (Φ ◦ 𝜙) (𝐵)
𝑡 [Θ ◦ 𝜃 ] ⩽ 𝑢 [Φ ◦ 𝜙] unf-s

To construct a derivation of (Θ ◦ 𝜃 ) (𝐴) ⩽ (Φ ◦ 𝜙) (𝐵), we may appeal to the coinductive

hypothesis. Despite the substitution stack becoming larger, this appeal is valid because it is

guarded by the above unf-s rule.

Case: Consider the case in which the derivation of 𝜏 ⟨Θ⟩ ⩽ 𝜎 ⟨Φ⟩ begins with:
𝜃 (𝛼)⟨Θ′⟩ ⩽ 𝜙 (𝛽)⟨Φ′⟩
𝛼 ⟨𝜃 ;Θ′⟩ ⩽ 𝛽 ⟨𝜙 ;Φ′⟩ param-p

Because (𝜃 ;Θ′) (𝛼) = Θ′ (𝜃 (𝛼)) and (𝜙 ;Φ) (𝛽) = Φ′ (𝜙 (𝛽)), we must construct a derivation of

the structural subtyping Θ′ (𝜃 (𝛼)) ⩽ Φ′ (𝜙 (𝛽)). We can do so by appealing to the inductive

hypothesis at the smaller substitution stack Θ′
. □

Lemma 5.1. Given a saturated database:

(1) If 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏 ≼ 𝜎 # 𝜉 ′; 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 Y⇒ ⊥; and 𝛼 ⟨Θ⟩ ⩽𝜁 𝛽 ⟨Φ⟩ for each
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝛽 # 𝜁 ; then 𝜏 ⟨Θ⟩ ⩽𝜉 ′ 𝜎 ⟨Φ⟩.

(2) If 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝐴 ≼ 𝐵 # 𝜉 ′; 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽]𝜉 Y⇒ ⊥; and 𝛼 ⟨Θ⟩ ⩽𝜁 𝛽 ⟨Φ⟩ for each
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝛽 # 𝜁 ; then 𝐴⟨Θ⟩ ⩽𝜉 ′ 𝐵⟨Φ⟩.

Proof. By mutual coinduction on the (potentially infinite) derivations of 𝜏 ⟨Θ⟩ ⩽𝜉 ′ 𝜎 ⟨Φ⟩ and
𝐴⟨Θ⟩ ⩽𝜉 ′ 𝜎 ⟨Φ⟩. We consider only the case of 𝜉 ′ = +. The case of 𝜉 ′ = − is symmetric.

(1) Assume that 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏 ≼ 𝜎 # 𝜉 ′; 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 Y⇒ ⊥; and 𝛼 ⟨Θ⟩ ⩽𝜁 𝛽 ⟨Φ⟩ for
each 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝛽 # 𝜁 . We will now distinguish cases on the types 𝜏 and 𝜎 .

Case: Consider the case in which 𝜏 = 𝑡 ′ [𝜃 ′] and 𝜎 = 𝑢′ [𝜙 ′], where 𝑡 ′ [ ®𝛼 ′] ≜ 𝐴′
and

𝑢′ [ ®𝛽 ′] ≜ 𝐵′. The derivation of 𝜏 ⟨Θ⟩ ⩽ 𝜎 ⟨Φ⟩ can therefore begin with

𝐴′⟨𝜃 ′;Θ⟩ ⩽ 𝐵′⟨𝜙 ′
;Φ⟩

𝑡 ′ [𝜃 ′]⟨Θ⟩ ⩽ 𝑢′ [𝜙 ′]⟨Φ⟩ inst-p

To construct a derivation of 𝐴′⟨𝜃 ′;Θ⟩ ⩽ 𝐵′⟨𝜙 ′
;Φ⟩, we will appeal to the coinductive

hypothesis. This appeal is valid because it will be guarded by the above rule. To make

the appeal, we need to first establish the three preconditions.

• Because 𝑡 ′ [ ®𝛼 ′] ≜ 𝐴′
and 𝑢′ [ ®𝛽 ′] ≜ 𝐵′, it follows from the inst-f rule that the

saturated database contains 𝑡 ′ [ ®𝛼 ′] ≼ 𝑢′ [ ®𝛽 ′] # 𝜉 ′ ⇒ 𝐴′ ≼ 𝐵′ # 𝜉 ′.
• Assume, for the sake of contradiction, that 𝑡 ′ [ ®𝛼 ′] ≼ 𝑢′ [ ®𝛽 ′] # 𝜉 ′ ⇒ ⊥. Because
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝑡 ′ [𝜃 ′] ≼ 𝑢′ [𝜙 ′] # 𝜉 ′, it follows from the compose-f⊥ rule that

the saturated database would also contain 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥. This contradicts
our earlier assumption, so we conclude that 𝑡 ′ [ ®𝛼 ′] ≼ 𝑢′ [ ®𝛽 ′] # 𝜉 ′ Y⇒ ⊥.
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• Choose an arbitrary 𝑡 ′ [ ®𝛼 ′] ≼ 𝑢′ [ ®𝛽 ′] # 𝜉 ′ ⇒ 𝛼 ′ ≼ 𝛽 ′ # 𝜁 ′; we must show that

𝛼 ′⟨𝜃 ′;Θ⟩ ⩽𝜁 ′ 𝛽 ′⟨𝜙 ′
;Φ⟩. This derivation can begin with

𝜃 ′ (𝛼 ′)⟨Θ⟩ ⩽𝜁 ′ 𝜙 ′ (𝛽 ′)⟨Φ⟩
𝛼 ′⟨𝜃 ′;Θ⟩ ⩽𝜁 ′ 𝛽 ′⟨𝜙 ′

;Φ⟩ param-p

To construct a derivation of 𝜃 ′ (𝛼 ′)⟨Θ⟩ ⩽𝜁 ′ 𝜙 ′ (𝛽 ′)⟨Φ⟩, we will again appeal to

the coinductive hypothesis. This appeal is valid because it will be guarded, by

this rule as well as the above rule. The second and third preconditions follow

immediately from our earlier assumptions. The first precondition, that 𝑡 [ ®𝛼] ≼
𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜃 ′ (𝛼 ′) ≼ 𝜙 ′ (𝛽 ′) # 𝜁 ′, follows from the compose-f rule, given that

both 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝑡 ′ [𝜃 ′] ≼ 𝑢′ [𝜙 ′] # 𝜉 ′ and 𝑡 ′ [ ®𝛼 ′] ≼ 𝑢′ [ ®𝛽 ′] # 𝜉 ′ ⇒ 𝛼 ′ ≼
𝛽 ′ # 𝜁 ′.

(2) Assume that 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝐴 ≼ 𝐵 # 𝜉 ′; 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 Y⇒ ⊥; and 𝛼 ⟨Θ⟩ ⩽𝜁 𝛽 ⟨Φ⟩ for
each 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝛽 # 𝜁 . We will now distinguish cases on the types 𝐴 and 𝐵.

Case: Consider the case in which 𝐴 = +{ℓ : 𝜏ℓ }ℓ∈𝐿 and 𝐵 = +{𝑘 : 𝜎𝑘 }𝑘∈𝐾 with 𝐿 ⊆ 𝐾 . The

derivation of 𝐴⟨Θ⟩ ⩽ 𝐵⟨Φ⟩ can therefore begin with

∀ℓ ∈ 𝐿 : 𝜏ℓ ⟨Θ⟩ ⩽ 𝜎ℓ ⟨Φ⟩
+{ℓ : 𝜏ℓ }ℓ∈𝐿 ⟨Θ⟩ ⩽ +{𝑘 : 𝜎𝑘 }𝑘∈𝐾 ⟨Φ⟩

+p

To construct a derivation of 𝜏ℓ ⟨Θ⟩ ⩽ 𝜎ℓ ⟨Φ⟩ for each ℓ ∈ 𝐿, we will appeal to the

coinductive hypothesis. This appeal is valid because it will be guarded by the above

rule. To make the appeal, we need to first establish the three preconditions. The

second and third preconditions were already assumed. The first precondition, that

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏ℓ ≼ 𝜎ℓ # 𝜉
′
, follows from the +f rule, given that 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] #

𝜉 ⇒ +{ℓ : 𝜏ℓ }ℓ∈𝐿 ≼ +{𝑘 : 𝜎𝑘 }𝑘∈𝐾 # 𝜉 ′. □

Theorem 5.2 (Soundness). If 𝜏 ≼ 𝜎 # 𝜉 , then 𝜏 ⟨Θ⟩ ⩽𝜉 𝜎 ⟨Φ⟩ for all stacks Θ and Φ.

Proof. By structural induction on the finite derivation of 𝜏 ≼ 𝜎 # 𝜉 .

Case: Consider the case in which the derivation of 𝜏 ≼ 𝜎 # 𝜉 begins with:

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 Y⇒ ⊥ ∀(𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝛽 # 𝜁 ) : 𝜃 (𝛼) ≼ 𝜙 (𝛽) # 𝜁
𝑡 [𝜃 ] ≼ 𝑢 [𝜙] # 𝜉 compose-b

where 𝑡 [ ®𝛼] ≜ 𝐴 and 𝑢 [ ®𝛽] ≜ 𝐵 for some structural types 𝐴 and 𝐵. Because 𝑡 [ ®𝛼] ≜ 𝐴 and

𝑢 [ ®𝛽] ≜ 𝐵, it follows that the saturated database contains 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝐴 ≼ 𝐵 # 𝜉 . By
the inductive hypothesis on the subderivations and the param-p rule, we have 𝛼 ⟨𝜃 ;Θ⟩ ⩽𝜁
𝛽 ⟨𝜙 ;Φ⟩ for each 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝛽 # 𝜁 . Therefore, we may appeal to Lemma 5.1 to

deduce that𝐴⟨𝜃 ;Θ⟩ ⩽𝜉 𝐵⟨𝜙 ;Φ⟩. Applying the inst-p rule, 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩, as required.
Case: Consider the case in which the derivation of 𝜏 ≼ 𝜎 # 𝜉 is:

𝑥 ≼ 𝑥 # 𝜉
var-b

It follows immediately from the var-p rule that 𝑥 ⟨Θ⟩ ⩽𝜉 𝑥 ⟨Φ⟩. □

Lemma 5.3.

(1) If 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩ and 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝐴 ≼ 𝐵 # 𝜉 ′, then 𝐴⟨𝜃 ;Θ⟩ ⩽𝜉 ′ 𝐵⟨𝜙 ;Φ⟩.
(2) If 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩ and 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏 ≼ 𝜎 # 𝜉 ′, then 𝜏 ⟨𝜃 ;Θ⟩ ⩽𝜉 ′ 𝜎 ⟨𝜙 ;Φ⟩.
(3) If 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩, then 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 Y⇒ ⊥.

Proof. Each part is proved in sequence.
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(1) Assume that 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩ and that 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝐴 ≼ 𝐵 # 𝜉 ′. Because
𝐴 ≼ 𝐵 # 𝜉 ′ is a consequence of 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 , inversion allows us to deduce that

𝑡 [ ®𝛼] ≜ 𝐴, 𝑢 [ ®𝛽] ≜ 𝐵, and 𝜉 ′ = 𝜉 . By inversion on the derivation of 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩, we
therefore have 𝐴⟨𝜃 ;Θ⟩ ⩽𝜉 𝐵⟨𝜙 ;Φ⟩, just as obliged.

(2) By structural induction on the finite derivation of 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏 ≼ 𝜎 # 𝜉 ′.
Case:

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝑡 ′ [𝜃 ′] ≼ 𝑢′ [𝜙 ′] # 𝜉 ′ 𝑡 ′ [ ®𝛼 ′] ≼ 𝑢′ [ ®𝛽 ′] # 𝜉 ′ ⇒ 𝛼 ′ ≼ 𝛽 ′ # 𝜁

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜃 ′ (𝛼 ′) ≼ 𝜙 ′ (𝛽 ′) # 𝜁

We must show that 𝜃 ′ (𝛼 ′)⟨𝜃 ;Θ⟩ ⩽𝜁 𝜙 ′ (𝛽 ′)⟨𝜙 ;Φ⟩.
Appealing to the inductive hypothesis on the left-hand subderivation, we may deduce

𝑡 ′ [𝜃 ′]⟨𝜃 ;Θ⟩ ⩽𝜉 ′ 𝑢′ [𝜙 ′]⟨𝜙 ;Φ⟩. With this in hand, we then appeal to the inductive

hypothesis on the right-hand subderivation to deduce 𝛼 ′⟨𝜃 ′; (𝜃 ;Θ)⟩ ⩽𝜁 𝛽 ′⟨𝜙 ′
; (𝜙 ;Φ)⟩.

By inversion, we have 𝜃 ′ (𝛼 ′)⟨𝜃 ;Θ⟩ ⩽𝜁 𝜙 ′ (𝛽 ′)⟨𝜙 ;Φ⟩, just as required.
Case:

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏1 × 𝜏2 ≼ 𝜎1 × 𝜎2 # 𝜉 ′

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝜏1 ≼ 𝜎1 # 𝜉
′

We must show that 𝜏1⟨𝜃 ;Θ⟩ ⩽𝜉 ′ 𝜎1⟨𝜙 ;Φ⟩.
Applying part (1) of Lemma 5.3 to the subderivation, we may deduce 𝜏1 × 𝜏2⟨𝜃 ;Θ⟩ ⩽𝜉 ′
𝜎1 × 𝜎2⟨𝜙 ;Φ⟩. By inversion, 𝜏1⟨𝜃 ;Θ⟩ ⩽𝜉 ′ 𝜎1⟨𝜙 ;Φ⟩, as obliged.

Cases: The other cases are similar.

(3) We will prove that 𝑡 [𝜃 ]⟨Θ⟩ ⩽𝜉 𝑢 [𝜙]⟨Φ⟩ and 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥ together imply a

meta-contradiction, by induction on the finite derivation of 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥.
Case:

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝑡 ′ [𝜃 ′] ≼ 𝑢′ [𝜙 ′] # 𝜉 ′ 𝑡 ′ [ ®𝛼 ′] ≼ 𝑢′ [ ®𝛽 ′] # 𝜉 ′ ⇒ ⊥
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥

Applying part (2) of Lemma 5.3 to the left-hand subderivation, wemay deduce 𝑡 ′ [𝜃 ′]⟨𝜃 ;Θ⟩ ⩽𝜉 ′
𝑢′ [𝜙 ′]⟨𝜙 ;Φ⟩. Then, appealing to the inductive hypothesis on the right-hand subderiva-

tion, we have a meta-contradiction, as required.

Case:
𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝜎 # 𝜉 ′ (𝜎 ≠ 𝛽)

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥
Applying part (2) of Lemma 5.3 to the left-hand subderivation, wemay deduce𝛼 ⟨𝜃 ;Θ⟩ ⩽𝜉 ′
𝜎 ⟨𝜙 ;Φ⟩. Inversion of this derivation yields a meta-contradiction, as required, because

there is no declarative subtyping rule that will conclude this judgment when the type

𝜎 is not a type parameter.

Case:

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ +{ℓ : 𝜏ℓ }ℓ∈𝐿 ≼ +{𝑘 : 𝜎𝑘 }𝑘∈𝐾 # 𝜉 ′ (𝐿 ⊈𝜉 ′ 𝐾)

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ ⊥

Applying part (1) Lemma 5.3 to the subderivation, we may deduce +{ℓ : 𝜏ℓ }ℓ∈𝐿 ⟨𝜃 ;Θ⟩ ⩽𝜉 ′
+{𝑘 : 𝜎𝑘 }𝑘∈𝐾 ⟨𝜙 ;Φ⟩. By inversion, we see that 𝐿 ⊆𝜉 ′ 𝐾 . This contradicts the above

𝐿 ⊈𝜉 ′ 𝐾 .
Cases: Each of the other cases is similar to one of the above. □
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Theorem 5.4 (Completeness). If 𝜏 ⟨Θ⟩ ⩽𝜉 𝜎 ⟨Φ⟩, then Θ(𝜏) ≼ Φ(𝜎) # 𝜉 . As a particular case,

𝜏 ⟨·⟩ ⩽𝜉 𝜎 ⟨·⟩ implies 𝜏 ≼ 𝜎 # 𝜉 .

Proof. By structural induction on the named type 𝜏 .

Case: Consider the case in which 𝜏 = 𝑡 [𝜃 ]. By inversion, the derivation of 𝜏 ⟨Θ⟩ ⩽ 𝜎 ⟨Φ⟩ is one of
𝑡 [𝜃 ]⟨Θ⟩ ⩽ 𝑢 [𝜙]⟨Φ⟩ # 𝜉 . Therefore, the finite derivation of 𝜏 ≼ 𝜎 # 𝜉 can begin with the

following rule, so long as we can derive its premises.

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 Y⇒ ⊥ ∀(𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝛽 # 𝜁 ) : 𝜃 (𝛼) ≼ 𝜙 (𝛽) # 𝜁
𝑡 [𝜃 ] ≼ 𝑢 [𝜙] # 𝜉

These premises are indeed derivable.

• The first premise is satisfied by an appeal to part (3) of Lemma 5.3.

• Let 𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 ⇒ 𝛼 ≼ 𝛽 # 𝜁 be an arbitrary parameter consequence of

𝑡 [ ®𝛼] ≼ 𝑢 [ ®𝛽] # 𝜉 . Applying part (2) of Lemma 5.3, we have 𝛼 ⟨𝜃 ;Θ⟩ ⩽ 𝛽 ⟨𝜙 ;Φ⟩ # 𝜁 . By
inversion on this derivation, we may deduce that 𝜃 (𝛼)⟨Θ⟩ ⩽ 𝜙 (𝛽)⟨Φ⟩ # 𝜁 . Appealing to
the inductive hypothesis at a smaller type 𝜃 (𝛼), we may deduce that 𝜃 (𝛼) ≼ 𝜙 (𝛽) # 𝜁 .

This fills in the premise of the above rule, completing the required derivation of 𝜏 ≼ 𝜎 # 𝜉 .
Case: Consider the case in which 𝜏 = 𝑥 . By inversion, the derivation of 𝜏 ⟨Θ⟩ ⩽ 𝜎 ⟨Φ⟩ # 𝜉 is:

𝑥 ⟨Θ⟩ ⩽𝜉 𝑥 ⟨Φ⟩
var-p

The required 𝑥 ≼ 𝑥 # 𝜉 follows immediately from var-b rule. □
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