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Abstract
Prior work has extended the deep, logical connection between linear sequent calculus and session-
typed message-passing concurrent computation with equirecursive types and a natural notion
of subtyping. In this paper, we extend this further by intersection and union types in order to
express multiple behavioral properties of processes in a single type. We prove session fidelity and
absence of deadlock and illustrate the expressive power of our system with some simple exam-
ples. We observe that we can represent internal and external choice by intersection and union,
respectively, as first suggested by Padovani for a different language of session types motivated by
operational rather than logical concerns.
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1 Introduction

Prior work has established a Curry-Howard correspondence between intuitionistic linear se-
quent calculus and session-typed message-passing concurrency [4, 15, 14]. In this formulation,
linear propositions are interpreted as session-types, proofs as processes, and cut elimination
as communication. Session types are assigned to channels and prescribe the communication
behavior along them. Each channel is offered by a unique process and used by exactly one,
which is ensured by linearity. When the behavior along a channel c satisfies the type A and
P is the process that offers along c, we say that P provides a session of type A along c.

In the base system, each type directly corresponds to a process of a certain form. For
example, a process providing the type A ⊗ B first sends out a channel satisfying A, then
acts as B. Similarly, a process offering 1 sends the label end and terminates. We call these
structural types since they correspond to processes of a certain structure. In this paper, we
extend the base type system with intersections and unions. We call these property types since
they do not correspond to specific forms of processes in that any process may be assigned
such a type. In addition, if we interpret a type as specifying a property, then intersection
corresponds to satisfying two properties simultaneously and union corresponds to satisfying
one or the other.

Our goal is to show that the base system extended with intersection, unions, recursive
types, and a natural notion of subtyping is type-safe. We do this by proving the usual type
preservation and progress theorems, which correspond to session fidelity and deadlock freedom
in the concurrent context. In the presence of a strong subtyping relation and transparent
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(i.e. non-generative) equirecursive types, intersections and unions turn out to be powerful
enough to specify many interesting communications behaviors, which we demonstrate with
examples analogous to those in functional languages [9, 7].

Our contributions are summarized below:
We introduce intersection and union types to a session-typed concurrent calculus and
prove session fidelity and deadlock freedom.
We give a simple and sound coinductive subtyping relation in the presence of equirecursive
types, intersections, and unions reminiscent of Gentzen’s multiple conclusion sequent
calculus [11, 12].
We show how intersections and unions can be used as refinements of recursive types in a
linear setting.
We show decidability of subtyping and present a system for algorithmic type checking
(the proof of its soundness and completeness is in progress at the time of submission).
We demonstrate how internal and external choice can be understood as singletons
interacting with intersection and union.

2 From Linear Logic to Session Types

We only give a brief review of linear logic and its connection to session types here. Interested
readers are referred to [4, 15, 14]. The key idea of linear logic is to treat logical propositions as
resources: each must be used exactly once. According to the Curry-Howard isomorphism for
intuitionistic linear logic, propositions are interpreted as session types, proofs as concurrent
processes, and cut elimination steps as communication. For this correspondence, hypotheses
are labelled with channels (rather than with variables). We also assign a channel name
to the conclusion since processes are not evaluated like in a functional language but are
communicated with (along a channel). This gives us the following form for typing judgments:

c1 : A1, . . . , cn : An ` P :: (c : A)

which should be interpreted as “P offers along the channel c the session A using channels
c1, . . . , cn (linearly) with the corresponding types”. We assume c1, . . . , cn and c are all
distinct.

Each process offers along a specific channel, and in the linear setting, each channel must
be used exactly in one place. Processes cannot rename channels, which means we can treat
channel names as unique process identifiers.

Working out the isomorphism further and assigning a session type to each linear proposi-
tion gives the following interpretation:

A, B, C ::= 1 send end and terminate
| A⊗B send channel of type A and continue as B

| ⊕{labk : Ak}k∈I send labi and continue as Ai

| A( B receive channel of type A and continue as B

| &{labk : Ak}k∈I receive labi and continue as Ai

The types we care the most in this paper are ⊕{labk : Ak}k∈I and &{labk : Ak}k∈I which
are generalizations of the binary additive disjunction (⊕) and conjunction (&). ⊕{labk :
Ak}k∈I is called an internal choice, since the label is picked by the provider (we always
consider the world from the provider’s perspective). In the same vein, &{labk : Ak}k∈I is an
external choice since the choice is made externally by the client. In either case, I is a finite,
the order of labels does not matter, and each label must be unique.
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2.1 Process Expressions
The processes (or proof terms) corresponding to these types are given below with the sending
construct followed by the receiving construct.

P, Q, R ::= x← Px ; Qx cut (spawn)
| c← d id (forward)
| close c | wait c ; P 1
| send c (y ← Py) ; Q | x← recv c ; Rx A⊗B, A( B

| c.lab ; P | case c of {labk → Qk}k∈i &{labk : Ak}k∈I , ⊕{labk : Ak}k∈I

An example program will give more intuition about the system. We will look at process
level natural numbers, which will also be our running example in this paper. Note that we
will use concrete syntax, but the mapping to abstract syntax presented above should be
clear. Also, this example (and almost any interesting one) requires recursive types, which
are introduced in the next section. First, we define the interface:

type Nat = +{ zero : 1, succ : Nat}

This states a process level natural number is an internal choice of either zero or a successor
of another natural. Next, we define two simple processes that implement the interface:

z : Nat
‘c <- z =

‘c.zero;
close ‘c

s : Nat -o Nat
‘c <- s ‘d =

‘c.succ;
‘c <- ‘d

z simply sends the label zero along the channel ‘c (which it provides) and terminates,
whereas s prepends a successor to the number provided along channel ‘d and then delegates
to ‘d. Here is a slightly more complicated example that uses recursion:

double : Nat -o Nat
‘c <- double ‘d =

case ‘d of
zero -> wait ‘d; ‘c.zero; close ‘c
succ -> ‘c.succ; ‘c.succ; ‘c <- double ‘d

These are very simple examples, though we hope they offer some insight into the system.
We will assign more interesting types to these processes after we introduce intersections and
unions. We also have another example in Appendix D.

2.2 Type Assignment for Processes
The typing rules for other constructs are derived from linear logic by decorating derivations
with proof terms. The rules are given in Figure 1. One thing to note is that in ⊕L and
&R, we allow unused branches in case expressions. This makes width subtyping easier, as
discussed in section 3.3.

2.3 Process Configurations
So far in the theory, we have only considered processes in isolation. In this section, we
introduce process configurations in order to talk about the interactions between multiple
processes. A process configuration is simply a set of processes where each process is labelled
with the channel along which it provides. We use the notation procc(P ) for labelling the
process P , and require all labels in a configuration to be distinct.
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c : A ` d← c :: (d : A) id
Ψ ` Pc :: (c : A) Ψ′, c : A ` Qc :: (d : D)

Ψ,Ψ′ ` c← Pc ; Qc :: (d : D) cut

∅ ` close c :: (c : 1) 1R
Ψ ` P :: (d : A)

Ψ, c : 1 ` wait c ; P :: (d : A) 1L

Ψ ` P :: (d : A) Ψ′ ` Q :: (c : B)
Ψ,Ψ′ ` send c (d← Pd) ; Q :: (c : A⊗B)

⊗R

Ψ, d : A, c : B ` Pd :: (e : E)
Ψ, c : A⊗B ` d← recv c ; Pd :: (e : E)

⊗L
i ∈ I Ψ ` P :: (c : Ai)

Ψ ` c.labi ; P :: (c : ⊕{labk : Ak}k∈I)
⊕R

I ⊆ J Ψ, c : Ak ` Pk :: (d : D) for k ∈ I
Ψ, c : ⊕{labk : Ak}k∈I ` case c of {labk → Pk}k∈J :: (d : D)

⊕L

Ψ, d : A ` Pd :: (c : B)
Ψ ` d← recv c ; Pd :: (c : A( B) ( R

Ψ ` Pd :: (d : A) Ψ′, c : B ` Q :: (e : E)
Ψ,Ψ′, c : A( B ` send c (d← Pd) ; Q :: (e : E) ( L

J ⊆ I Ψ ` Pk :: (c : Ak) for k ∈ J
Ψ ` case c of {labk → Pk}k∈I :: (c : &{labk : Ak}k∈J) &R

i ∈ I Ψ, c : Ai ` P :: (d : D)
Ψ, c : &{labk : Ak}k∈I ` c.labi ; P :: (d : D) &L

Figure 1 Type assignment for process expressions

With the above restriction, each process offers along a specific channel and each channel
is offered by a unique process. Since channels are linear resources in our system, they must
be used by exactly one process. In addition, we do not allow cyclic dependence, which
imposes an implicit forest (set of trees) structure on a process configuration where each node
has one outgoing edge and any number of incoming edges that correspond to channels the
process uses. This observation suggests the typing rules below, which mimic the structure of
a multi-way tree. Note that the definition is well-founded since the size of the configuration
gets strictly smaller.

Ψ `∅ P :: (c : A) |= Ω :: Ψ
|= Ω, procc(P ) :: (c : A)

cf1
|= Ωi :: (ci : Ai) for i ∈ {1, . . . , n} n = 0 ∨ n > 1

|= Ω1, . . . ,Ωn :: (c1 : A1, . . . , cn : An)
cfn

2.4 Operational Semantics
A process configuration evolves over time when a process takes a step, either by spawning
a new process (cut), delegation (id) or when two matching processes communicate. For
example, the processes configuration Ω, procc(c.labi ; P ), procd(case c of {labk → Qk}k∈I)
can step to Ω, procc(P )⊗ procd(Qi) whenever i ∈ I. We get similar reduction rules for id,
cut, and each structural rule. The formal rules are relagated to Appendix A due to space
limitations.
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3 Recursion and Subtyping

Next we introduce equirecursive types and recursive processes which are central in many
applications of session types. We will also mention (the initial version of) the subtyping
judgment which is needed to deal with type equivalences induced by equirecursive types.

3.1 Recursive Types

We extend the language of types with variables and a new construct, µt.At, representing
recursive types. We require all types at the top level to be closed, and make sure every rule
we give preserves this property. Recursive types µt.A are identified with their unfolding
[µt.A/t]A which means there are no explicit term level coercions (unfold and fold) to go
between them. This is the reason they are called equirecursive as opposed to isorecursive
where term level coercions would witness the isomorphism. Equirecursive types tend to make
type-checking and meta-theory harder, however, they reduce communication and make more
sense in a concurrent setting where behavior is more important than term structure.

In the style of [1], we interpret recursive types as finite representations of potentially
infinite µ-free types through repeated unfolding. For example, the type µt.1( t stands for
1 ( (1 ( (1 ( (· · · ))) and µt.t⊗ t represents (· · · ) ⊗ (· · · ). For this to make sense, we
assume that all types are contractive [17, 10]. Intuitively, this means occurrences of variables
must be under a structural type.

3.2 Recursive Processes

Term level recursion is achieved by a new form of process expression, rec p(c̄).Pp, which is
parametrized over channels c̄ to allow renaming. The development is fairly standard and is
not as important in this paper. More detail can be found in [19]. The only thing to note is
that the typing judgment is extended with a new context η to keep track of process variables.
The new judgment is written Ψ `η P :: (c : A). Typing and reduction rules are given in
Appendix B.

3.3 Subtyping

Gay and Hole [10] add coinductive subtyping (denoted A ≤ B in this paper) to their system
in order to admit width and depth subtyping for n-ary choices, which are standard for
record-like structures. Subtyping also doubles as a convenient way of identifying a recursive
a type and its unfolding (without it, we would need a type equality judgment almost equally
complicated but more restrictive). Subtyping is especially important for a refinement system
since it is used to propagate refinements and forget them as necessary. We do not go into the
details of their system since we will switch to a different relation in the next section anyway.
Either way, we relate subtyping to process typing with subsumption rules:

Ψ `η P :: (c : A′) A′ ≤ A
Ψ `η P :: (c : A) SubR

Ψ, c : A′ ` P :: (d : B) A ≤ A′

Ψ, c : A `η P :: (d : B) SubL

This concludes the discussion of the base system. In the next section, we introduce
intersections, unions, and a multiple conclusion subtyping relation which constitute our main
contributions.

CVIT 2016
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4 Intersections and Unions

Recall our definition of process level naturals Nat. One can imagine cases where we would
like to know more about the exact nature of the natural. For example, if we are using a
natural to track the size of a list, we might want to ensure it is non-zero. Sometimes, it
might be relevant to track whether we have an even or an odd number. The system we have
described so far turns out to be strong enough to describe all these refinements as illustrated
below:

type Nat = +{ zero : 1, succ : Nat}

type Pos = +{ succ : Nat}
type Even = +{ zero : 1, succ : Odd}
type Odd = +{ succ : Even}

It is easy to see that Pos, Even, Odd are all subtypes of Nat. We run into a problem
when we try to implement the behavior described by these types, however. Consider the s
function, for example, which satisfies many properties: Nat( Nat, Pos( Pos, Even( Odd,
Odd ( Even etc. Subtyping can be used to combine some of these (e.g. Nat ( Pos for
Nat( Nat and Pos( Pos) but it is not expressive enough to combine all properties. An
elegant solution is to add intersections to the type system.

4.1 Intersection Types
We denote the intersection of two types A and B as A uB. A process offers an intersection
type if its behavior satisfies both types simultaneously. Using intersections, we can assign the
programs introduced in section 2.1 types specifying all behavioral properties we care about:

z : Nat and Even
s : (Nat -o Nat) and (Even -o Odd) and (Odd -o Even)
double : (Nat -o Nat) and (Nat -o Even)

Note that as is usual with intersections, multiple types are assigned to the same process.
Put differently, we cannot use two different processes or specify two different behaviors to
satisfy the different branches of an intersection. This leads to the following typing rule:

Ψ `η P :: (c : A) Ψ `η P :: (c : B)
Ψ `η P :: (c : A uB) uR

When we are using a channel on the left that offers an intersection of two types, we know
it has to satisfy both properties so we get to pick the one we want:

Ψ, c : A `η P :: (d : D)
Ψ, c : A uB `η P :: (d : D)

uL1
Ψ, c : B `η P :: (d : D)

Ψ, c : A uB `η P :: (d : D)
uL2

The standard subtyping rules are given below, where double lines indicate rules should be
interpreted coinductively. It should be noted that the left typing rules above are derivable by
an application of subsumption on the left using ≤ uL1 and ≤ uL2, so we will not explicitly
add these to the final system. Also, we will have to modify the subtyping relation later in
this section, so the subtyping rules are only first attempt.

A ≤ B1 A ≤ B2

A ≤ B1 uB2
≤ uR

A1 ≤ B
A1 uA2 ≤ B

≤ uL1
A2 ≤ B

A1 uA2 ≤ B
≤ uL2
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4.2 Union Types
Unions are the dual of intersections and correspond to processes that satisfy one or the
other property, and are written A tB. We add unions because they are a natural extension
to a type system with intersections. We will also see how n-ary internal choice can be
interpreted as the union of singleton choices. Without them, our interpretation would only
be half-complete since we could interpret external choice (with intersections) but not internal
choice.

Being dual to intersections, the typing rules for unions mirror the typing rules for
intersections: we have two right rules and one left rule, and this time the right rules are
derivable from subtyping. The rules are given below:

Ψ `η P :: (c : A)
Ψ `η P :: (c : A tB)

tR1
Ψ `η P :: (c : B)

Ψ `η P :: (c : A tB)
tR2

Ψ, c : A `η P :: (d : D) Ψ, c : B `η P :: (d : D)
Ψ, c : A tB `η P :: (d : D) tL

The right rules state the process has to offer either the left type or the right type
respectively. The left rule says we need to be prepared to handle either type. It is important
to point out that we restore a long-lost symmetry for functional languages. The natural left
rule we give here for unions (natural since it is dual to the right rule for intersection) has
been shown to be problematic in functional languages [2]. One solution limits the left rule to
expressions in evaluation position [8]. The straightforward left rule turns out to be already
sound here due to our use of the linear sequent calculus.

The usual subtyping rules are given below. These make the right rules derivable so they
are not explicitly added to the system.

A ≤ B1

A ≤ B1 tB2
≤ tR1

A ≤ B2

A ≤ B1 tB2
≤ tR1

A1 ≤ B A2 ≤ B
A1 tA2 ≤ B

≤ tL

Unions allow us to describe some interesting properties. For example, we can show that
every natural is either even or odd:

iso : Nat -o (Even or Odd)
‘c <- iso ‘d =

case ‘d of
zero -> wait ‘d; ‘c.zero; close ‘c
succ -> ‘c.succ; ‘e <- iso ‘d; ‘c <- ‘e

We have to unfold one level since our system cannot prove Nat ≤ Even tOdd.

4.3 Subtyping Revisited
In line with our propositional interpretation of intersections and unions, one would naturally
expect the usual properties of these to hold in our system. For example, unions should
distribute over intersections and vice versa, that is, the following equalities should be
admissible:

(A1 tB) u (A2 tB) ≡ (A1 uA2) tB

(A1 tA2) uB ≡ (A1 uB) t (A2 uB)

CVIT 2016



23:8 Intersections and Unions of Session Types

Going from right to left turns out to be easy, but we quickly run into a problem if we try
to do the other direction: whether we break down the union on the right or the intersection
on the left, we always lose half the information we need to carry out the rest of the proof.1

Our solution is doing the obvious: if the problem is losing half the information, well, we
should just keep it around. This suggests a system where the single type on the left and on
the type right are replaced with (multi)sets of types. That is, instead of the judgment A ≤ B,
we use a judgment of the form A1, . . . , An ⇒ B1, . . . , Bn, where the left of ⇒ is interpreted
as a conjunction (intersection) and the right is interpreted as a disjunction (union). This
results in a system reminiscent of [11, 12]. However, we take a slightly different approach
since we are working with coinductive rules.

The rules are given in Figure 2. We use α and β to denote multisets of types. The
intersection left rules are combined into one rule that keeps both branches around. The
same is done with union right rules. Intersection right and union left rules split into two
derivations, one for each branch, but keep the rest of the types unchanged. We can unfold a
recursive type on the left or on the right. When we choose to apply a structural rule, we
have to pick exactly one type on the left and one on the right with the same structure. Note
that this is not an essential restriction. In fact, we conjecture that matching multiple types
can give us distributivity of intersection and union over structural types, which is a question
for future research.

α⇒ β,A1 α⇒ β,A2

α⇒ β,A1 uA2
⇒ uR

α,A1, A2 ⇒ β

α,A1 uA2 ⇒ β
⇒ uL

α⇒ β,A1, A2

α⇒ β,A1 tA2
⇒ tR

α,A1 ⇒ β α,A2 ⇒ β

α,A1 tA2 ⇒ β
⇒ tL

α,1⇒ β,1 ⇒ 1
A⇒ A′ B ⇒ B′

α,A⊗B ⇒ β,A′ ⊗B′ ⇒ ⊗

I ⊆ J Ak ⇒ A′
k for k ∈ I

α,⊕{labk : Ak}k∈I ⇒ β,⊕{labk : A′
k}k∈J

⇒ ⊕ A′ ⇒ A B ⇒ B′

α,A( B ⇒ β,A′ ( B′ ⇒(

J ⊆ I Ak ⇒ A′
k for k ∈ J

α,&{labk : Ak}k∈I ⇒ β,&{labk : A′
k}k∈J

⇒ &

α⇒ β, [µt.A/t]A
α⇒ β, µt.A

⇒ µR
α, [µt.A/t]A⇒ β

α, µt.A⇒ β
⇒ µL

Figure 2 Subtyping with multiple hypothesis and conclusions; coinductively

4.4 Reinterpreting Choice
In this section, we show that that intersections and unions are useful beyond their refinement
interpretation, and help us understand external and internal choices better. Take external

1 This issue does not come up in the other direction since intersection right and union left rules are
invertible, that is, they preserve all information.
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choice, for instance. A comparison between the typing rules for intersections and external
choice reveal striking similarities. The only difference, in fact, is that internal choice has
process level constructs where as intersections are implicit.

Consider special case of binary external choice: &{inl : A, inr : B}. This type says: I
will act as A if you send me inl and I will act as B if you send me inr. We know the and
can be interpreted as an intersection, and either side can be thought of as a singleton internal
choice. A similar argument can be given for internal choice and unions. This gives us the
following redefinitions of n-ary external and internal choices:

&{labk : Ak}k∈I ,
l

k∈I

&{labk : Ak}

⊕ {labk : Ak}k∈I ,
⊔
k∈I

⊕{labk : Ak}

When I is empty, the intersection reduces to > and the union reduces to ⊥, which are
elided from this paper for space considerations. It can be checked that these definitions
satisfy the typing and subtyping rules for external and internal choices.

5 Metatheory

Our main contribution is proving that the system with intersections and unions is type safe.
We do this by proving the standard progress and preservation theorems, renamed to deadlock
freedom and session fidelity, respectively, within this context.

In a functional setting, progress states a well-typed expression either takes a step or is
a value. The corresponding notion of a value is a poised configuration. A configuration is
poised if every process in it is, and a process is poised if it is waiting to communicate with
its client. With this definition, we can state the progress theorem:

I Theorem 1 (Progress). If |= Ω :: Ψ then either
1. Ω −→ Ω′ for some Ω′, or
2. Ω is poised.

Proof. By induction on |= Ω :: Ψ followed by a nested induction on the typing of the root
process for the cf1 case. When two processes are involved, we also need inversion on client’s
typing. J

Preservation is easier to state, but more tricky to prove because it splits into many cases.

I Theorem 2 (Preservation). If |= Ω :: Ψ and Ω −→ Ω′ then |= Ω′ :: Ψ.

Proof. By inversion on Ω −→ Ω′, followed by induction on the typing judgment(s) of the
involved processes. J

6 Algorithmic System

In this section, we prove that subtyping and type-checking are decidable by designing an
algorithm that takes in a (sub)typing judgment and produces true if and only if there is a
derivation. Note that everything in the judgment is considered an input.

CVIT 2016
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6.1 Algorithmic Subtyping

The subtyping judgment we gave is already mostly algorithmic (a necessity of working with
coinductive rules), so we only have to tie a couple loose-ends. The first is deciding which rule
to pick when multiple are applicable. We apply ⇒ uR, ⇒ uL, ⇒ tR, ⇒ tL, ⇒ µR, ⇒ µL
eagerly since these are invertible. At some point, we must hit all structural types due to our
contractiveness restriction, at which point we non-deterministically pick a structural rule
and continue.

Second, the coinductive nature of typing means we can (and often will) have infinite
derivations. We combat this by using a cyclicity check (similar to the one in [10]): we
maintain a context of previously seen subtyping comparisons and immediately terminate
with success if we ever compare the same pair of sets of types again. Every recursive step
corresponds to a rule, which ensures a productive derivation. We know there cannot be an
infinite chain of new types due to the contractiveness restriction. A more formal treatment
can be found in [17].

6.2 Algorithmic Type-checking

Designing a type checking algorithm is quite simple for the base system where we only have
structural types (no recursion or subtyping), since the form of the process determines a
unique applicable typing rule. The cut rule causes a small problem since we do not have a
type for the helper process to check against. This is solved by adding type annotations in
spawning processes so that the new form is c : A← Pc ; Qc.

In the extended system with subtyping and property types, type-checking is trickier for
two reasons: (1) subsumption can be applied anytime where one of the types in A ≤ B is
free, and (2) intersection left and union right rules lose information which means they have
to be applied non-deterministically. The latter issue is resolved by switching to a multiset
context multiple conclusion logic just like we did with subtyping. This makes intersection
left and union right rules invertible, so they can be applied eagerly.

The former problem is solved by switching to bidirectional type-checking where we only
check subtyping at the identity rule (delegation). This relies on the subformula property
for the sequent calculus, excepting only the cut rule which is annotated. Interested readers
should see Appendix C for the full system. The proofs of soundness and completeness with
respect to the standard system appear to follow standard techniques, but are still in progress
at the time of this submission.

7 Conclusion

We introduced intersections and unions to a simple system of session types, and demonstrated
how they can be used to refine behavioral specifications of processes. Some aspects that
would be important in a full accounting of the system are omitted for the sake of brevity
or are left as future work. For example, integrating an underlying functional language [18],
adding shared channels [4, 15], or considering asynchronous communication [6, 15, 13] are
straightforward extensions based on prior work. In addition, it would be very useful to
have behavioral polymorphism [3] and abstract types. Their interaction with subtyping,
intersections, and unions is an interesting avenue for future work.
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A Operational Semantics

We express reduction rules using substructural operational semantics [16] which are based on
multiset rewriting [5]. For example, the rule for 1 can be written as:

procc(close c)⊗ procd(wait c ; P )( {procd(P )}.

Note that the rule is written using linear connectives, however, these should not be confused
with connectives we used for types. For example, A⊗B⊗C ( D⊗E would mean we could
replace the resources A,B,C with D,E. The curly braces {. . .} indicated a monad which
essentially forces the rules to be interpreted as a multiset rewriting rule. The rest of the
rules are given below:

id : procc(c← d)( {c = d}
cut : procc(x← Px ; Qx)( {∃a.proca(Pa)⊗ procc(Qa)}
one : procc(close c)⊗ procd(wait c ; P )( {procd(P )}

tensor : procc(send c (x← Px) ; Q)⊗ proce(x← recv c ; Rx)
( {∃a.proca(Pa)⊗ procc(Q)⊗ proce(Ra)}

internal : procc(c.labi ; P )⊗ procd(case c of {labk → Qk}k∈I)⊗ i ∈ I
( {procc(P )⊗ procd(Qi)}

lolli : procc(x← recv c ; Px)⊗ procd(send c (x← Qx) ; R)
( {∃a.procc(Pa)⊗ proca(Qa)⊗ procd(R)}

external : procc(case c of {labk → Pk}k∈I)⊗ procd(c.labi ; Q)⊗ i ∈ I
( {procc(Pi)⊗ procd(Q)}

B Typing and Reduction Rules for Recursive Processes

Typing rules for recursive processes are as follows:

Ψ `η′ [z̄/ȳ]P :: (c : A) η′ = η, [ȳ/z̄]Ψ ` p(ȳ) :: ([ȳ/z̄]c : A)
Ψ `η (rec p(ȳ).P ) z̄ :: (c : A)

µ

Ψ ` p(ȳ) :: (c : A) ∈ η ρ(ϑ) = [z̄/ȳ]ϑ
ρ(Ψ) `η p z̄ :: (ρ(c) : A)

var

Note that in the definition of η′, [ȳ/z̄]Ψ ` p(ȳ) :: ([ȳ/z̄]c : A) is not a typing judgment.
Instead, η should be thought of as nothing more than a map from variable names to four
tuples containing parameter names, typing context, provided channel name, and provided
type. It is necessary to store the context since channels are linear and channel types evolve
over time, but the context needs to be the same at every occurrence of p.

As for reduction, recursive processes simply unfold:

rec : procc((rec p(ȳ).P ) z̄)( {procc([rec p(ȳ).P/p][z̄/ȳ]P )}
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C Process Typing in the Algorithmic System

Algorithmic typing rules for processes are given below. Rules for recursive processes are not
duplicated since they simply capture sets of types rather than a single type.

Ψ η P :: (c : A,α) Ψ η P :: (c : B,α)
Ψ η P :: (c : A uB,α) uR

Ψ, c : (α,A,B) η P :: (d : β)
Ψ, c : (α,A uB) η P :: (d : β) uL

Ψ η P :: (c : A,B, α)
Ψ η P :: (c : A tB,α) tR

Ψ, c : (α,A) η P :: (d : β) Ψ, c : (α,B) η P :: (d : β)
Ψ, c : (α,A tB) η P :: (d : β) tL

Ψ η P :: (c : [µt.A/t]A,α)
Ψ η P :: (c : µt.A, α)

µR
Ψ, c : (α, [µt.A/t]A) η P :: (d : β)

Ψ, c : (α, µt.A) η P :: (d : β)
µL

α⇒ β

Ψ, c : α η d← c :: (d : β) id
Ψ η Pc :: (c : A) Ψ′, c : A η Qc :: (d : α)

Ψ,Ψ′ η c : A← Pc ; Qc :: (d : α) cut

∅ η close c :: (c : 1, α) 1R
Ψ η P :: (d : β)

Ψ, c : (α,1) η wait c ; P :: (d : β) 1L

Ψ η P :: (d : A) Ψ′ η Q :: (c : B)
Ψ,Ψ′ η send c (d← Pd) ; Q :: (c : A⊗B,α)

⊗R

Ψ, d : A, c : B η Pd :: (e : β)
Ψ, c : (α,A⊗B) η d← recv c ; Pd :: (e : β)

⊗L

i ∈ I Ψ η P :: (c : Ai)
Ψ η c.labi ; P :: (c : ⊕{labk : Ak}k∈I , α)

⊕R

I ⊆ J Ψ, c : Ak η Pk :: (d : β) for k ∈ I
Ψ, c : (α,⊕{labk : Ak}k∈I) η case c of {labk → Pk}k∈J :: (d : β)

⊕L

Ψ, d : A η Pd :: (c : B)
Ψ η d← recv c ; Pd :: (c : A( B,α) ( R

Ψ η Pd :: (d : A) Ψ′, c : B η Q :: (e : β)
Ψ,Ψ′, c : (α,A( B) η send c (d← Pd) ; Q :: (e : β) ( L

J ⊆ I Ψ η Pk :: (c : Ak) for k ∈ J
Ψ η case c of {labk → Pk}k∈I :: (c : &{labk : Ak}k∈J , α) &R

i ∈ I Ψ, c : Ai η P :: (d : β)
Ψ, c : (α,&{labk : Ak}k∈I) η c.labi ; P :: (d : β) &L

D Bit Strings

Here, we give a slightly more involved example where we define a more interesting property
using recursive refinements.

First, we define process level bit string:
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type Bits = +{ eps : 1, zero : Bits , one : Bits}

Here, eps is the empty string, zero and one append a least significant bit. We can define
bit strings in standard form (no leading zeros) as follows:

type Empty = +{ eps : 1}
type Std = Empty or StdPos
type StdPos = +{ one : Std , zero : StdPos }

Then, we can write an increment function that preserves bit strings in standard form:

inc : Std -o Std and StdPos -o StdPos and Empty -o StdPos
‘c <- inc ‘d =

case ‘d of
eps -> wait ‘d; ‘c.one; ‘c.eps; close ‘c
zero -> ‘c.one; ‘c <- ‘d
one -> ‘c.zero; ‘c <- inc ‘d

Note that checking this definition just against the type Std -o Std will fail, and we need
to assign the more general type for the type checking to go through. This is because of the
bidirectional nature of our system which essentially requires the type checker to check a fixed
point rather than infer the least one. This has proven highly beneficial for providing good
error messages even without the presence of intersections and unions [13].
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