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Abstract

Common approaches to concurrent programming begin with languages whose semantics are natu-
rally sequential and add new constructs that provide limited access to concurrency, as exemplified by
futures. This approach has been quite successful, but often does not provide a satisfactory theoretical
backing for the concurrency constructs, and it can be difficult to give a good semantics that allows a
programmer to use more than one of these constructs at a time.

We take a different approach, starting with a concurrent language based on a Curry-Howard inter-
pretation of adjoint logic, to which we add three atomic primitives that allow us to encode sequential
composition and various forms of synchronization. The resulting language is highly expressive,
allowing us to encode futures, fork/join parallelism, and monadic concurrency in the same frame-
work. Notably, since our language is based on adjoint logic, we are able to give a formal account
of linear futures, which have been used in complexity analysis by Blelloch and Reid-Miller. The
uniformity of this approach means that we can similarly work with many of the other concurrency
primitives in a linear fashion, and that we can mix several of these forms of concurrency in the same
program to serve different purposes.

Key Words: Concurrency, substructural type systems, futures

1 Introduction

Concurrency has been a very useful tool in increasing performance of computations and in
enabling distributed computation, and consequently, there are a wide variety of different
approaches to programming languages for concurrency. A common pattern is to begin
with a sequential language and add some form of concurrency primitive, ranging from
threading libraries such as pthreads to monads to encapsulate concurrent computation, as
in SILL (Toninho et al., 2013; Toninho, 2015; Griffith, 2016), to futures (Halstead, 1985).
Many of these approaches have seen great practical success, and yet from a theoretical
perspective, they are often unsatisfying, with the concurrent portion of the language being
attached to the sequential base language in a somewhat ad hoc manner, rather than having
a coherent theoretical backing for the language as a whole.



47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

2

In order to give a more uniform approach to concurrency, we take the opposite approach
and begin with a language, Seax, whose semantics are naturally concurrent. With a minor
addition to Seax, we are able to force synchronization, allowing us to encode sequentiality.
In the resulting language, we can model many different concurrency primitives, includ-
ing futures, fork/join, and concurrency monads. Moreover, as all of these constructs are
encoded in the same language, we can freely work with any mixture and retain the same
underlying semantics and theoretical underpinnings.

Two lines of prior research meet in the development of Seax. The first involves
a new presentation of intuitionistic logic, called the semi-axiomatic sequent calcu-
lus (SAX) (DeYoung et al., 2020), which combines features from Hilbert’s axiomatic
form (Hilbert & Bernays, 1934) and Gentzen’s sequent calculus (Gentzen, 1935). Cut
reduction in the semi-axiomatic sequent calculus can be put into correspondence with asyn-
chronous communication, either via message passing (Pruiksma & Pfenning, 2019) or via
shared memory (DeYoung et al., 2020). We build on the latter, extending it in three major
ways to get Seax. First, we extend from intuitionistic logic to a semi-axiomatic presenta-
tion of adjoint logic (Reed, 2009; Licata & Shulman, 2016; Licata et al., 2017; Pruiksma
& Pfenning, 2019), the second major line of research leading to Seax. This gives us a
richer set of connectives as well as the ability to work with linear and other substructural
types. Second, we add equirecursive types and recursively defined processes, allowing for
a broader range of programs, at the expense of termination, as usual. Third, we add three
new atomic write constructs that write a value and its tag in one step. This minor addition
enables us to encode both some forms of synchronization and sequential composition of
processes, despite the naturally concurrent semantics of Seax.

This resulting language is highly expressive. Using these features, we are able to model
functional programming with a semantics in destination-passing style that makes memory
explicit (Wadler, 1984; Larus, 1989; Cervesato et al., 2002; Simmons, 2012), allowing us
to write programs in more familiar functional syntax which can then be expanded into
Seax. We can also encode various forms of concurrency primitives, such as fork/join par-
allelism (Conway, 1963) implemented by parallel pairs, futures (Halstead, 1985), and a
concurrency monad in the style of SILL (Toninho et al., 2013; Toninho, 2015; Griffith,
2016) (which combines sequential functional with concurrent session-typed program-
ming). As an almost immediate consequence of our reconstruction of futures, we obtain a
clean and principled subsystem of linear futures, already anticipated and used in parallel
complexity analysis by Blelloch and Reid-Miller (Blelloch & Reid-Miller, 1999) without
being rigorously developed.

Our use of adjoint logic as a base for Seax is not essential to most of the programming
constructs we describe — only the concurrency monad makes use of the adjoint nature of
the language in a fundamental way. However, it allows for a few useful features of Seax.
The uniform nature of adjoint logic means that we can move easily from our initial dis-
cussion of futures to their linear form or to a language with both linear and non-linear
futures (and, for that matter, the other constructs can also be made linear or affine or strict).
Moreover, we can take advantage of the adjoint nature of Seax to combine multiple lan-
guage features while maintaining some degree of isolation between them. We could, for
instance, have a language where one portion is purely sequential, another adds concurrency
via fork/join, and yet another adds concurrency via futures. While it is already possible to
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3

add various features to a base language in an ad hoc way (as is often done in real pro-
gramming languages), the fact that these features can be encoded in Seax means that the
semantics are uniform — there is no need to add extra rules to handle the new constructs.
Moreover, because we are able to separate the different features syntactically by keeping
them at different modes, an implementation of this language could optimize differently at
each mode. A purely sequential language needs only one thread of computation, and can
avoid dealing with locking on memory entirely, for instance.

The overall benefits of the adjoint approach, then, are twofold — first, since Seax is
expressive enough to encode varied language features, we can combine these different fea-
tures or constructs in a uniform fashion, and second, since we can keep different portions
of the language (containing different features) separated, we gain all the benefits of a more
restrictive language, at least locally. In each individual portion of the language, we can
reason (and therefore also optimize) based on the restrictions on that part of the language,
although as the restrictions on different parts of the language may vary, so too will the
extra information we gain from those restrictions. Because of this, rather than looking at
languages as a whole, we will focus on how individual language features can be encoded
in Seax. Such features can then be combined into a single language in order to use more
than one at a time.

The principal contributions of this paper are:

1. the language Seax, which has a concurrent write-once shared-memory semantics
for programs based on a computational interpretation of adjoint logic;

2. a model of sequential computation using an extension of this semantics with limited
atomic writes;

3. a reconstruction of fork/join parallelism;
4. a reconstruction of futures, including a rigorous definition of linear futures;
5. a reconstruction of a concurrency monad which combines functional programming

with session-typed concurrency as an instance of the adjoint framework;
6. the uniform nature of these reconstructions, which allows us to work with any of

these concurrency primitives and more all within the same language;
7. the ability to keep different portions of the language at different modes, enabling us

to restrict part of the language for implementation or reasoning, while retaining the
full-featured nature of the rest of the language.

We begin by introducing the type system and syntax for Seax, along with some back-
ground on adjoint logic (Section 2), followed by its semantics, which are naturally
concurrent (Section 3). At this point, we are able to look at some examples of programs
in Seax. Next, we make the critical addition of sequentiality (Section 4), examining both
what changes we need to make to Seax to encode sequentiality and how we go about that
encoding. Using our encoding of sequentiality, we can build a reconstruction of a standard
functional language’s lambda terms (Section 5), which both serves as a simple example
of a reconstruction and illustrates that we need not restrict ourselves to the relatively low-
level syntax of Seax when writing programs. Following this, we examine and reconstruct
several concurrency primitives, beginning with futures (Section 6), before moving on to
parallel pairs (an implementation of fork/join, in Section 7) and a concurrency monad that
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borrows heavily from SILL (Section 8). We conclude with a brief discussion of our results
and future work.

2 Seax: Types and Syntax

The type system and language we present here, which we will use throughout this paper, are
based on adjoint logic (Reed, 2009; Licata & Shulman, 2016; Licata et al., 2017; Pruiksma
& Pfenning, 2019, 2020) starting with a Curry-Howard interpretation, which we then leave
behind by adding recursion, allowing a richer collection of programs. Most of the details
of adjoint logic are not relevant here, and so we provide a brief overview of those that are,
focusing on how they relate to our language.

In adjoint logic, propositions are stratified into distinct layers, each identified by a
mode. For each mode m there is a set σ(m)⊆ {W,C} of structural properties satisfied by
antecedents of mode m in a sequent. Here, W stands for weakening and C for contraction.
For simplicity, we always assume exchange is possible. In addition, any instance of adjoint
logic specifies a preorder m≥ k between modes, expressing that the proof of a proposition
Ak of mode k may depend on assumptions Bm. In order for cut elimination (which forms a
basis for our semantics) to hold, this ordering must be compatible with the structural prop-
erties: if m≥ k then σ(m)⊇ σ(k). Sequents then have the form Γ ⊢ Ak where, critically,
each antecedent Bm in Γ satisfies m≥ k. We express this concisely as Γ≥ k.

We can go back and forth between the layers using shifts ↑m
k Ak (up from k to m requiring

m≥ k) and ↓RmAr (down from r to m requiring r≥m). A given pair ↑m
k and ↓m

k forms an
adjunction,1 justifying the name adjoint logic.

Now, our types are the propositions of adjoint logic, augmented with general equire-
cursive types formed via mutually recursive type definitions in a global signature — most
of the basic types are familiar as propositions from intuitionistic linear logic (Girard &
Lafont, 1987), or as session types (Honda, 1993; Honda et al., 1998; Gay & Vasconcelos,
2010), tagged with subscripts for modes. The only new types are the shifts ↓RmAr and ↑m

k Ak.
We do, however, change ⊕ and N slightly, using an n-ary form rather than the standard
binary form. These are, of course, equivalent, but the n-ary form allows for more natural
programming. The grammar of types (as well as processes) can be found in Fig. 1. Note
that while our grammar includes mode subscripts on types, type constructors, and variables
we will often omit them when they are clear from context.

The typing judgment for processes has the form

x1 : A1
m1
, . . . , xn : An

mn ⊢ P :: (x : Ak)

where P is a process expression and we require that each mi ≥ k. Given such a judgment,
we say that P provides or writes x, and uses or reads x1, . . . , xn. We may often write a
superscript on the variables to indicate whether they are being used for writing or reading.
For instance, we would write xW in P to denote that P writes to x, and xR

1 to denote that
P reads from x. While this information is not necessary for the semantics (and therefore
we do not make it part of the formal syntax), it is convenient when writing down example

1 See, for instance, Licata et al. (2017) for a more categorically-focused discussion of a slightly different form
of adjoint logic, or Benton (1994) for a discussion of the adjunction in a limited case.



185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

5

Types Am, Bm ::= ⊕m{ℓ : Aℓ
m}ℓ∈L internal choice

| Am ⊗m Bm multiplicative conjunction
| 1m multiplicative unit
| Nm{ℓ : Aℓ

m}ℓ∈L external choice
| Am ⊸m Bm linear implication
| ↓RmAr down shift, r≥m
| ↑m

k Ak up shift, m≥ k
| t type variables

Processes P, Q ::= xm← P ; Q cut: allocate x, spawn P, continue as Q
| xm← ym id: copy or move from y to x
| xm.V write V to x, or read K from x and pass it V
| case xm K write K to x, or read V from x and pass it to K
| xk← p ym call p with arguments y and destination x

Values V ::= i(ym) label i tagging address y (⊕, N)
| ⟨wm, ym⟩ pair of addresses w and y (⊗, ⊸)
| ⟨ ⟩ unit value (1)
| shift(yk) shifted address yk (↓, ↑)

Continuations K ::= (ℓ(ym)⇒ Pℓ)ℓ∈L branch on ℓ∈ L to bind y (⊕, N)
| (⟨wm, ym⟩⇒ P) match against pair to bind ⟨w, y⟩ (⊗, ⊸)
| (⟨ ⟩⇒ P) match against unit element (1)
| (shift(yk)⇒ P) match against shift to bind yk (↓, ↑)

Fig. 1. Types and process expressions

processes for clarity, and so we will use it both in examples and in the typing rules, where
it helps to clarify a key intuition of this system, which is that right rules write and left rules
read. Not all reads and writes will be visible like this, however — we may call a process
or invoke a stored continuation, and the resulting process may read or write (but since it
is not obligated to, we do not mark these reads/writes at the callsite). The rules for this
judgment can be found in Fig. 2, where we have elided (other than in the call rule, which
makes explicit use of it) a fixed signature Σ with type and process definitions explained
later in this section. As usual, we require each of the xi and x to be distinct and allow silent
renaming of bound variables2 in process expressions.

In this formulation, contraction and weakening remain implicit.3 Handling contraction
leads us to two versions of each of the⊕, 1,⊗ left rules, depending on whether the principal
formula of the rule can be used again or not. The subscript α on each of these rules may
be either 0 or 1, and indicates whether the principal formula of the rule is preserved in

2 Variables are bound in two ways. The cut construct xm← P ; Q binds xm in both P and Q, and continuations K
may bind variables. For instance, (⟨wm, ym⟩⇒Q) binds wm and ym in Q, while (⟨⟩⇒Q) binds no variables in
Q. Each continuation K thus resembles a closure in a functional language, specifying both what variables are
bound and the process term that they are bound in.

3 See (Pruiksma et al., 2018) for a formulation of adjoint logic with explicit structural rules, which are less
amenable to programming.
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(ΓC, ∆≥m≥ r) ΓC, ∆ ⊢ P :: (x : Am) ΓC, ∆′, x : Am ⊢Q :: (z : Cr)

ΓC, ∆, ∆′ ⊢ (x← P ; Q) :: (z : Cr)
cut

ΓW , y : Am ⊢ xW← yR :: (x : Am)
id

Bm ⊢ p :: Ak ∈ Σ Γ ⊢w : Bm

Γ ⊢ z← p w :: (z : Ak)
call

Γ, (x : Bm)
α ⊢ ∆

Γ, x : Bm ⊢ (∆, x : Bm)
call varα

ΓW ⊢ (·)
call empty

(i∈ L)

ΓW , y : Ai
m ⊢ xW.i(y) :: (x :⊕m{ℓ : Aℓ

m}ℓ∈L)
⊕R0

Γ, (x :⊕m{ℓ : Aℓ
m}ℓ∈L)

α , y : Aℓ
m ⊢Qℓ :: (z : Cr) (for all ℓ∈ L)

Γ, x :⊕m{ℓ : Aℓ
m}ℓ∈L ⊢ case xR (ℓ(y)⇒Qℓ)ℓ∈L :: (z : Cr)

⊕Lα

Γ ⊢ Pℓ :: (y : Aℓ
m) (for all ℓ∈ L)

Γ ⊢ case xW (ℓ(y)⇒ Pℓ)ℓ∈L :: (x : Nm{ℓ : Aℓ
m}ℓ∈L)

NR
(i∈ L)

ΓW , x : Nm{ℓ : Aℓ
m}ℓ∈L ⊢ xR.i(y) :: (y : Ai

m)
NL0

· ⊢ xW.⟨ ⟩ :: (x : 1m)
1R0

Γ, (x : 1m)
α ⊢ P :: (z : Cr)

Γ, x : 1m ⊢ case xR (⟨ ⟩⇒ P) :: (z : Cr)
1Lα

Γ, w : Am ⊢ P :: (y : Bm)

Γ ⊢ case xW (⟨w, y⟩⇒ P) :: (x : Am ⊸m Bm)
⊸R

ΓW , w : Am, x : Am ⊸m Bm ⊢ xR.⟨w, y⟩ :: (y : Bm)
⊸L0

ΓW , w : Am, y : Bm ⊢ xW.⟨w, y⟩ :: (x : Am ⊗m Bm)
⊗R0

Γ, (x : Am ⊗m Bm)
α , w : Am, y : Bm ⊢ P :: (z : Cr)

Γ, x : Am ⊗m Bm ⊢ case xR (⟨w, y⟩⇒ P) :: (z : Cr)
⊗Lα

ΓW , y : Am ⊢ xW
k .shift(ym) :: (x : ↓m

k Am)
↓R0

Γ, (x : ↓m
k Am)

α , y : Am ⊢Q :: (z : Cr)

Γ, x : ↓m
k Am ⊢ case xR

k (shift(ym)⇒Q) :: (z :: Cr)
↓Lα

Γ ⊢ P :: (y : Ak)

Γ ⊢ case xW
m (shift(yk)⇒ P) :: (x : ↑m

k Ak)
↑R

ΓW , x : ↑m
k Ak ⊢ xR

m.shift(yk) :: (y : Ak)
↑L0

Fig. 2. Typing rules (α ∈ {0, 1} with α = 1 permitted only if C ∈ σ(m))

the context. The α = 0 version of each rule is the standard linear form, while the α = 1
version, which requires that the mode m of the principal formula satisfies C ∈ σ(m), keeps
a copy of the principal formula. Note that if C ∈ σ(m), we are still allowed to use the α = 0
version of the rule. Moreover, we write ΓC, ΓW for contexts of variables all of which allow
contraction or weakening, respectively. This allows us to freely drop weakenable variables
when we reach initial rules, or to duplicate contractable variables to both parent and child
when spawning a new process in the cut rule.

Note that there is no explicit rule for (possibly recursively defined) type variables t, since
they can be silently replaced by their definitions. Equality between types and type-checking
can both easily be seen to be decidable using a combination of standard techniques for
substructural type systems (Cervesato et al., 2000) and subtyping for equirecursive session
types, (Gay & Hole, 2005) which relies on a coinductive interpretation of the types, but
not on their linearity, and so can be adapted to the adjoint setting. Some experience with
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a closely related algorithm (Das & Pfenning, 2020) for type equality and type checking
suggests that this is practical.

We now go on to briefly examine the terms and loosely describe their meanings from the
perspective of a shared-memory semantics. We will make this more precise in Sections 3
and 4, where we develop the dynamics of such a shared-memory semantics.

Both the grammar and the typing rules show that we have five primary constructs for
processes, which then break down further into specific cases.

The first two process constructs are type-agnostic. The cut rule, with term x← P ; Q,
allocates a new memory cell x, spawns a new process P which may write to x, and continues
as Q which may read from x. The new cell x thus serves as the point of communication
between the new process P and the continuing Q. The id rule, with term xm← ym, copies
the contents of cell ym into cell xm. If C /∈ σ(m), we can think of this instead as moving the
contents of cell ym into cell xm and freeing ym.

The next two constructs, x.V and case x K, come in pairs that perform communication,
one pair for each type. A process of one of these forms will either write to or read from x,
depending on whether the variable is in the succedent (write) or antecedent (read).

A write is straightforward and stores either the value V or the continuation K into the
cell x, while a read pulls a continuation K′ or a value V ′ from the cell, and combines either
K′ and V (in the case of x.V ) or K and V ′ (case x K). The symmetry of this, in which
continuations and values are both eligible to be written to memory and read from memory,
comes from the duality between ⊕ and N, between ⊗ and ⊸, and between ↓ and ↑. We
see this in the typing rules, where, for instance, ⊕R0 and NL0 have the same process term,
swapping only the roles of each variable between read and write. As cells may contain
either values V or continuations K, it will be useful to have a way to refer to this class of
expression:

Cell data D ::=V |K

The final construct allows for calling named processes, which we use for recursion.
As is customary in session types, we use equirecursive types, collected in a signature Σ in
which we also collect recursive process definitions and their types. For each type definition
t = A, the type A must be contractive so that we can treat types equirecursively with a
straightforward coinductive definition and an efficient algorithm for type equality (Gay &
Hole, 2005).

A named process p is declared as B1
m1
, . . . , Bn

mn ⊢ p :: Ak which means it requires argu-
ments of types Bi

mi
(in that order) and provides a result of type Ak. For ease of readability,

we may sometimes write in variables names as well, but they are actually only needed for
the corresponding definitions x← p y1, . . . , yn = P. Operationally, a call z← p w expands
to its definition with a substitution [w/y, z/x]P, replacing variables by addresses.

We can then formally define signatures as follows, allowing definitions of types,
declarations of processes, and definitions of processes:

Signatures Σ ::= · | Σ, t = A | Σ, Bm ⊢ p :: Ak | Σ, x← p y = P

For valid signatures we require that each declaration Bm ⊢ p :: Ak has a corresponding
definition x← p y = P with y : Bm ⊢ P :: (x : Ak). This means that all type and process
definitions can be mutually recursive.
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In the remainder of this paper we assume that we have a fixed valid signature Σ, so we
annotate neither the typing judgment nor the computation rules with an explicit signature,
other than in the call rule, where we extract a process definition from Σ.

3 Concurrent Semantics

We will now present a concurrent shared-memory semantics for Seax, using multiset
rewriting rules (Cervesato & Scedrov, 2009). The state of a running program is a multiset
of semantic objects, which we refer to as a process configuration. We have three distinct
types of semantic objects:

1. thread(cm, P): thread executing P with destination cm

2. cell(cm, _): cell cm that has been allocated, but not yet written
3. !mcell(cm, D): cell cm containing data D

Here, we prefix a semantic object with !m to indicate that it is persistent when C ∈ σ(m),
and ephemeral otherwise. Note that empty cells are always ephemeral, so that we can mod-
ify them by writing to them, while filled cells may be persistent, as each cell has exactly
one writer, which will terminate on writing. We maintain the invariant that in a configura-
tion either thread(cm, P) appears together with cell(cm, _), or we have just !mcell(cm, D),
as well as that if two semantic objects provide the same address cm, then they are exactly a
thread(cm, P), cell(cm, _) pair. While this invariant can be made slightly cleaner by remov-
ing the cell(cm, _) objects, this leads to an interpretation where cells are allocated lazily just
before they are written. While this has some advantages, it is unclear how to inform the
thread which will eventually read from the new cell where said cell can be found, and so,
in the interest of having a realistically implementable semantics, we just allocate an empty
cell on spawning a new thread, allowing the parent thread to see the location of that cell.

We can then define configurations with the following grammar (and the additional
constraint of our invariant):

Configurations C ::= · | thread(cm, P), cell(cm, _) | !mcell(cm, D) |C1,C2

We think of the join C1,C2 of two configurations as a commutative and associative
operation so that this grammar defines a multiset rather than a list or tree.

A multiset rewriting rule takes the collection of objects on the left-hand side of the rule,
consumes them (if they are ephemeral), and then adds in the objects on the right-hand
side of the rule. Rules may be applied to any subconfiguration, leaving the remainder of
the configuration unchanged. This yields a naturally nondeterministic semantics, but we
will see that the semantics are nonetheless confluent (Theorem 3). Additionally, while our
configurations are not ordered, we will adopt the convention that the writer of an address
appears to the left of any readers of that address.

Our semantic rules are based on a few key ideas:

1. Variables represent addresses in shared memory.
2. Cut/spawn is the only way to allocate a new cell.
3. Identity/forward will move or copy data between cells.
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4. A process thread(c, P) will (eventually) write to the cell at address c and then
terminate.

5. A process thread(d, Q) that is trying to read from c ̸= d will wait until the cell with
address c is available (i.e. its contents is no longer _), perform the read, and then
continue.

The counterintuitive part of this interpretation (when using a message-passing seman-
tics as a point of reference) is that a process providing c : A N B does not read a value from
shared memory. Instead, it writes a continuation to memory and terminates. Conversely,
a client of such a channel does not write a value to shared memory. Instead, it continues
by jumping to the continuation. This ability to write continuations to memory is a major
feature distinguishing this from a message-passing semantics where potentially large clo-
sures would have to be captured, serialized, and deserialized, the cost of which is difficult
to control (Miller et al., 2016).

The final piece that we need to present the semantics is a key operation, namely that of
passing a value V to a continuation K to get a new process P. This operation is defined as
follows:

i(d) ◦ (ℓ(y)⇒ Pℓ)ℓ∈L = [d/y]Pi (⊕,N)

⟨e, c⟩ ◦ (⟨w, y⟩⇒ P) = [e/w, c/y]P (⊗,⊸)

⟨ ⟩ ◦ (⟨ ⟩⇒ P) = P (1)
shift(d) ◦ (shift(y)⇒ P) = [d/y]P (↓, ↑)

When any of these reductions is applied, either the value or the continuation has been read
from a cell while the other is a part of the executing process. With this notation, we can
give a concise set of rules for the concurrent dynamics. We present these rules in Fig. 3.

thread(c, x← P ; Q) 7→ thread(a, [a/x]P), cell(a, _), thread(c, [a/x]Q) (a fresh) cut: allocate & spawn

!mcell(cm, D), thread(dm, dm← cm), cell(dm, _) 7→ !mcell(dm, D) id: move or copy

thread(c, c← p d) 7→ thread(c, [c/x, d/y]P) for x← p y = P∈ Σ call

thread(cm, cm.V ), cell(cm, _) 7→ !mcell(cm,V ) (⊕R0,⊗R0, 1R0, ↓R0)
!mcell(cm,V ), thread(ek, case cm K) 7→ thread(ek,V ◦K) (⊕L,⊗L, 1L, ↓L)
thread(cm, case cm K), cell(cm, _) 7→ !mcell(cm, K) (⊸R,NR, ↑R)
!mcell(cm, K), thread(dk, cm.V ) 7→ thread(dk,V ◦K) (⊸L0,NL0, ↑L0)

Fig. 3. Concurrent dynamic rules

These rules match well with our intuitions from before. In the cut rule, we allocate a
new empty cell a, spawn a new thread to execute P, and continue executing Q, just as
we described informally in Section 2. Similarly, in the id rule, we either move or copy
(depending on whether C ∈ σ(m)) the contents of cell c into cell d and terminate. The rules
that write values to cells are exactly the right rules for positive types (⊕,⊗, 1, ↓), while the
right rules for negative types (N,⊸, ↑) write continuations to cells instead. Dually, to read
from a cell of positive type, we must have a continuation to pass the stored value to, while
to read from a cell of negative type, we need a value to pass to the stored continuation.
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3.1 Results

We have standard results for this system — a form of progress, of preservation, and a
confluence result. To discuss progress and preservation, we must first extend our notion
of typing for process terms to configurations. Configurations are typed with the judgment
Γ ⊢C :: ∆ which means that configuration C may read from the addresses in Γ and write
to the addresses in ∆. We can then give the following set of rules for typing configurations,
which make use of the typing judgment Γ ⊢ P :: (c : Am) for process terms in the base cases.
Recall that we use ΓC to denote a context in which all propositions are contractible, and
which can therefore be freely duplicated.

ΓC, Γ ⊢ P :: (c : Am)

ΓC, Γ, ∆ ⊢ thread(c, P), cell(c, _) :: (ΓC, ∆, c : Am)

ΓC, Γ ⊢ c.V :: (c : Am)

ΓC, Γ, ∆ ⊢ !mcell(c,V ) :: (ΓC, ∆, c : Am)

ΓC, Γ ⊢ case c K :: (c : Am)

ΓC, Γ, ∆ ⊢ !mcell(c, K) :: (ΓC, ∆, c : Am)

∆ ⊢ (·) :: ∆

Γ ⊢C1 :: ∆1 ∆1 ⊢C2 :: ∆2

Γ ⊢C1,C2 :: ∆2

Note that our invariants on configurations mean that there is no need to separately type the
objects thread(c, P) and cell(c, _), as they can only occur together. Additionally, while our
configurations are multisets, and therefore not inherently ordered, observe that the typing
derivation for a configuration induces an order on the configuration, something which is
quite useful in proving progress. 4

Our preservation theorem differs slightly from the standard, in that it allows the collec-
tion of typed channels ∆ offered by a configuration C to grow after a step, as steps may
introduce new persistent memory cells. Note that the ∆ cannot shrink, despite the fact that
affine or linear cells may be deallocated after read. This is because a linear cell that is read
from never appeared in ∆ in the first place — the process that reads it also consumes it in
the typing derivation. Likewise, an affine cell that is read from will not appear in ∆, while
an affine cell with no reader appears in ∆ (but of course, since it has no reader, it will not
be deallocated).

Theorem 1 (Type Preservation). If Γ ⊢C :: ∆ and C 7→C ′ then Γ ⊢C ′ :: ∆′ for some ∆′ ⊇
∆.

Proof By cases on the transition relation for configurations, applying repeated inver-
sions to the typing judgment on C to obtain the necessary information to assemble
a typing derivation for C ′. This requires some straightforward lemmas expressing that
non-interfering processes and cells can be exchanged in a typing derivation. ■

Progress is entirely standard, with configurations comprised entirely of filled cells taking
the role that values play in a functional language.

4 This technique is used in (DeYoung et al., 2020) to prove progress for a similar language.
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Theorem 2 (Progress). If · ⊢C :: ∆ then either

(i) C 7→C ′ for some C ′, or
(ii) for every channel cm : Am ∈ ∆ there is an object !mcell(cm, D)∈C .

Proof We first re-associate all applications of the typing rule for joining configurations
to the left. Then we perform an induction over the structure of the resulting derivation,
distinguishing cases for the rightmost cell or thread and potentially applying the induction
hypothesis on the configuration to its left. This structure, together with inversion on the
typing of the cell or thread yields the theorem. ■

In addition to these essential properties, we also have a confluence result, for which we
need to define a weak notion of equivalence on configurations. We say C1 ∼C2 if there is a
renaming ρ of addresses such that ρC1 =C2. We can then establish the following version
of the diamond property:

Theorem 3 (Diamond Property). Assume ∆ ⊢C :: Γ. If C 7→C1 and C 7→C2 such that
C1 ̸∼C2. Then there exist C ′1 and C ′2 such that C1 7→C ′1 and C2 7→C ′2 with C ′1 ∼C ′2.

Proof The proof is straightforward by cases. There are no critical pairs involving
ephemeral (that is, non-persistent) objects in the left-hand sides of transition rules. ■

3.2 Examples

We present here a few examples of concurrent programs, illustrating various aspects of our
language.

3.2.1 Example: Binary Numbers.

As a first simple example we consider binary numbers, defined as a type bin at mode m. The
structural properties of mode m are arbitrary for our examples. For concreteness, assume
that m is linear, that is, σ(m) = { }.

binm =⊕m{b0 : binm, b1 : binm, e : 1m}

Unless multiple modes are involved, we will henceforth omit the mode m. As an example,
the number 6 = (110)2 would be represented by a sequence of labels e, b1, b1, b0, chained
together in a linked list. The first cell in the list would contain the bit b0. It has some
address c0, and also contains an address c1 pointing to the next cell in the list. Writing out
the whole sequence as a configuration we have

cell(c4, ⟨ ⟩), cell(c3, e(c4)), cell(c2, b1(c3)), cell(c1, b1(c2)), cell(c0, b0(c1))

3.2.2 Example: Computing with Binary Numbers.

We implement a recursive process succ that reads the bits of a binary number n starting at
address y and writes the bits for the binary number n + 1 starting at x. This process may
block until the input cell (referenced as y) has been written to; the output cells are allocated
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one by one as needed. Since we assumed the mode m is linear, the cells read by the succ
process from will be deallocated.

binm =⊕m{b0 : binm, b1 : binm, e : 1m}
(y : bin) ⊢ succ :: (x : bin)
x← succ y =

case yR ( b0(y1)⇒ x1← (xW
1 ← yR

1) ; % alloc x1 and copy y1 to x1

xW.b1(x1) % write b1(x1) to x
| b1(y1)⇒ x1← (x1← succ y1) ; % alloc x1 and spawn succ y1

xW.b0(x1) % write b0(x1) to x
| e(y1)⇒ x2← (xW

2 ← yR
1) ; % alloc x2 and copy y1 to x2

x1← xW
1 .e(x2) ; % alloc x1 and write e(x2) to x1

xW.b1(x1) ) % write b1(x1) to x

In this example and others we find certain repeating patterns. Abbreviating these makes
the code easier to read and also more compact to write. As a first simplification, we can
use the following shortcuts:

x← y ; Q ≜ x← (x← y) ; Q
x← f y ; Q ≜ x← (x← f y) ; Q

With these, the code for successor becomes

x← succ y =
case yR ( b0(y1)⇒ xW

1 ← yR
1 ; % alloc x1 and copy y1 to x1

xW.b1(x1) % write b1(x1) to x
| b1(y1)⇒ x1← succ y1 ; % alloc x1 and spawn succ y1

xW.b0(x1) % write b0(x1) to x
| e(y1)⇒ xW

2 ← yR
1 ; % alloc x2 and copy y1 to x2

x1← xW
1 .e(x2) ; % alloc x1 and write e(x2) to x1

xW.b1(x1) ) % write b1(x1) to x

The second pattern we notice are sequences of allocations followed by immediate (single)
uses of the new address. We can collapse these by a kind of specialized substitution. We
describe the inverse, namely how the abbreviated notation is elaborated into the language
primitives.

Value Sequence V̄ ::= i(V̄ ) | (y, V̄ ) | shift(V̄ ) |V

At positive types (⊕,⊗, 1, ↓), which write to the variable x with x.V̄ , we define:

xW . i(V̄ ) ≜ x1← xW
1 . V̄ ; xW.i(x1) (⊕)

xW . ⟨y, V̄ ⟩ ≜ x1← xW
1 . V̄ ; xW.⟨y, x1⟩ (⊗)

xW . shift(V̄ ) ≜ x1← xW
1 . V̄ ; xW.shift(x1) (↓)

In each case, and similar definitions below, x1 is a fresh variable. Using these abbreviations
in our example, we can shorten it further.

x← succ y =
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case yR ( b0(y1)⇒ xW.b1(y1) % write b1(y1) to x
| b1(y1)⇒ x1← succ y1 ; % alloc x1 and spawn succ y1

xW.b0(x1) % write b0(x1) to x
| e(y1)⇒ xW.b1(e(y1)) ) % write b1(e(y1)) to x

For negative types (N,⊸, ↑) the expansion is symmetric, swapping the left- and right-hand
sides of the cut. This is because these constructs read a continuation from memory at x and
pass it a value.

xR . i(V̄ ) ≜ x1← xR.i(x1) ; xR
1 . V̄ (N)

xR . ⟨y, V̄ ⟩ ≜ x1← xR.⟨y, x1⟩ ; xR
1 . V̄ (⊸)

xR . shift(V̄ ) ≜ x1← xR.shift(x1) ; xR
1 . V̄ (↑)

Similarly, we can decompose a continuation matching against a value sequence (V̄ ⇒ P).
For simplicity, we assume here that the labels for each branch of a pattern match for internal
(⊕) or external (N) choice are distinct; a generalization to nested patterns is conceptually
straightforward but syntactically somewhat complex so we do not specify it formally.

(ℓ(V̄ℓ)⇒ Pℓ)ℓ∈L ≜ (ℓ(x1)⇒ case x1 (V̄ℓ⇒ Pℓ))ℓ∈L (⊕,N)

(⟨y, V̄ ⟩⇒ P) ≜ (⟨y, x1⟩⇒ case x1 (V̄ ⇒ P)) (⊗,⊸)

(shift(V̄ )⇒ P) ≜ (shift(x1)⇒ case x1 (V̄ ⇒ P)) (↓, ↑)
For example, we can rewrite the successor program one more time to express that y1 in the
last case must actually contain the unit element ⟨ ⟩ and match against it as well as construct
it on the right-hand side.

x← succ y =
case yR ( b0(y1)⇒ xW.b1(y1) % write b1(y1) to x

| b1(y1)⇒ x1← succ y1 ; % alloc x1 and spawn succ y1

xW.b0(x1) % write b0(x1) to x
| e ⟨ ⟩⇒ xW.b1(e ⟨ ⟩) ) % write b1(e ⟨ ⟩) to x

We have to remember, however, that intermediate matches and allocations still take place
and the last two programs are not equivalent in case the process with destination y′ does
not terminate.

To implement plus2 we can just compose succ with itself.

(z : bin) ⊢ plus2 :: (x : bin)

x← plus2 z =
y← succ z ;
x← succ y

In our concurrent semantics, the two successor processes form a concurrently executing
pipeline — the first reads the initial number from memory, bit by bit, and then writes a new
number (again, bit by bit) to memory for the second successor process to read.
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3.2.3 Example: MapReduce.

As a second example we consider mapReduce applied to a tree. We have a neutral element
z (which stands in for every leaf) and a process f to be applied at every node to reduce
the whole tree to a single value. This exhibits a high degree of parallelism, since the oper-
ations on the left and right subtree can be done independently. We abstract over the type
of element A and the result B at the meta-level, so that treeA is a family of types, and
mapReduceAB is a family of processes, indexed by A and B.

treeA =⊕m{empty : 1, node : treeA ⊗ A⊗ treeA}

Since mapReduce applies reduction at every node in the tree, it is linear in the tree. On the
other hand, the neutral element z is used for every leaf, and the associative operation f for
every node, so z requires at least contraction (there must be at least one leaf) and f both
weakening and contraction (there may be arbitrarily many nodes). Therefore we use three
modes: the linear mode m for the tree and the result of mapReduce, a strict mode s for the
neutral element z, and an unrestricted mode u for the operation applied at each node.

(z : ↑s
mB) ( f : ↑u

m((B⊗ A⊗ B)⊸ B)) (t : treeA) ⊢mapReduceAB :: (s : B)

s←mapReduceAB z f t =
case tR ( empty ⟨ ⟩⇒ z1← zR.shift(z1) % drop f

sW← zR1
| node ⟨l, ⟨x, r⟩⟩⇒ l1←mapReduceAB z f l ;

r1←mapReduceAB z f r ; % duplicate z and f
p← pW.⟨l1, ⟨x, r1⟩⟩ ;
s1← f R.shift⟨p, s1⟩ ;
sW← sR1 )

3.2.4 Example: λ -Calculus.

As a third example we show an encoding of the λ -calculus using higher-order abstract
syntax and parallel evaluation. We specify, at an arbitrary mode m:

expm =⊕{app : exp⊗ exp, val : val}
valm =⊕{lam : val ⊸ exp}

An interesting property of this representation is that if we pick m to be linear, we obtain the
linear λ -calculus (Lincoln & Mitchell, 1992), if we pick m to be strict (σ(m) = {C}) we
obtain Church and Rosser’s original λ I calculus (Church & Rosser, 1936), and if we set
σ(m) = {W,C} we obtain the usual (intuitionistic) λ -calculus. Evaluation (that is, parallel
reduction to a weak head-normal form) is specified by the following process, no matter
which version of the λ -calculus we consider.

(e : exp) ⊢ eval : (v : val)

v← eval e =
case eR ( val(v1)⇒ vW← vR

1
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| app ⟨e1, e2⟩⇒ v1← eval e1 ;
v2← eval e2 ;
case vR

1 ( lam( f )⇒ e3← f R.⟨v2, e3⟩ ; % f : val ⊸ exp
v← eval e3 ) )

In this code, v2 acts like a future: we spawn the evaluation of e2 with the promise to place
the result in v2. In our dynamics, we allocate a new cell for v2, as yet unfilled. When we
pass v2 to f in f .⟨v2, e3⟩ the process eval e2 may still be computing and we will not block
until we eventually try to read from v2 (which may nor may not happen).

4 Sequential Semantics

While our concurrent semantics is quite expressive and allows for a great deal of par-
allelism, in a real-world setting, the overhead of spawning a new thread can make it
inefficient to do so unless the work that thread does is substantial. The ability to express
sequentiality is therefore convenient from an implementation standpoint, as well as for ease
of reasoning about programs. Moreover, many of the patterns of concurrent computation
that we would like to model involve adding some limited access to concurrency in a largely
sequential language. We can address both of these issues with the concurrent semantics by
adding a construct to enforce sequentiality. Here, we will take as our definition of sequen-
tiality that only one thread (the active thread) is able to take a step at a time, with all other
threads being blocked.

The key idea in enforcing sequentiality is to observe that only the cut/spawn rule turns
a single thread into two. When we apply the cut/spawn rule to the term x← P ; Q, P and
Q are executed concurrently. One obvious way (we discuss another later in this section) to
enforce sequentiality is to introduce a sequential cut construct x⇐ P ; Q that ensures that
P runs to completion, writing its result into x, before Q can continue. We do not believe
that we can ensure this using our existing (concurrent) semantics. However, with a small
addition to the language and semantics, we are able to define a sequential cut as syntactic
sugar for a Seax term that does enforce this.

Example Revisited: A Sequential Successor. Before we move to the formal definition
that enforces sequentiality, we reconsider the successor example on binary numbers in its
most explicit form. We make all cuts sequential.

binm =⊕m{b0 : binm, b1 : binm, e : 1m}
(y : bin) ⊢ succ :: (x : bin)
x← succ y =

case yR ( b0(y1)⇒ x1⇐ (xW
1 ← yR

1) ; % alloc x1 and copy y1 to x1

xW.b1(x1) % write b1(x1) to x
| b1(y1)⇒ x1⇐ (x1← succ y1) ; % alloc x1 and spawn succ y1

xW.b0(x1) % write b0(x1) to x
| e(y1)⇒ x2⇐ (xW

2 ← yR
1) % alloc x2 and copy y1 to x2

x1⇐ xW
1 .e(x2) % alloc x1 and write e(x2) to x1
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xW.b1(x1) ) % write b1(x1) to x

This now behaves like a typical sequential implementation of a successor function, but in
destination-passing style (Wadler, 1984; Larus, 1989; Cervesato et al., 2002; Simmons,
2012). Much like in continuation-passing style, where each function, rather than returning,
calls a continuation that is passed in, in destination-passing style, rather than returning, a
function stores its result in a destination that is passed in. Likewise, our processes take in
an address or destination, compute their result, and write it to that address. When there is a
carry (manifest as a recursive call to succ), the output bit zero will not be written until the
effect of the carry has been fully computed.

To implement sequential cut, we will take advantage of the fact that a shift from a mode
m to itself does not affect provability, but does force synchronization. If x : Am, we would
like to define

x⇐ P ; Q ≜ x1← P′ ; case x1 (shift(x)⇒Q),

where x1 : ↓m
mAm, and (informally) P′ behaves like P, except that wherever P would write

to x, P′ writes simultaneously to x and x1. By Setting aside for now a formal definition of
P′, we see that Q is blocked until x1 has been written to, and so as long as P′ writes to
x1 no later than it writes to x, this ensures that x is written to before Q can continue. By
doing this, we use x1 as a form of acknowledgment which cannot be written to until P has
finished its computation.5

We now see that in order to define P′ from P, we need some way to ensure that x1 is
written to no later than x. The simplest way to do this is to add a form of atomic write
which writes to two cells simultaneously. We define three new constructs for these atomic
writes, shown here along with the non-atomic processes that they imitate. We do not show
typing rules here, but each atomic write can be typed in the same way as its non-atomic
equivalent.

Atomic Write Non-atomic equivalent
xW

1 .shift(xW.V ) x← xW.V ; xW
1 .shift(x)

xW
1 .shift(case xW K) x← case xW K ; xW

1 .shift(x)
xW

1 .shift(xW← yR) x← (xW← yR) ; xW
1 .shift(x)

Each atomic write simply evaluates in a single step to the configuration where both x and
x1 have been written to, much as if the non-atomic equivalent had taken three steps — first
for the cut, second to write to x, and third to write to x1. This intuition is formalized in the
following transition rules:

thread(x1m, x1
W
m.shift(xW

k .V )) 7→ !kcell(xk,V ), !mcell(x1m, shift(xk)) atom-val
thread(x1m, x1

W
m.shift(case xW

k K)) 7→ !kcell(xk, K), !mcell(x1m, shift(xk)) atom-cont
thread(x1m, x1

W
m.shift(xW

k ← yR
k)), !kcell(yk, D) 7→ !kcell(xk, D), !mcell(x1m, shift(xk)) atom-id

Note that the rule for the identity case is different from the other two — it requires the cell
yk to have been written to in order to continue. This is because the xW← yR construct reads

5 There are other ways that we could handle sequentiality, for instance by adding a new construct that blocks
waiting for x to be written to, using x as its own acknowledgment. Each approach has its own advantages, and
we use a separate acknowledgment via a shift because this approach generalizes more smoothly to call-by-
name, which we explore later on.
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from y and writes to x — if we wish to write to x and x1 atomically, we must also perform
the read from y.

Now, to obtain P′ from P, we define a substitution operation [x1.shift(x)//x] that replaces
writes to x with atomic writes to x and x1 as follows:

(xW.V )[x1.shift(x)//x] = xW
1 .shift(xW.V )

(case xW K)[x1.shift(x)//x] = xW
1 .shift(case xW K)

(xW← yR)[x1.shift(x)//x] = xW
1 .shift(xW← yR)

Extending [x1.shift(x)//x] compositionally over our other language constructs, we can
define P′ = P[x1.shift(x)//x], and so

x⇐ P ; Q ≜ x1← P[x1.shift(x)//x] ; case xR
1 (shift(x)⇒Q).

We now can use the sequential cut to enforce an order on computation. Of particular
interest is the case where we restrict our language so that all cuts are sequential. This gives
us a fully sequential language, where we indeed have that only one thread is active at a
time. We will make extensive use of this ability to give a fully sequential language, and
in Sections 6 to 8, we will add back limited access to concurrency to such a sequential
language in order to reconstruct various patterns of concurrent computation.

There are a few properties of the operation [x1.shift(x)//x] and the sequential cut
that we will make use of in our embeddings. Essentially, we would like to know that
P[x1.shift(x)//x] has similar behavior from a typing perspective to P, and that a sequen-
tial cut can be typed in a similar manner to a standard concurrent cut. We make this precise
with the following lemmas:

Lemma 4. If Γ ⊢ P :: (x : Am), then Γ ⊢ P[x1.shift(x)//x] :: (x1 : ↓m
mAm).

Lemma 5. The rule
(ΓC, ∆≥m≥ r) ΓC, ∆ ⊢ P :: (x : Am) ΓC, ∆′, x : Am ⊢Q :: (z : Cr)

ΓC, ∆, ∆′ ⊢ (x⇐ P ; Q) :: (z : Cr)
seqcut

is admissible.

Lemma 4 follows from a simple induction on the structure of P, and Lemma 5 can be
proven by deriving the seqcut rule using Lemma 4.

In an earlier version of this paper,6 we developed a separate set of sequential semantics
which is bisimilar to the presentation we give here in terms of sequential cuts. However, by
embedding the sequential cut into the concurrent semantics as syntactic sugar, we are able
to drastically reduce the conceptual and technical overhead needed to look at interactions
between the two different frameworks, and simplify our encodings of various concurrency
patterns.

Example Revisited: λ -Calculus. If we make all cuts in the λ -calculus interpreter sequen-
tial, we obtain a call-by-value semantics. In particular, it may no longer compute a weak
head-normal form even if it exists. Note that just as we used syntactic sugar for standard

6 (Pruiksma & Pfenning, 2020), version 1, found at https://arxiv.org/abs/2002.04607
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cuts with the identity or call rule on the left, we will also define for convenience

x⇐ y ; Q ≜ x⇐ (x← y) ; Q
x⇐ f y ; Q ≜ x⇐ (x← f y) ; Q

expm =⊕{app : exp⊗ exp, val : val}
valm =⊕{lam : val ⊸ exp}

(e : exp) ⊢ eval : (v : val)

v← eval e =
case eR ( val(v′)⇒ vW← v′R

| app ⟨e1, e2⟩⇒ v1⇐ eval e1 ;
v2⇐ eval e2 ;
case vR

1 ( lam( f )⇒ e3⇐ f R.⟨v2, e3⟩ ;
v⇐ eval e3 ) )

Call-by-name. As mentioned at the beginning of this section, there are multiple
approaches to enforcing that only one thread is active at a time. We can think of the
sequential cut defined in Section 4 as a form of call-by-value — P is fully evaluated before
Q can continue. Here, we will define a different sequential cut x⇐N P ; Q, which will
behave more like call-by-name, delaying execution of P until Q attempts to read from
x. Interestingly, this construct avoids the need for atomic write operations! We neverthe-
less prefer the “call-by-value” form of sequentiality as our default, as it aligns better with
Halstead’s approach to futures Halstead (1985), which were defined in a call-by-value
language, and also avoids recomputing P if x is used multiple times in Q.

As before, we take advantage of shifts for synchronization, here using an upwards shift
rather than a downwards one. If x : Am, we would like to define

x⇐N P ; Q ≜ x1← case xW
1 (shift(x)⇒ P) ; Q′,

where x1 : ↑m
mAm and Q′ behaves as Q, except that where Q would read from x, Q′ first

reads from x1 and then from x. We can formalize the operation that takes Q to Q′

in a similar manner to [x1.shift(x)//x]. We will call this operation [x1.shift(x)%x], so
Q′ = Q[x1.shift(x)%x].

(xR.V )[x1.shift(x)%x] = x← xR
1 .shift(x) ; xR.V

(case xR K)[x1.shift(x)%x] = x← xR
1 .shift(x) ; case xR K

(yW← xR)[x1.shift(x)%x] = x← xR
1 .shift(x) ; yW← xR

Note that unlike in our “call-by-value” sequential cut, where we needed to write to two cells
atomically, here, the order of reads is enforced because xR

1 .shift(x) will execute the stored
continuation shift(x)⇒ P, which finishes by writing to x. As such, we are guaranteed that
Q′ is paused waiting to read from x until P finishes executing. Moreover, P is paused
within a continuation until Q′ reads from x1, after which it immediately blocks on x, so we
maintain only one active thread as desired.

While we will not make much use of this form of sequentiality, we find it interesting that
it is so simply encoded, and that the encoding is so similar to that of call-by-value cuts.
Both constructions are also quite natural — the main decision that we make is whether to
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pause P or Q inside a continuation. From this, the rest of the construction follows, as there
are two natural places to wake up the paused process — as early as possible or as late as
possible. If we wake the paused process P immediately after the cut, as in

x1← case xW
1 (shift(x)⇒ P) ; x← xR

1 .shift(x) ; Q,

the result is a concurrent cut with the extra overhead of the shift. Our sequential cuts are
the result of waking the paused process as late as possible — once there is no more work
to be done in P in the call-by-value cut, and once Q starts to actually depend on the result
of P in the call-by-name cut.

λ -Calculus Example Revisited. We can achieve a sequential interpreter for the λ -calculus
with a single use of a by-name cut. This interpreter is then complete: if a weak head-normal
form exists, it will compute it. We also recall that this property holds no matter which
structural properties we allow for the λ -calculus (e.g., purely linear if the mode allows
neither weakening nor contraction, of the λ I-calculus if the mode only allows contraction).

v← eval e =
case eR ( val(v1)⇒ vW← vR

1
| app ⟨e1, e2⟩⇒ v1⇐ eval e1 ;

v2⇐N eval e2 ;
case vR

1 ( lam( f )⇒ e3⇐ f R.⟨v2, e3⟩ ;
v⇐ eval e3 ) )

5 Functions

Rather than presenting an embedding or translation of a full (sequential) functional lan-
guage into our system, we will focus on the case of functions. There is a standard
translation of natural deduction to sequent calculus taking introduction rules to right rules,
and constructing elimination rules from cut and left rules. We base our embedding of func-
tions into our language on this translation. By following a similar process with other types,
one can similarly embed other functional constructs, such as products and sums.

We will embed functions into an instance of Seax with a single mode m. For this exam-
ple, we specify σ(m) = {W,C} in order to model a typical functional language, but we
could, for instance, take σ(m) = {} to model the linear λ -calculus. We also restrict the
language at mode m to only have sequential cuts, which will allow us to better model
a sequential language. Note that while we only specify one mode here, we could work
within a larger mode structure, as long as it contains a suitable mode m at which to imple-
ment functions — namely, one with the appropriate structural properties, and where we
have the restriction of only having sequential cuts. It is this modularity that allows us to
freely combine the various reconstructions presented here and in the following sections.
As we are only working within a single mode in this section, we will generally omit mode
subscripts, but everything is implicitly at mode m.

Now, to add functions to this language, we begin by adding a new type A→ B and two
new constructs — a constructor and a destructor for this type. The constructor, zW.(λx.P⋆),
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writes a λ -abstraction to destination z. Here, we write P⋆ to denote that the process expres-
sion P denotes its destination by ⋆. We will write Py for P[y/⋆]. The use of ⋆ makes this
closer to the functional style, where the location that the result is returned to is not made
explicit. The destructor, P⋆(Q⋆), applies the function P⋆ to Q⋆. These can be typed using
variants of the standard→ I and→ E rules labeled with channels:

Γ, (x : A) ⊢ P⋆ :: (⋆ : B)

Γ ⊢ zW.(λx.P⋆) :: (z : A→ B)
→ I

Γ ⊢ P⋆ :: (⋆ : A→ B) Γ ⊢Q⋆ :: (⋆ : A)

Γ ⊢ y← (P⋆(Q⋆)) :: (y : B)
→ E

In order to avoid having to augment our language each time we wish to add a new
feature, we will show that these new constructs can be treated as syntactic sugar for terms
already in the language, and, moreover, that those terms behave as we would expect of
functions and function applications.

We take the following definitions for the new type and terms:

A→ B ≜ A ⊸ B

zW.(λx.P⋆) ≜ case zW (⟨x, y⟩⇒ Py)

y← (P⋆(Q⋆)) ≜ f ⇐ Pf ; x⇐Qx; f R.⟨x, y⟩

These definitions are type-correct, as shown by the following theorem:

Theorem 6. If we expand all new constructs using ≜, then the typing rules rules→ I and
→ E above are admissible.

We can prove this by deriving the typing rules, using Lemma 5 in a few places.
Now that we have established that we can expand this syntactic sugar for functions

in a type-correct manner, we examine the evaluation behavior of these terms. First, we
consider the lambda abstraction zW.(λx.P⋆) and its expansion case zW (⟨x, y⟩⇒ Py). A
lambda abstraction should already be a value, and so we might expect that it can be written
to memory immediately. Indeed, in the expansion, we immediately write the continua-
tion (⟨x, y⟩⇒ Py), which serves as the analogue for (λx.P⋆). This term thus behaves as
expected.

We expect that when applying a function P⋆ to an argument Q⋆, we first reduce P⋆ to a
value, then reduce Q⋆ to a value, and then apply the value of P⋆ to the value of Q⋆, gen-
erally by substitution. In the term f ⇐ Pf ; x⇐Qx; f R.⟨x, y⟩, we see exactly this behavior.
We first evaluate Pf into f , then Qx into x, and then apply the continuation stored in f
to the pair ⟨x, y⟩. The addition of y allows us to specify the destination for the result of
the function application, as in the destination-passing style (Wadler, 1984; Larus, 1989;
Cervesato et al., 2002; Simmons, 2012) of semantics for functional languages.

6 Futures

Futures (Halstead, 1985) are a classic example of a primitive to introduce concurrency
into a sequential language. In the usual presentation, we add to a (sequential) functional
language the ability to create a future that immediately returns a promise and spawns a
concurrent computation. Touching a promise by trying to access its value blocks until that
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value has been computed. Futures have been a popular mechanism for parallel execution
in both statically and dynamically typed languages, and they are also used to encapsulate
various communication primitives.

The development of a sequential cut in Section 4 provides us with ways to model or
reconstruct concurrency primitives, and futures are a surprisingly simple example of this.
Starting with a language that only allows sequential cuts, we would like to add a new con-
struct that serves to create a future, as we added functions to the base language in Section 5.
In this case, however, we already have a construct that behaves exactly as desired. The con-
current cut x← P ; Q spawns a new process P, and executes P and Q concurrently. When
Q tries to read from x, it will block until P has computed a result W and written it to x.
If we wish to add an explicit synchronization point, we can do so with minimal overhead
by making use of identity to read from x. For instance, the process z⇐ (zW← xR) ; Q will
first copy or move the contents of cell x to cell z, and then run Q. As such, it delays the
execution of Q until x has been written to, even if Q does not need to look at the value of x
until later. This is analogous to the touch construct of some approaches to futures.

In other words, in this language, futures, rather than being a construct that we need to add
and examine carefully, are in fact the default. This is, in a sense, opposite to the standard
approach, where sequentiality is the norm and a new construct is needed to handle futures.
By instead adding sequential cut to our otherwise concurrent language, we get the same
expressive power, being able to specify whenever we spawn a new computation whether it
should be run concurrently with or sequentially before the continuation process.

These futures, much like those in Halstead’s Multilisp, are not distinguished at the type
level and do not require an explicit touch construct for synchronization, although we can
add synchronization points as shown. It is possible to provide an encoding of futures with
a distinct type, as they are used in many more modern languages (see Appendix 1), but
we find the form presented here more natural, as it allows a great deal of flexibility to the
programmer — a process using a variable x does not know and need not care whether the
value of x is computed concurrently or not.

One interesting result that arises from this approach to futures, and in particular from
the fact that this approach works at any mode m, regardless of what σ(m) is, is that by
considering the case where σ(m) = {}, we recover a definition of linear futures, which
must be used exactly once. This is limited in that the base language at mode m will also be
linear, along with its futures. However, we are not restricted to working with one mode. For
instance, we may take a mode S with σ(S) = {}, which allows for programming linearly
with futures, and a mode S∗ with σ(S∗) = {W, C} and S< S∗, which allows for standard
functional programming. The shifts between the linear and non-linear modes allow both
types of futures to be used in the same program, embedding the linear language (includ-
ing its futures) into the non-linear language via the monad ↑S∗S ↓S

∗
S . Uses for linear futures

(without a full formalization) in the efficient expression of certain parallel algorithms have
already been explored in prior work (Blelloch & Reid-Miller, 1999), but to our knowledge,
no formalization of linear futures has yet been given.

Binary Numbers Revisited. The program for plus2 presented in Section 3.2 is a clas-
sic example of a (rather short-lived) pipeline set up with futures. For this to exhibit the
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expected parallelism, the individual succ process should also be concurrent in its recursive
call.

(z : bin) ⊢ plus2 :: (x : bin)

x← plus2 z =
y← succ z ;
x← succ y

Simple variations (for example, setting up a Boolean circuit on bit streams) follow the
same pattern of composition using futures.

mapReduce Revisited. As a use of futures, consider making all cuts in mapReduce
sequential except those representing a recursive call:

(z : ↑s
mB) ( f : ↑u

m((B⊗ A⊗ B)⊸ B)) (t : treeA) ⊢mapReduceAB :: (s : B)

s←mapReduceAB z f t =
case tR ( empty ⟨ ⟩⇒ z1⇐ zR.shift(z1) ; % drop f

sW← zR1
| node ⟨l, ⟨x, r⟩⟩⇒ l1←mapReduceAB z f l ;

r1←mapReduceAB z f r ; % duplicate z and f
p⇐ pW.⟨l1, ⟨x, r1⟩⟩ ;
s1⇐ f R.shift⟨p, s1⟩ ;
sW← sR1 )

In this program, the computation at each node is sequential, but the two recursive calls to
mapReduce are spawned as futures. We synchronize on these futures when they are needed
in the computation of f .

7 Fork/Join Parallelism

While futures allow us a great deal of freedom in writing concurrent programs with
fine-grained control, sometimes it is useful to have a more restrictive concurrency primi-
tive, either for implementation reasons or for reasoning about the behavior of programs.
Fork/join parallelism is a simple, yet practically highly successful paradigm, allowing mul-
tiple independent threads to run in parallel, and then collecting the results together after
those threads are finished, using a join construct. Many slightly different treatments of
fork/join exist. Here, we will take as the primitive construct a parallel pair ⟨P⋆ |Q⋆⟩, which
runs P⋆ and Q⋆ in parallel, and then stores the pair of results. Joining the computation then
occurs when the pair is read from, which requires both P⋆ and Q⋆ to have terminated. This
form of fork/join is common in the literature dealing with scheduling and other optimiza-
tions for parallelism, particularly nested parallelism (e.g. Acar et al. (2018)), due to its
relative simplicity.

As with our reconstruction of functions in Section 5, we will use a single mode m which
may have arbitrary structural properties, but only allows sequential cuts. As we are working
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with only a single mode, we will generally omit the subscripts that indicate mode, writing
A rather than Am.

We introduce a new type Am∥Bm of parallel pairs and new terms to create and read from
such pairs. We present these terms in the following typing rules:

ΓC, Γ ⊢ P⋆ :: (⋆ : A) ΓC, ∆ ⊢Q⋆ :: (⋆ : B)

ΓC, Γ, ∆ ⊢ zW.⟨P⋆ |Q⋆⟩ :: (z : A∥B)
∥R

Γ, (z : A), (w : B) ⊢ R :: (c : C)

Γ, (x : A∥B) ⊢ case xR (⟨z |w⟩⇒ R) :: (c : C)
∥L

As in Section 5 we can reconstruct these types and terms in Seax already. Here, we
define:

A∥B ≜ A⊗ B

zW.⟨P⋆ |Q⋆⟩ ≜ x1← P⋆[x1.shift(x)//⋆] ;
y1←Q⋆[y1.shift(y)//⋆] ;
case xR

1 (shift(x)⇒ case yR
1 (shift(y)⇒ zW.⟨x, y⟩))

case xR (⟨z |w⟩⇒ R) ≜ case xR (⟨z, w⟩⇒ R)

This definition respects the typing as prescribed by the ∥R and ∥L rules.

Theorem 7. If we expand all new constructs using ≜, then the ∥R and ∥L rules above are
admissible.

This theorem follows quite straightforwardly from Lemma 4.
The evaluation behavior of these parallel pairs is quite simple — we first observe that,

as the derivation of ∥L in the theorem above suggests, the reader of a parallel pair behaves
exactly as the reader of an ordinary pair. The only difference, then, is in the synchronization
behavior of the writer of the pair. Examining the term

x1← P⋆[x1.shift(x)//⋆] ;
y1←Q⋆[y1.shift(y)//⋆] ;
case xR

1 (shift(x)⇒ case yR
1 (shift(y)⇒ zW.⟨x, y⟩))

we see that it spawns two new threads, which run concurrently with the original thread.
The new threads execute P⋆[x1.shift(x)//⋆] and Q⋆[y1.shift(y)//⋆] with destinations x1 and
y1, respectively, while the original thread waits first on x1, then on y1, before writing the
pair ⟨x, y⟩ to z. Because the new threads will write to x and x1 atomically, and similarly
for y and y1, by the time ⟨x, y⟩ is written to z, x and y must have already been written to.
However, because both cuts in this term are concurrent cuts, P⋆ and Q⋆ run concurrently,
as we expect from a parallel pair.

mapReduce Revisited. We can use the fork/join pattern in the implementation of
mapReduce so that we first synchronize on the results returned from the two recursive
calls before we call f on them.

(z : ↑s
mB) ( f : ↑u

m((B⊗ A⊗ B)⊸ B)) (t : treeA) ⊢mapReduceAB :: (s : B)
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s←mapReduceAB z f t =
case tR ( empty ⟨ ⟩⇒ z1⇐ zR.shift(z1)

sW← zR1
| node ⟨l, ⟨x, r⟩⟩⇒

rl← rlW.⟨mapReduceAB x f l |mapReduceAB x f r⟩ ;
case rlR (⟨l1 | r1⟩⇒ p⇐ pW.⟨l1, ⟨x, r1⟩⟩ ;

s1⇐ f R.shift⟨p, s1⟩ ;
sW← sR1 ) )

8 Monadic Concurrency

For a different type of concurrency primitive, we look at a monad for concurrency, taking
some inspiration from SILL (Toninho et al., 2013; Toninho, 2015; Griffith, 2016), which
makes use of a contextual monad to embed the concurrency primitives of linear session
types into a functional language. This allows us to have both a fully-featured sequential
functional language and a fully-featured concurrent linear language, with the concurrent
layer able to refer on variables in the sequential layer, but not the other way around. By
keeping the layers separate in this way, we can reason about them independently. Moreover,
the sequential layer could be implemented more simply than the concurrent layer — while
the concurrent layer needs some form of locking or synchronization to ensure that a cell is
not read from until it has been written to, the sequential layer can avoid all of this overhead.
Similarly, while in the sequential layer, an implementation could avoid the extra work of
thread management by maintaining a single thread.

To construct this concurrency monad, we will use two modes N and S with N< S.
Intuitively, the linear concurrent portion of the language is at mode N, while the func-
tional portion is at mode S. As in common in functional languages, S allows weakening
and contraction (σ(S) = {W,C}), but only permits sequential cuts (by which we mean that
any cut whose principal formula is at mode S must be a sequential cut) so that it mod-
els a sequential functional language. By contrast, N allows concurrent cuts, but is linear
(σ(S) = {}). We will write AS and AN for sequential and concurrent types, respectively.

We will borrow notation from SILL, using the type {AN} for the monad, and types
AS ∧ BN and AS ⊃ BN to send and receive functional values in the concurrent layer, respec-
tively. The type {AN} has as values process expressions {P⋆} such that P⋆ :: (⋆ : AN). These
process expressions can be constructed and passed around in the functional layer. In order
to actually execute these processes, however, we need to use a bind construct {cN}←Q⋆ in
the functional layer, which will evaluate Q⋆ into an encapsulated process expression {P⋆}
and then run P⋆, storing its result in cN. We can add {·} to our language with the typing
rules below. Here, ΓS indicates that all assumptions in Γ are at mode S:

ΓS ⊢ P⋆ :: (⋆N : AN)

ΓS ⊢ yS.{P⋆} :: (yS :: {AN})
{·}I

ΓS ⊢Q⋆ :: (⋆S :: {AN})

ΓS ⊢ {cN}←Q⋆ :: (cN : AN)
{·}E

Since they live in the session-typed layer, the ∧ and ⊃ constructs fit more straightfor-
wardly into our language. We will focus on the type AS ∧ BN, but AS ⊃ BN can be handled
similarly. A process of type AS ∧ BN should write a pair of a functional value with type AS
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and a concurrent value with type BN. These terms and their typing rules are shown below:

ΓW , (vS : AS), (yN : BN) ⊢ xN.⟨vS, yN⟩ :: (xN :: AS ∧ BN)
∧R0

Γ, (vS : AS), (yN : AN) ⊢ Pz :: (zN : CN)

Γ, (xN : AS ∧ BN) ⊢ case xN (⟨vS, yN⟩⇒ Pz) :: (zN : CN)
∧L

To bring these new constructs into the base language, we define

{AN} ≜ ↑SNAN

AS ∧ BN ≜
(
↓SNAS

)
⊗ BN

dW
S .{P⋆} ≜ case dW

S (shift(xN)⇒ Px)

{cN}←Q⋆ ≜ yS⇐Qy; yR
S .shift(cN)

dW
N .⟨vS, yN⟩ ≜ xN← xW

N .shift(vS); dW
N .⟨xN, yN⟩

case dR
N (⟨uS, wN⟩⇒ Pz) ≜ case dR

N (⟨xN, wN⟩⇒ case xR
N(shift(vS)⇒ Pz))

These definitions give us the usual type-correctness theorem:

Theorem 8. If we expand all new constructs using ≜, then the typing rules for {·} and ∧
are admissible.

As with the previous sections, it is not enough to know that these definitions are
well-typed — we would also like to verify that they have the behavior we expect for a
concurrency monad. In both cases, this is relatively straightforward. Examining the term

dW
S .{P⋆} ≜ case dW

S (shift(xN)⇒ Px),

we see that this writes a continuation into memory, containing the process Px. A reference
to this continuation can then be passed around freely, until it is executed using the bind
construct:

{cN}← P⋆ ≜ yS⇐ Py; yS.shift(cN)

This construct first evaluates Py with destination yS, to get a stored process, and then
executes that stored process with destination cN.

The ∧ construct is even simpler. Writing a functional value using the term

dN.⟨vS, yN⟩ ≜ xN← xN.shift(vS); dN.⟨xN, yN⟩

sends both a shift (bringing the functional value into the concurrent layer) and the pair
⟨xN, yN⟩ of the continuation yN and the shift-encapsulated value xN. Reading such a value
using the term

case dN (⟨vS, yN⟩⇒ Pz) ≜ case dN (⟨xN, yN⟩⇒ case xN(shift(vS)⇒ Pz))

just does the opposite — we read the pair out of memory, peel the shift off of the functional
value vS to return it to the sequential, functional layer, and continue with the process Pz,
which may make use of both vS and the continuation yN.

These terms therefore capture the general behavior of a monad used to encapsulate
concurrency inside a functional language. The details of the monad we present here are
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different from that of SILL’s (contextual) monad, despite our use of similar notation, but
the essential idea is the same.

Example: A Concurrent Counter. We continue our example of binary numbers, this time
supposing that the mode m = S, that is, our numbers and the successor function on them are
sequential and allow weakening and contraction. counter represents a concurrently running
process that can receive inc and val messages to increment or retrieve the counter value,
respectively.

ctrN =NN{inc : ctrN, val : binS ∧ ctrN}

(x : binS) ⊢ counter :: (c : ctrN)

c← counter x =
case c ( inc(c1)⇒ x1⇐ succ x ;

c1← counter x1

| val(c1)⇒ c2← counter x ;
cW

1 .⟨x, c2⟩

9 Conclusion

We have presented a concurrent shared-memory semantics based on a semi-
axiomatic (DeYoung et al., 2020) presentation of adjoint logic (Reed, 2009; Licata &
Shulman, 2016; Licata et al., 2017; Pruiksma & Pfenning, 2019), for which we have usual
variants of progress and preservation, as well as confluence. We then demonstrate that
by adding a limited form of atomic writes, we can model sequential computation. Taking
advantage of this, we reconstruct several patterns that provide limited access to concur-
rency in a sequential language, such as fork/join, futures, and monadic concurrency in the
style of SILL. The uniform nature of these reconstructions means that they are all mutually
compatible, and so we can freely work with any set of these concurrency primitives within
the same language. Moreover, taking advantage of the adjoint nature of the language, we
can have multiple modes, each with different features — for instance, one mode where
computation is purely sequential, another with futures, and yet another with fork/join. The
separation between these modes means that we can reason about programs at each mode
separately — not needing to think about concurrency at the purely sequential mode, for
example. Building on this, an actual implementation of this language could make opti-
mizations based on the restrictions at each mode, not needing to worry about the full range
of features that may exist at other modes. Seax therefore allows us to get many of the bene-
fits of working in a restricted language (at a specific mode), without the drawbacks of only
having specific tools to work with (since we can weaken those restrictions or place other
restrictions at different modes).

There are several potential directions that future work in this space could take. In our
reconstruction of futures, we incidentally also provide a definition of linear futures, which
have been used in designing pipelines (Blelloch & Reid-Miller, 1999), but to our knowl-
edge have not been examined formally or implemented. One item of future work, then,
would be to further explore linear futures, now aided by a formal definition which is also
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amenable to implementation. We also believe that it would be interesting to explore an
implementation of our language as a whole, and to investigate what other concurrency
patterns arise naturally when working in it. Another item of future work is to make more
precise the correctness of the encodings we describe in Sections 5, 7 and 8. For instance, for
functions, we can prove beta reduction admissible already, but for the other encodings, we
lack similar results, as this kind of functional correctness result appears to require a better
notion of equivalence for Seax processes, allowing us to compare terms in the languages
augmented with additional constructs to terms in the base language that use encodings in
place of those additional constructs. Additionally, the stratification of the language into
layers connected with adjoint operators strongly suggests that some properties of a lan-
guage instance as a whole can be obtained modularly from properties of the sublanguages
at each mode. Although based on different primitives, research on monads and comonads
to capture effects and coeffects, respectively (Curien et al., 2016; Gaboardi et al., 2016),
also points in this direction. In particular, we would like to explore a modular theory of
(observational) equivalence using this approach. Some work on observational equivalence
in a substructural setting already exists (Kavanagh, 2020), but works in a message-passing
setting and does not seem to translate directly to the shared-memory setting of Seax.
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1 Typed Futures

The futures that we discuss in Section 6 behave much like Halstead’s original futures in
Multilisp Halstead (1985), which, rather than being distinguished at the type level, are
purely operational. One side effect of this is that while we can explicitly synchronize these
futures, we can also make use of implicit synchronization, where accessing the value of
the future blocks until it has been computed, without the need for a touch construct.

Here, we will look at a different encoding of futures, which distinguishes futures at the
type level, as they have often been presented since. As in Section 5, we will work with a
single mode m, in which we will only allow sequential cuts, and which may have any set
σ(m) of structural properties. To the base language, we add the following new types and
process terms for futures:

Types A ::= . . . | fut A
Processes P ::= . . . | xW.⟨P⋆⟩ | touch yR (⟨z⟩⇒ P)

We type these new constructs as:

Γ ⊢ P⋆ :: (⋆ : Am)

Γ ⊢ xW
m .⟨P⋆⟩ :: (xm : fut Am)

futR

Γ, zm : Am ⊢Q :: (wm : Cm)

Γ, xm : fut Am ⊢ touch xR
m (⟨zm⟩⇒Q) :: (wm : Cm)

futL

We then reconstruct this in Seax by defining

fut Am ≜ ↓m
m↓m

mAm

xW
m .⟨P⋆⟩ ≜ ym← P⋆[ym.shift(zm)//⋆] ; xW

m .shift(ym)

touch xR
m (⟨zm⟩⇒Q) ≜ case xR

m (shift(ym)⇒ case yR
m(shift(zm)⇒Q))

This is not the only possible reconstruction, 7 but we use it because it is the simplest one
that we have found. The first property to verify is that these definitions are type-correct:

Theorem 9. If we expand all new constructs using ≜, then the rules futL and futR are
admissible.

Proof By examining typing derivations for these processes, we see that these rules can be
derived as follows:

Γ ⊢ P⋆ :: (⋆ :: Am)

Γ ⊢ P⋆[ym.shift(zm)//⋆] :: (ym : ↓m
mAm)

Lemma 4
ym : ↓m

mAm ⊢ xW
m.shift(ym) :: (xm : ↓m

m↓m
mAm)

↓R0

Γ ⊢ ym← P⋆[ym.shift(zm)//⋆] ; xW
m.shift(ym) :: (xm : ↓m

m↓m
mAm)

cut

7 In particular, as the role of the outer shift is simply to allow the client of the future to proceed, we can replace
the shift with any other type that forces a send but does not provide any useful information. Examples include
↑m

m↓m
mAm and 1m ⊗ (↓m

mAm).
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Γ, zm : Am ⊢Q :: (w : Cm)

Γ, ym : ↓m
mAm ⊢ case yR

m(shift(zm)⇒Q) :: (w : Cm)
↓L0

Γ, xm : ↓m
m↓m

mAm ⊢ case xR
m (shift(ym)⇒ case yR

m(shift(zm)⇒Q)) :: (w : Cm)
↓L0

Note that we omit mode conditions on cut because within a single mode m, they are
necessarily satisfied. ■

Now, we examine the computational behavior of these terms to demonstrate that they
behave as futures. The type ↓m

mAm, much like in Section 4 where we used it to model
sequentiality, adds an extra synchronization point. Here, we shift twice, giving ↓m

m↓m
mAm, to

introduce two synchronization points. The first is that enforced by our restriction to only
allow sequential cuts in this language (outside of futures), while the second will become
the touch construct. We will see both of these when we examine each process term.

We begin by examining the constructor for futures. Intuitively, when creating a future,
we would like to spawn a new thread to evaluate P⋆ with new destination zm, and imme-
diately write the promise of zm (represented by a hypothetical new value ⟨zm⟩) into xm, so
that any process waiting on xm can immediately proceed. The term

xW
m .⟨P⋆⟩ ≜ yW

m ⇐ P⋆[ym.shift(zm)//⋆] ; xW
m .shift(ym)

behaves almost exactly as expected. Rather than spawning P⋆ with destination zm, we
spawn P⋆[ym.shift(zm)//⋆], which will write the result of P⋆ to zm, and a synchronizing
shift to ym. Concurrently, we write the value shift(ym) to xm, allowing the client of xm to
resume execution, even if xm was created by a sequential cut. This value shift(ym) is the
first half of the promise ⟨zm⟩, and the second half, shift(zm), will be written to ym when P
finishes executing.

If, while P continues to execute, we touch xm, we would expect to block until the promise
⟨zm⟩ has been fulfilled by P having written to zm. Again, we see exactly this behavior from
the term

touch xR
m (⟨zm⟩⇒Q) ≜ case xR

m (shift(ym)⇒ case yR
m(shift(zm)⇒Q)).

This process will successfully read shift(ym) from xm, but will block trying to read from
ym until ym is written to. Since zm and ym are written to at the same time, we block until
zm is written to, at which point the promise is fulfilled. Once a result W has been written
to zm and (simultaneously) shift(zm) has been written to ym, this process can continue,
reading both ym and zm, and continuing as Q. Again, this is the behavior we expect a touch
construct to have.

This approach does effectively model a form of typed future, which ensures that all
synchronization is explicit, but comes at the cost of overhead from the additional shifts.
Both this and the simpler futures that we describe in Section 6 have their uses, but we
believe that the futures native to Seax are more intuitive in general.
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2 Proofs of Type Correctness

In Sections 5, 7 and 8, we present type-correctness theorems for our reconstructions of
various concurrency primitives, but omit the details of the proofs. Here, we present those
details.

Functions. We derive the typing rules as follows, making use of Lemma 5 to use the
admissible seqcut rule. We omit the conditions on modes for cut, as we only have one
mode:

Γ, x : A ⊢ Py :: (y : B)

Γ ⊢ case z (⟨x, y⟩⇒ Py) :: (z : A ⊸ B)
⊸ R

Γ ⊢ Pf :: ( f : A ⊸ B)

Γ ⊢Qx :: (x : A) Γ, ( f : A ⊸ B), (x : A) ⊢ f .⟨x, y⟩ :: (y : B)
⊸ L0

Γ, ( f : A ⊸ B) ⊢ x⇐Qx; f .⟨x, y⟩ :: (y : B)
seqcut

Γ ⊢ f ⇐ Pf ; x⇐Qx; f .⟨x, y⟩ :: (y : B)
seqcut

Fork/Join. Due to the length of the process term that defines z.⟨P⋆ |Q⋆⟩, we elide portions
of it throughout the derivation below, and we will write P′ for P⋆[x′.shift(x)//⋆], and simi-
larly Q′ for Q⋆[y′.shift(y)//⋆]. With these abbreviations, we have the following derivation
for the ∥R rule, where the dashed inferences are made via Lemma 4.

ΓC, Γ ⊢ Px :: (x : A)

ΓC, Γ ⊢ P′ :: (x′ : ↓m
mA)

ΓC, ∆ ⊢Qy :: (y : B)

ΓC, ∆ ⊢Q′ :: (y′ : ↓m
mB)

x : A, y : B ⊢ z.⟨x, y⟩ :: (z : A⊗ B)
⊗R0

x : A, y′ : ↓m
mB ⊢ case y′ (. . .) :: (z : A⊗ B)

↓L0

x′ : ↓m
mA, y′ : ↓m

mB ⊢ case x′ (. . .) :: (z : A⊗ B)
↓L0

ΓC, ∆, x′ : ↓m
mA ⊢ y′←Q′ ; . . . :: (z : A⊗ B)

cut

ΓC, Γ, ∆ ⊢ x′← P′ ; . . . :: (z : A⊗ B)
cut

The left rule is much more straightforward, since this encoding makes the writer of the
pair rather than the reader responsible for synchronization.

Γ, z : A, w : B ⊢ R :: (c : C)

Γ, x : A⊗ B ⊢ case x (⟨z, w⟩⇒ R) :: (c : C)
⊗L0

Monadic Concurrency. We first construct the typing rules for {·}, which are straightfor-
ward:

ΓS ⊢ Px :: (xN : AN)

ΓS ⊢ case dS (shift(xN)⇒ Px) :: (dS : ↑SNAN)
↑R

ΓS ≥ S≥N ΓS ⊢ Py :: (yS : ↑SNAN) (yS : ↑SNAN) ⊢ yS.shift(cN) :: (cN : AN)
↑L0

ΓS ⊢ yS⇐ Py; yS.shift(cN) :: (cN : AN)
seqcut
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We then construct the typing rules for ∧:

vS : AS ⊢ xN.shift(vS) :: (xN :: ↓SNAS)
↓R0

ΓW , (xN :: ↓SNAS) ⊢ dN.⟨xN, yN⟩ :: (dN :: (↓SNAS)⊗ BN)
⊗R0

ΓW , (vS : AS), (yN : BN) ⊢ xN← xN.shift(vS); dN.⟨xN, yN⟩ :: (dN :: AS ∧ BN)
cut

Γ, (vS : AS), (wN : BN) ⊢ Pz :: (zN : CN)

Γ, (xN : ↓SNAS), (wN : BN) ⊢ case xN(shift(vS)⇒ Pz) :: (zN : CN)
↓L0

Γ, (dN : (↓SNAS)⊗ BN) ⊢ case dN (⟨xN, wN⟩⇒ case xN(shift(vS)⇒ Pz)) :: (zN : CN)
⊗L0

Note that unlike the rules for {·} or for many of the constructs in previous sections, those
for ∧ are not only admissible — they are derivable.
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