
On the Unification Problem for Cartesian Closed Categories
(Extended Abstract)

Paliath Narendran
Institute of Programming and Logics

Department of Computer Science

State University of NY at Albany

Albany, NY 12222

dran@cs.albany.edu

Frank Pfenning
Department of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

fp@cs.cmu.edu

Richard Statman
Department of Mathematics

Carnegie Mellon University

Pittsburgh, PA 15213

rstatman@cs.cmu.edu

Abstract

Cartesian closed categories (CCC’s) have played and
continue to play an important role in the study of the
semantics of programming languages. An axiomatiza-
tion of the isomorphisms which hold in all Cartesian
closed categories discovered independently by Soloviev
and Bruce and Longo leads to seven equalities. We
show that the unification problem for this theory is
undecidable, thus settling an open question. We also
show that an important subcase, namely unification
modulo the linear isomorphisms, is NP-complete. Fur-
thermore, the problem of matching in CCC’s is NP-
complete when the subject term is irreducible.

CCC-matching and unification form the basis for an
elegant and practical solution to the problem of retriev-
ing functions from a library indexed by types investi-
gated by Rittri. It also has potential applications to
the problem of polymorphic higher-order unification,
which in turn is relevant to theorem proving, logic
programming, and type reconstruction in higher-order
languages.

1 Introduction

Cartesian closed categories (CCC’s) have played and
continue to play an important role in the study of
the semantics of programming languages. Much work
has been done in the study of solutions to partic-
ular domain equations such as Scott’s construction
of a CCC and a domain D to satisfy the isomor-
phism D ∼= D ⇒ D to provide a model for the un-
typed lambda calculus. Surprisingly little is known
about which domain equations have solutions in all
CCC’s. An axiomatization of the isomorphisms due
to Soloviev [Sol83] and independently discovered by
Bruce and Longo [BL85] leads to a first-order equa-
tional unification problem under seven equalities. We

show that the unification problem for this theory is
undecidable by a reduction from Hilbert’s tenth prob-
lem, thus settling an open question. The correspond-
ing CCC-matching problem is NP-complete, when the
subject is irreducible. The isomorphisms valid in all
closed categories (CC’s) are characterized by five of
the seven equations as shown by Soloviev [Sol93] (ex-
actly those which can be realized by linear functions).
We show that the unification problem thus restricted
is NP-complete.

Matching and unification in closed and Cartesian
closed categories have applications to the retrieveal of
functions in a library indexed by the function’s type
(see [Rit90, Rit91, Rit92, RT91]). The equational the-
ory of the types comes into play here, since library
entries of essentially the same functionality may have
many different, but isomorphic types. Retrieval which
is indexed by types should abstract away from whether
a given function is curried or not, or in which order it
accepts its arguments. Rittri further argues convinc-
ingly that such retrieval is more precise and intuitive
if one considers only linear isomorphisms, which leads
to the second problem we consider.

An early version of the NP-completeness of CCC-
matching was reported in [NPS89], and a variant
of our algorithm for CC-unification has been imple-
mented by Rittri and turned out to be practical in
library retrieval applications. The undecidability re-
sult is new, and none of the results have previously
appeared in print, as far as we know.

Our original motivation for the study of CCC-
unification was a potential application to the problem
of polymorphic unification, that is, unification in the
simply typed λ-calculus with products and polymor-
phic types (in the style of ML). Intuitively the connec-
tion can be seen when considering the solutions to a

polymorphic unification problem with a free type vari-
able D: for a solution at type A, there are guaranteed
to be solutions at all types isomorphic to A. Since var-
ious occurrences of D may place different constraints
on its instances, these constraints must be unified us-
ing CCC-unification. Polymorphic matching and uni-
fication have applications in theorem proving, logic
programming, and program transformation in higher-
order logic.

2 Definitions

2.1 Equational Unification

The reader is referred to [DJ90, HO80] for extensive
surveys of the important concepts of term rewriting
systems such as reduction, confluence, and canonicity
(or convergence).

Two terms s and t are said to be unifiable mod-
ulo an equational theory E if and only if there ex-
ists a substitution θ such that θ(s) =E θ(t). If E
has a canonical term rewriting system R, i.e., there
exists a canonical system R whose associated equa-
tional theory is E, then this is equivalent to having
a θ such that θ(s) and θ(t) are joinable modulo R.
In this case we sometimes say s and t are unifiable
modulo R. The unification problem modulo an equa-
tional theory E is to determine, given a list of pairs
〈s1, t1〉, . . . , 〈sn, tn〉, whether there exists σ such that
σ(s1)=E σ(t1), . . . , σ(sn)=E σ(tn), where the terms
(si’s and ti’s) consist of function symbols occurring
in the signature of E and free constants1. Often we
distinguish this problem from the single-pair unifica-
tion problem where only one pair is input.

A term t is E-reducible modulo R if and only if there
is a rule l → r in R, a subterm t′ at occurrence a of
t , and a substitution σ such that σ(l)=E t

′. The term
t[a← σ(r)] is the result of E-reducing t by l → r at a.
Many of the notions such as noetherian, confluent etc.
can be extended to E-noetherian, E-confluent etc.; we
do not include those definitions here, instead referring
the reader to [JK86, PS81].

A substitution σ is said to be irreducible modulo a term
rewriting system R if and only if σ(x) is irreducible
for every x in the support of σ. Clearly one needs to
look only for irreducible substitutions if the unification
problem is modulo a canonical system.

A term rewriting system R is said to be confluent over
a set of terms S if and only if every term in S has a

1This is often called elementary unification to distinguish it
from the general case where we allow, in the input, non-constant
function symbols that are not in the signature of E.

unique normal form modulo R. It is said to be canon-
ical over S if it is noetherian as well.

2.2 Cartesian Closed Categories

A Cartesian closed category (CCC) is a category that
has products (×), exponentiation (⇒) and a terminal
object (1). (See [LS86] for a detailed treatment.) The
isomorphism relation between objects in a CCC (∼=)
can be axiomatized equationally (as shown by Bruce
and Longo [BL85] and later sharpened by Bruce,
Di Cosmo, and Longo [BCL92]) and this results in
an algebra consisting of binary operators × and ⇒
and nullary (constant) operator 1, and the following
equational axioms:

• × is associative and commutative, i.e.,

x × (y × z) = (x × y) × z
x × y = y × x

• there is an (identity) element 1 for × with the
properties

x × 1 = x
1 ⇒ x = x
x ⇒ 1 = 1

• ⇒ left-distributes over × (Dist-2):

x ⇒ (y × z) = (x ⇒ y) × (x ⇒ z)

• Currying of ⇒ (Cur-2):

x ⇒ (y ⇒ z) = (x × y) ⇒ z

Let E denote this set of equations. An isomorphism
holds between expressions e1 and e2 (which denote
objects) in every CCC if and only if e1 =E e2.

3 Results on Term Rewriting Systems

A rule l → r in a term rewriting system T is opti-
mally reducing if and only if it satisfies the following
property:

For every substitution θ, if θ(s) is irreducible
for every proper subterm s of l, then θ(r) is
irreducible too.

A term rewriting system T is optimally reducing if
and only if every rule in it is optimally reducing. The
significance of optimal reduction lies in the following
three lemmas. We use |t| to denote the size of a term
t.

2

Lemma 1 It is decidable whether a term rewriting
system is optimally reducing.

Lemma 2 Let T be an optimally reducing term
rewriting system, s be an irreducible term, and θ be
an irreducible substitution. Then θ(s) can be reduced
to its normal form in less than or equal to |s| steps.

Proof-sketch: It can be shown that doing reduction
innermost (i.e., from the leaves upward — see [Klo87])
would involve at the most |s| steps. 2

Lemma 3 Every confluent, optimally reducing term
rewriting system has a decidable unification problem.

Proof-sketch: Let T be an optimally reducing
canonical term rewriting system and s and t be terms
to be unified modulo T . By Lemma 2, if θ is an irre-
ducible substitution that unifies these two terms, then
θ(s) and θ(t) can be reduced to their normal forms in
at most |s| and |t| steps respectively using innermost
reduction. Non-deterministically choose the sequence
of positions where the reductions occur and the corre-
sponding rules that are applied. Mimic the reductions
without actually performing unification by suitably re-
naming the variables in the rules. For instance, if θ(s)
is to be reduced at p ∈ Occ(s) by l → r, then form
the (standard) unification problem 〈s/p = η(l)〉 for
a suitable renaming η of l, and continue in the same
way with the new term s[p ← η(r)]. This procedure
gives rise to at most |s| + |t| + 1 equations to be
unified. Finally, once all the simultaneous unification
problems are found, we can easily check, using stan-
dard unification, whether our sequence of choices is
valid. 2

Note that an application of Lemma 3 is in idempo-
tence unification, i.e., unification where one or more
function symbols f can have the idempotence property
f(x, x) = x.

Example: Consider the term rewriting system
{f(x, x) → g(x)} which is optimally reducing and
canonical. The terms s = f(f(x, h(y)), g(x)) and
f(g(h(v)), f(u, z)) = t are unifiable by the irreducible
substitution θ = {x ← h(y), v ← y, u ← h(y), z ←
h(y)}. Now θ(s) is first reduced at the position 1
and then at Λ, to get g(g(h(y))), and θ(t) is re-
duced at 2 and then at Λ to get g(g(h(y))). Mimick-
ing these, we get the pairs 〈f(x, h(y)) = f(x1, x1)〉,
〈f(g(x1), g(x)) = f(x2, x2)〉, 〈f(u, z) = f(x3, x3)〉,
〈f(g(h(v)), g(x3)) = f(x4, x4)〉 and finally 〈g(x2) =

g(x4)〉. Simultaneously unifying these pairs yields the
equational unifier. 2

A function f is said to be an associative-commutative
operator (AC-operator) if and only if it satisfies the
associative and commutative laws. An operator that
is neither associative nor commutative will be re-
ferred to in this paper as a non-AC operator. Unifi-
cation modulo associativity and commutativity (gen-
erally known as AC-unification) has been investigated
widely in the term rewriting systems literature — see
[Fag87, KN99, Sti81], for instance. In particular, it
has been proved in [KN99] that unifiability modulo as-
sociativity and commutativity can be checked in non-
deterministic polynomial time (NP); we will make use
of this result later in the paper.

For systems involving associative-commutative opera-
tors, Lemma 2 can be extended somewhat.

Lemma 4 Let T be an optimally AC-reducing term
rewriting system involving AC-operators such that the
root symbols of its left-hand sides are non-AC opera-
tors. Let s be an AC-irreducible term, and θ be an AC-
irreducible substitution. Then θ(s) can be AC-reduced
to its normal form modulo T in less than or equal to
|s| steps.

We believe Lemma 4 can be improved upon; we do
not attempt to do so here, since Lemma 4 covers the
cases that we are interested in. We obtain as a corol-
lary to this lemma that every confluent, optimally AC-
reducing term rewriting system has a decidable unifi-
cation problem.

4 Unification in Cartesian Closed Cat-
egories

Let E ′ be the equational theory consisting of all the
equations in E except the left-distributivity axiom
(Dist-2) and the equation (x ⇒ 1) = 1. As shown by
Soloviev [Sol93], E ′ is the set of equations that charac-
terizes the isomorphisms valid in all closed categories
(CC’s). Our main results are as follows:

1. Both theories have canonical rewriting systems
modulo associativity and commutativity (of ×)
which can be obtained by orienting the remaining
equations left to right.

2. Unification modulo E ′ is NP-complete.

3. Matching modulo E is NP-complete.

4. Unification modulo E is undecidable.

3

LetR andR′ stand for the canonical systems for E and
E ′ respectively. It can be easily shown that the unifi-
cation problem, for both E and E ′, can be reduced to
the single-pair unification problem for these theories.
Hence, throughout the rest of the paper, by “unifica-
tion” we mean single-pair unification. Also, since the
rest of the paper is concerned with theories involving
AC-operators, we often do not prefix all relevant con-
cepts with “AC-” as in AC-reduction, AC-confluent
etc.

4.1 Unification modulo E ′

As mentioned earlier, obtaining a canonical system,
modulo associativity and commutativity, for E ′ is not
difficult at all. We merely orient the equations left-to-
right. Thus the rules in R′ are

x × 1 → x

(1 ⇒ x) → x

(x ⇒ (y ⇒ z)) → ((x × y) ⇒ z)

Let R′′ refer to the set consisting of the last two rules,
i.e.,

R′′ = R′ \ { (x × 1) → x }

Lemma 5 R′ is canonical.

Let S stand for the set of terms that are irreducible
wrt the rules x × 1 → x and (1 ⇒ x) → x.

Lemma 6 R′′ is optimally reducing and canonical
over S.

We are now in a position to outline our NP-algorithm
for unification modulo R′. Let s and t be two terms
to be unified. We can non-deterministically choose
the variables that are to be substituted for by 1; let
s′ and t′ be the normal forms of the terms thus ob-
tained. Assume neither s′ nor t′ is 1. (The case where
one of them is 1 is very easily handled.) Thus if θ is
the “remaining” part of our target substitution, then
1 6∈ θ(x) for all x in its support (domain). Hence
θ(s′) and θ(t′) must also be in normal form wrt the
rule x × 1 → x. By Lemma 6 and Lemma 4, θ(s′)
and θ(t′) can be reduced to their respective normal
forms using innermost reduction in at the most |s′|
and |t′| AC-reduction steps respectively. Therefore all
that we have to do is to “mimic” those reductions
non-deterministically, as in the proof of Lemma 3, and
verify that the reduction sequence is indeed feasible.
Since AC-unifiability can be checked in NP, the whole
algorithm can be done in NP. (We would also like to

mention here that this technique also leads to an algo-
rithm to compute a finite, complete set of E ′-unifiers.)

NP-hardness of the problem can be shown by reduc-
tion from one-in-three 3SAT with positive literals.
(Since the construction is the same as that given in
the next section for E , we omit it here.) Thus,

Theorem 1 Unification modulo E ′ is NP-complete.

It can also be shown, in a similar way, that the unifica-
tion problem modulo {Cur-2 +A+C} is in NP since
{Cur-2} is also optimally AC-reducing. (Lemma 4 ap-
plies here as well.)

4.2 Matching modulo E
We show that given a term s and an R-irreducible
term t, the problem of checking whether s matches t
modulo E is NP-complete. The NP-hardness proof
uses a reduction from one-in-three 3SAT with pos-
itive literals. Let C1, . . . , Cm be clauses consisting
only of positive literals over the propositional variables
x1, . . . , xn. The task is to find a satisfying assignment
such that one and only one literal from each clause be-
comes true. Let c1, . . . , cm be distinct free constants,
one for each clause. For each clause Cj we form the
term τ(Cj) = (y1 × y2 × y3) ⇒ cj where y1, y2, y3

are the variables in the clause. Now the satisfiabil-
ity problem is equivalent to the problem of matching
τ(C1) × . . .× τ(Cm) with (a ⇒ c1) × . . .× (a ⇒ cm),
where a is a free constant. Here we interpret substi-
tution of a as ‘true’ and substitution of 1 as ‘false.’

To show that the matching problem is in NP, we only
have to show that the matching problem modulo the
last two axioms, namely

x ⇒ (y ⇒ z) = (x × y) ⇒ z and

x ⇒ (y × z) = (x ⇒ y) × (x ⇒ z),

and associativity and commutativity of ×, is in NP.
To begin with, it can be shown that these rules form
an AC-convergent term rewriting system for the equa-
tional theory. Let us denote this rewrite system by
R′′′. Note that the latter rule (Dist-2) is the only
rule that causes an increase in the size of a term; if
t is rewritten to t′ using this rule (modulo AC) then
the size of t′ must be at least |t| + 2. Therefore if
s→∗R′′′,AC s′ and s′ is in normal form, then the num-
ber of rewrites using (Dist-2) cannot be greater than

b |s
′|−|s|

2 c.
Thus if s is any term and t is an irreducible
ground term, then s is matchable with t by θ if
and only if there exist terms t1, t

′
1, . . . , tK, t

′
K , K ≤

4

b |s
′|−|s|

2
c, such that θ(s)→∗Cur-2,AC t1, t1→Dist-2,AC t

′
1,

t′1→∗Cur-2,AC t2, . . ., t′K→∗Cur-2,AC t. Since each of
these terms can be guessed in NP time, and the
matching problem modulo {Cur-2+A+C} is in NP,
the result follows.

Theorem 2 Matching a term with an irreducible
term modulo E is NP-complete.

4.3 Unification modulo E
In this section, we outline our undecidability proof of
CCC-unification. The reduction is from Hilbert’s 10th
problem which is on checking whether a polynomial
Diophantine equation with integer coefficients has a
solution in integers. For the sake of clarity, we look at
the equational theory E a little differently — namely,
× as ∗ (multiplication) and ⇒ as ↑ (exponentiation).
We also use + on natural numbers as an abbreviation;
e.g., ax+y is an abbreviation for ax ∗ ay, and 2x is a
(further) abbreviation of x + x. Thus for any poly-
nomial p with positive integral coefficients, xp and ap

are valid terms in our algebra, where x is a variable
and a a free constant. Thus a term of the form bi,
where i is a natural number, is an abbreviation for
b× b× . . .× b︸ ︷︷ ︸

i

and b0 stands for 1.

To begin with, we note two cancellation properties of
E :

(C1) as =E a
t implies s =E t for any free constant a.

(C2) r ∗ s =E r ∗ t implies s =E t.

Lemma 7 Every solution to the unification problem

x ∗ ay = xb ∗ a

where a and b are free constants, is of the form
y ← bn, x← ab

n−1+bn−2+···+b+1 where n is a natural
number.

Proof: It is easier to prove a slightly more generalized
version of this lemma, namely,

Claim: For all i, the unification problem

x ∗ ay = xb ∗ abi

is solvable iff y = bm for some m ≥ i. It is clear that
for every n ≥ i, {y ← bn, x← ab

n−1+bn−2+···+bi+1+bi}
is indeed a solution. We prove the converse by contra-
diction. Let θ be a unifier in which θ(y) 6= bn for any
n. Let θ(y) = ty, where ty is the smallest irreducible

ground term (by the subterm ordering) for which the
counterexample will work. Then θ(x) cannot be 1.
Let θ(x) = at1 ∗ · · · ∗ atk . Thus at1 ∗ · · · ∗ atk ∗ aty =E
ab∗t1 ∗ · · · ∗ ab∗tk ∗ abi . Note that the lhs and the rhs
of this equality are already in normal form, unless one
of the ti’s, 1 ≤ i ≤ k, is 1. Since ty cannot be equal
to bi, we can assume, without loss of generality, that
ty = b ∗ tk. Cancelling on both sides, we get

at1 ∗ · · · ∗ atk−1 ∗ atk = ab∗t1 ∗ · · · ∗ ab∗tk−1 ∗ abi .

Note that tk cannot be of the form bj for any j. By
examining the identity above, it can be seen that the
substitution θ′, where θ′(y) = tk and θ′(x) = at1 ∗ · · ·∗
atk−1 , unifies the terms too, and tk is strictly smaller
than ty. 2

Thus the above equation can be used to force a vari-
able to have a solution of the form cj, where c is any
free constant and j is a natural number.

Lemma 8 Let b and c be free constants and j be a
natural number. Then the equations

xc ∗ ab
j

= xb ∗ au

z ∗ au = zc ∗ a

force u to be equal to cj. (In other words, xc ∗ abj =

xb ∗ ack is unifiable if and only if j = k.)

Lemma 9 Let b and c be free constants and j and k
be natural numbers. Then the equations

xc
k

∗ ab
j

= xb ∗ au

z ∗ au = zc ∗ a

force u to be equal to cj∗k.

This shows that multiplication of natural numbers can
be simulated. Consider, for instance, the equation z =
x ∗ y. If x = bi and y = bj , then we can force z to be
bi∗j in the following way:

(i) Copy x to x′ (its ‘alter ego’) changing b’s to c’s;
i.e., x′ = ci. This can be done using equations
as given in the statement of Lemma 8.

(ii) Multiply x′ and y to get z′ = ci∗j.

(iii) Copy z′ to z changing c’s to b’s.

5

Thus the equations we get are

w1 ∗ ax
′

= w1
c ∗ a

w2
c ∗ ax = w2

b ∗ ax
′

w3
x′ ∗ ay = w3

b ∗ az
′

w4 ∗ az
′

= w4
c ∗ a

w5
c ∗ az = w5

b ∗ az′

Simulating addition is easy, since if x = bi and y = bj ,
then (ax)y = ab

i+j

.

Theorem 3 Unification modulo E is undecidable.

Acknowledgements: We wish to thank Mikael Rit-
tri and Michael Rusinowitch for their comments and
suggestions.

References

[BCL92] K. B. Bruce, R. Di Cosmo, and G. Longo.
Provable isomorphisms of types. Math-
ematical Structures in Computer Science,
2(2):231–247, 1992.

[BL85] Kim B. Bruce and Giuseppe Longo. Prov-
able isomorphisms and domain equations in
models of typed languages. In Proceedings of
the 17th Annual ACM Symposium on Theory
of Computing, pages 263–272. ACM Press,
1985.

[DJ90] N. Dershowitz and Jean-Pierre Jouannaud.
Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science,
volume B: Formal Models and Semantics,
pages 243–320. Elsevier, Amsterdam, 1990.

[Fag87] François Fages. Associative-commutative
unification. Journal of Symbolic Computa-
tion, 3:257–275, 1987.

[HO80] Gérard Huet and Derek C. Oppen. Equa-
tions and rewrite rules: A survey. In
R. Book, editor, Formal Languages: Per-
spectives and Open Problems, pages 349–405,
New York, 1980. Academic Press.

[JK86] Jean-Pierre Jouannaud and Claude Kirch-
ner. Completion of a set of rules modulo a set
of equations. SIAM Journal of Computing,
15(4):1155–1194, November 1986.

[Klo87] J. W. Klop. Term rewriting systems: A tu-
torial. Bulletin of the EATCS, 32:143–182,
June 1987.

[KN99] Deepak Kapur and Paliath Narendran.
Complexity of unification problems with
associative-commutative operators. Journal
of Automated Reasoning, To appear, 199?

[LS86] J. Lambek and P. J. Scott. Introduction to
Higher Order Categorical Logic. Cambridge
University Press, Cambridge, England, 1986.

[NPS89] Paliath Narendran, Frank Pfenning, and
Richard Statman. On the unification prob-
lem for Cartesian closed categories. Talk
presented at the Workshop on Higher-Order
Logic, Banff, Alberta, September 1989.

[PS81] G. E. Peterson and M. E. Stickel. Complete
sets of reductions for some equational the-
ories. Journal of the ACM, 28(3):233–264,
1981.

[Rit90] Mikael Rittri. Retrieving library identifiers
via equational matching of types. In M. E.
Stickel, editor, Proceedings of the 10th In-
ternational Conference on Automated De-
duction, pages 603–617, Kaiserslautern, Ger-
many, July 1990. Springer-Verlag LNAI 449.

[Rit91] Mikael Rittri. Using types as search keys
in function libraries. Journal of Functional
Programming, 1(1):71–89, 1991. A prelimi-
nary version appeared in the proceedings of
FPCA’89, pages 174–183.

[Rit92] Mikael Rittri. Retrieving library functions
by unifying types modulo linear isomor-
phism. Programming Methodology Group
Report 66, Chalmers University of Technol-
ogy and University of Göteborg, Göteborg,
Sweden, May 1992.

[RT91] Colin Runciman and Ian Toyn. Retriev-
ing re-usable software components by poly-
morphic type. Journal of Functional Pro-
gramming, 1(2):191–211, 1991. A prelimi-
nary version appeared in the proceedings of
FPCA’89, pages 166–173.

[Sol83] Sergei V. Soloviev. The category of finite
sets and Cartesian closed categories. Soviet
Mathematics, 22(3):1387–1400, 1983.

[Sol93] Sergei V. Soloviev. The ordinary identi-
ties form a complete axiom system for iso-
morphism of types in closed categories. In

6

A. Voronkov, editor, Proceedings of the In-
ternational Conference on Logic Program-
ming and Automated Reasoning, LPAR’93,
St. Petersburg, Russia, July 1993. Springer-
Verlag LNAI. To appear.

[Sti81] Mark Stickel. A unification algorithm for
associative-commutative functions. Journal
of the ACM, 28(3):423–434, July 1981.

7

