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Structural Cut Elimination
I. Intuitionistic and Classical Logic1

Frank Pfenning

Department of Computer Science, Carnegie Mellon University,
Pittsburgh, Pennsylvania 15213-3891

We present new variants of known proofs of cut elimination for intui-
tionistic and classical sequent calculi. In both cases the proofs proceed by
three nested structural inductions, avoiding the explicit use of multi-sets
and termination measures on sequent derivations. This makes them
amenable to elegant and concise representations in LF, which are given
in full detail. ] 2000 Academic Press
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1. INTRODUCTION

Gentzen's sequent calculi [Gen35] for intuitionistic and classical logic have been
the central tool in many proof-theoretical investigations and applications of logic in
computer science such as logic programming [MNPS91] and automated theorem
proving [Wal90]. The central property of sequent calculi is cut elimination
(Gentzen's Hauptsatz) which yields consistency of the logic as a corollary. The
algorithm for cut elimination may be interpreted computationally, similarly to the
way that normalization for natural deduction may be viewed as functional com-
putation. For the case of linear logic, this point was made by Girard [Gir87] and
later elaborated by Abramsky [Abr93]; see also [Gal93] for a tutorial introduc-
tion.
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Many proofs of cut elimination have been given in the literature (see, for
example, [ML68, Sch77, Dra87, Her95]). Yet, to our knowledge, none of
them have been formalized even though this is clearly possible in principle (see, for
example, Matthews' [Mat94] pencil-and-paper analysis of cut elimination for the
( 6 , c) fragment of classical propositional logic in FS0). They are difficult to
mechanize for a number of reasons which in combination are quite intimidating.
Most proofs require tedious data structures (such as multi-sets) and use complex
termination measures. They also involve global conditions on occurrences of
parameters in sequent derivations. In this paper we present new proofs of cut
elimination for intuitionistic and classical sequent calculi and give their represen-
tations in the logical framework LF [HHP93] as implemented in the Elf
system [Pfe91]. Multi-sets are avoided altogether in these proofs, and termination
measures are replaced by three nested structural inductions. Parameters are treated
as variables bound in derivations, thus naturally capturing occurrence conditions.
A starting point for the proofs is Kleene's sequent system G3 [Kle52], which we
derive systematically from the point of view that a sequent calculus should be a
calculus of proof search for natural deductions. It can easily be related to Gentzen's
original and other sequent calculi. We augment G3 with proof terms that are stable
under weakening. These proof terms enable the structural induction and further-
more form the basis of the representation of the proof in LF.

The most closely related work on cut elimination is Martin-Lo� f 's proof of
admissibility [ML68]. In Martin-Lo� f 's system the cut rule incorporates aspects of
both weakening and contraction which enables a structural induction argument
closely related to ours. However, without the introduction of proof terms, the
implicit weakening in the cut rule makes it difficult to implement this proof directly.
Herbelin [Her95] restates this proof and proceeds by assigning proof terms only to
restricted sequent calculi LJT and LKT which correspond more immediately to
*-calculi for intuitionistic and classical natural deduction [Par92].

The reader interested in structural cut elimination for intuitionistic or classical
logic, but not its formalization, should be able to follow this paper by ignoring the
material regarding its implementation. In order to understand and appreciate the
representation of the sequent calculus and the proof of cut elimination the reader
should have a basic knowledge of the representation methodology of LF and the
Elf meta-language; the interested reader is referred to [HHP93] and [MP91,
Pfe91].

The remainder of the paper is organized as follows. In Section 2 we introduce a
formulation of the intuitionistic sequent calculus motivated from natural deduction.
In Section 3 we give a notation for proof terms that records the structure of the
sequent derivation. This is an important intermediate step toward the representa-
tion of sequents in LF shown in Section 4. The proof of admissibility of cut in the
intuitionistic sequent calculus and its implementation are the subjects of Section 5.
In Section 6 we extend these results to the classical case. We conclude with an
assessment and some remarks about future work in Section 7. In Appendixes A.1
(intuitionistic) and A.2 (classical) we give the complete implementations of
admissibility of cut in Elf together with an automatically generated informal version
of each case in the proof. Appendix B gives a formulation of cut elimination as a
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translation from a sequent calculus with cut to a sequent calculus without cut. For
both, intuitionistic and classical logic, this is a direct corollary of the admissibility
of cut in the corresponding cut-free system.

2. INTUITIONISTIC SEQUENT CALCULUS

Logical frameworks such as hereditary Harrop formulas [MNPS91] and
LF [HHP93] are inherently biased toward natural deduction because of the strong
correspondence between natural deductions and the typed *-expressions used for
their representation. Finding an elegant encoding of sequents and sequent deriva-
tions in a logical framework is therefore the first critical issue in an implementation
of a proof of cut elimination. Felty's representation [Fel89] in *Prolog, for
example, uses lists of hypotheses, which is advantageous for search but makes a
formal meta-theory prohibitively complex. Frameworks based on sequent calculi
such as LU [Gir93] or Forum [Mil94] allow direct encodings, but they lack a
notation for the proof terms that are required to describe cut elimination.

In this section we develop a formulation of the sequent calculus for intuitionistic
logic by transcribing the process of searching for a natural deduction into an
inference system. The proximity to natural deduction then allows a high-level
encoding of sequent derivations in LF. The resulting sequent calculus is basically
Kleene's system G3 [Kle52], which he introduced to obtain a simple decidability
proof for its propositional fragment. We assume familiarity with natural deduction.

We consider a complete set of logical connectives and quantifiers so that we do
not miss any important issues. Atomic formulas p(t1 , ..., tn) for first-order terms
t1 , ..., tn are denoted by P.

Formulas A ::=P | A1 7A2 | A1 #A2 | A1 6 A2 | cA | � | = | \x .A | _x .A.

The notions of free and bound variable are defined as usual. We identify formulas
that differ only in the names of their bound variables and write [t�x] A for capture-
avoiding substitution of t for x in A. We use A, B, and C to range over formulas.

The main judgment of natural deduction is derivability of a formula A, written
as |&A, but we follow custom and mostly omit the turnstile in the presentation. In
natural deduction the meaning of each logical connective or quantifier is given by
introduction and elimination rules. The introduction rule specifies how to infer a
formula with a given principal connective. The elimination rule specifies how we
may use an assumption with a given principal connective. During search for a
natural deduction our goal is to deduce C from hypotheses A1 , ..., An . We may take
four kinds of actions:

1. We may solve the goal immediately when a hypothesis Ai is equal to C.

2. We may use an introduction rule to infer C. Each premise yields a new
subgoal.

3. We may apply an elimination rule to a hypothesis Ai . Typically, this yields
a new subgoal with an additional hypothesis.

4. We may introduce a lemma into the derivation.
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We also observe from the nature of hypothetical reasoning:

1. The order in which hypotheses are assumed is irrelevant.

2. Hypotheses may be used arbitrarily often.

3. Hypothesis need not be used.

We abbreviate hypotheses A1 , ..., An by 1. Since the order of hypothesis is irrele-
vant we write 1=1 $, A if A occurs in 1 and 1 $ consists of the remaining
hypotheses. Note that the same hypothesis may occur more than once.

A sequent 1 � C is a judgment representing the goal of deriving C from 1.
A derivation of 1 � C represents a trace of a particular successful search, although
in this paper we do not show the routine extraction of a natural deduction C from
a sequent derivation. The proof search actions listed above give rise to various
inference rules for the sequent calculus. Using our obervations about natural deduc-
tion we eliminate all structural rules from Gentzen's system by building them into
each rule. Intuitively, weakening is incorporated into initial sequents and contrac-
tion is built into each left rule. Exchange remains implicit in the notation 1, A.

Initial Sequents. The goal may be solved immediately when a hypothesis A
matches the conclusion. In sequent form:

1, A � A
I.

Introduction rules are used to reason backward from the conclusion during
search for a natural deduction. Consequently, they apply to the formula on the
right-hand side of the sequent arrow. Dually, elimination rules are used to reason
forward from hypotheses and thus apply to a formula on the left-hand side of the
sequent arrow. Therefore, the sequent rules for each connective can be divided into
right and left rules. We examine each of the connectives and quantifiers, showing
the introduction and elimination and corresponding right and left sequent rules.

Conjunction. The introduction�right rules are straightforward:

A B
A 7 B

7 I
1 � A 1 � B

1 � A 7 B
7R

For the elimination�left rules we have to remember to keep the hypothesis A 7 B,
since hypotheses may be used arbitrarily often in a natural deduction:

A 7 B
A

7 EL

1, A 7 B, A � C
1, A 7 B � C

7L1

A 7 B
B

7 ER

1, A 7 B, B � C
1, A 7 B � C

7L2

Implication. The premise of the introduction rule for an implication A#B is a
judgment hypothetical in A labelled u. The hypothesis is discharged at this inference
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which we indicate by a superscript on the instance of the inference rule. In the
sequent formulation on the right, we add A to 1: we have reduced the goal of
deriving A#B from 1 to the goal of deriving B from 1 and A:

A
u

b
1, A � B

1 � A#B
#R

B
A#B

#Iu

If we have an implication A#B as a hypothesis while deriving C we use it by prov-
ing A (from the same hypotheses) and then assuming B as additional hypothesis for
proving C:

A#B A
B

#E
1, A#B � A 1, A#B, B � C

1, A#B � C
#L

In order to maintain the correspondence to natural deduction it is important
to copy the implicational assumption A#B to both premises, even though it is
redundant in the right premise.

Disjunction. There are two introduction rules for disjunction in natural deduc-
tion and consequently two right rules for disjunction in the sequent calculus:

A
A 6 B

6 IL

1 � A
1 � A6 B

6 R1

B
A 6 B

6 IR

1 � B
1 � A6 B

6 R2

The elimination rule for disjunction explicitly refers to a conclusion C and is thus
already closer to a sequent rule:

A 6B

A
b
C

u1 B
b
C

u2

1, A 6B, A � C 1, A6 B, B � C
1, A 6 B � C

6 L

C
6Eu1 , u2

Negation. Negation in intuitionistic natural deduction is usually explained by
considering cA as an abbreviation of A#=. In sequent calculi, on the other hand,
it is modeled by an empty right-hand side. These do not correspond, so we need
to find another formulation for negation. The goal is to find an introduction rule
for cA that does not require another logical symbol (such as =). We use the idea
of a judgment parametric in a propositional variable p to achieve this. For the
sequent calculus this means that p may not occur in 1 or A:
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A
b
p

u

1, A � p
1 � cA

cR p

cA
cI p, u

The elimination rule is simpler:

cA A
C

cE
1, cA � A
1, cA � C

cL

It may not be obvious at first, but the introduction and elimination rule (and also
the left and right rules) match up precisely. We will see this in the proof of cut
elimination.

Truth. There is only an introduction rule for � in natural deduction. Corre-
spondingly, we only have a right rule in the sequent calculus:

�
�I

1 � �
�R

Falsehood. Dually, there are only an elimination and a corresponding left rule
for =:

=
C

=E
1, = � C

=L

Universal quantification. Universal quantification employs an individual
parameter. In the sequent calculus, this means that the parameter a must be new;
that is, it may not appear in 1 or \x .A:

[a�x] A
\x .A

\Ia 1 � [a�x] A
1 � \x .A

\Ra

In the elimination rule we substitute an arbitrary term t for a universally quantified
variable x. This substitution may need to rename bound variables so that no
variable free in t is captured by a quantifier in A:

\x .A
[t�x] A

\E
1, \x .A, [t�x] A � C

1, \x .A � C
\L

In the customary notation for these elimination and right rules, the term t is not
uniquely determined if x does not occur as free in A. In the proof term calculus in
Section 3 we make sure that t occurs explicitly in order to avoid potential
ambiguities.
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Existential quantification. The introduction and right rules are straightforward:

[t�x] A
_x .A

_I
1 � [t�x] A

1 � _x .A
_R

The apparent complexity of the elimination rule vanishes when it is viewed in the
sequent calculus. Once again, a must be a new parameter; that is, it may not occur
in 1, _x .A, or C:

_x .A

[a�x] A
u

b
C

1, _x .A, [a�x] A � C
1, _x .A � C

_La

C
_Ea, u

Lemma introduction. Introducing a lemma A during the search for a natural
deduction corresponds directly to the cut rule in the sequent calculus: in order to
derive C from 1 we derive A and show that with the additional hypothesis A we
can derive C:

1 � A 1, A � C
1 � C

Cut

The theorem of cut elimination states that every sequent 1 � C that is derivable in
the system with cut can also be derived in the system without cut. An equivalent,
but slightly more convenient way of stating this is that cut is admissible in the
system without cut, that is, whenever we can derive the premises of this rule
without using cut, we can also derive the conclusion without using cut. We concen-
trate our development on admissibility of cut and relegate cut elimination in the
sense of Gentzen to Appendix B.

We summarize the rules for the cut-free calculus G3 . They are sound and com-
plete in the usual sense, which can easily be shown by relating them to Gentzen's
sequent calculus or to natural deduction (see Theorem 2):

1, A � A
I

1 � A 1 � B
1 � A 6 B

6 R

1, A 6 B, A � C
1, A 6 B � C

6 L1

1, A 6 B, B � C
1, A 6 B � C

6 L2

1, A � B
1 � A#B

#R
1, A#B � A 1, A#B, B � C

1, A#B � C
#L

1 � A
1 � A 6B

6R1

1 � B
1 � A 6 B

6R2

1, A6 B, A � C 1, A 6 B, B � C
1, A6 B � C

6L
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1, A � p
1 � cA

cR p 1, cA � A
1, cA � C

cL

1 � �
�R

1, � � C
�L

1 � [a�x] A
1 � \x .A

\Ra 1, \x .A, [t�x] A � C
1, \x .A � C

\L

1 � [t�x] A
1 � _x .A

_R
1, _x .A, [a�x] A � C

1, _x .A � C
_La

The principal formula of an inference is the formula introduced on the left, the
formula introduced on the right, or the formula occurring on the left and the right
in an initial sequent. All other formulas are side formulas of the last inference. These
notions also apply to individual formula occurrences.

The system without cut is easily seen to be consistent, since there is no rule with
which one could infer the sequent � =. In terms of natural deduction this means
that introducing a lemma during search is never necessary: If there is a deduction
of C from hypotheses 1 we can find it by using only introduction rules reasoning
backward from C and using only elimination rules reasoning forward from the
hypothesis 1. This yields consistency of natural deduction as an easy corollary,
since there is no introduction rule for =.

Our formulation of the sequent calculus has the following elementary properties.
It is not important for our main development, but these properties also hold for the
system with the cut rule.

Lemma 1 (Elementary Properties of Sequent Calculus)

1. Weakening: If 1 � C then 1, A � C.

2. Contraction: If 1, A, A � C then 1, A � C.

3. Term substitution: If 1 � C with free individual parameter a, then
[t�a] 1 � [t�a] C for any term t.

4. Formula substitution: If 1 � C with free propositional parameter p, then
[A�p] 1 � [A�p] C for any formula A.

Proof. All properties are immediate by induction over the structure of the
derivation of the assumption. In all cases the structure of the derivation is not
changed��a property made explicit in Lemma 3. K

Now let 1 w�LJ&

C stand for derivability in Gentzen's sequent calculus LJ without
cut (LJ&), but augmented with rules for truth and falsehood. We can easily trans-
late between derivations in LJ& and G3 by removing or inserting instances of the
structural rules in LJ&. Empty right-hand sides as permitted in LJ present only a
small complication.
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Theorem 2 (Equivalence of G3 and LJ&).

1. 1 � C iff 1 w�LJ&

C, and

2. 1 � p for a parameter p that does not occur in 1 iff 1 w�LJ&

.

Proof. The proof in both directions proceeds by induction over the structure of
the given derivation. We require weakening and contraction lemmas for G3

(Lemma 1) to model the structural rules of weakening and contraction in LJ. K

At this point we could define the size of a formula A as the number of its connec-
tives and quantifiers and the length of a derivation as the number of inference rules
it contains and then prove the admissibility of cut in the cut-free system by three
nested inductions over the size of the cut formula and the lengths of the derivations
of 1 � A and 1, A � C. However, such a proof is not well suited for implementa-
tion. The first difficulty is the implementation of the sequent calculus itself and the
notions of multiset it requires. The second difficulty is that most proof checkers or
theorem provers use structural induction more effectively than proofs with termina-
tion measures. We return to both points in the next section.

A related proof idea is due to Herbelin [Her95]: We can simplify the induction
argument if the cut rule itself incorporates aspects of both weakening and contrac-
tion. More precisely, for the intuitionistic calculus it has the form

1, 21 � A 1, 22 , A � C
1, 21 , 22 � C

CutML .

In the top-down view of proof construction, this corresponds to permitting
contraction of 1 when compared to Gentzen's rule

21 � A 22 , A � C
21 , 22 � C

CutG .

In the bottom-up view of proof construction, it corresponds to permitting
weakening when compared to our rule

1 � A 1, A � C
1 � C

Cut.

The rule we have chosen follows directly from our intuition of sequent calculus as
a calculus of proof search for natural deduction. It also seems the best basis for a
natural and systematic proof term assignment and ultimately the representation of
its admissibility proof in LF.

3. PROOF TERMS FOR THE SEQUENT CALCULUS

The sequent rules as given so far do not preserve all the information present in
a natural deduction. For example, the two different natural deductions of
A#(A#A) below are mapped to same sequent derivation.
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A
u

A
w

A, A � A
I

A#A
#Iw

A#A
#Iw

A � A#A
#R

A#(A#A)
#Iu

A#(A#A)
#Iu

�A#(A#A)
#R.

In the sequent notation we cannot tell which of the two identical hypotheses was
used in the initial sequent. If we are only interested in derivability (or truth), then
this is tolerable. However, if we are interested in the structure of derivations such
ambiguities should be resolved. Clearly, for many applications in computer science
and, of course, also for the proof of cut elimination, the structure of derivations is
of central importance. We therefore endow sequent derivations with proof terms
that resolve this kind of ambiguity. This is also an important intermediate step
toward the representation of the rules in LF.

There are at least three distinct roles that proof terms may play for a sequent
calculus, an issue recognized by Gallier [Gal93] and Breazu-Tannen, et al.
[BTKP93]. The most immediate perhaps is to annotate sequent derivations with
*-terms that represent the natural deductions they correspond to. The second is to
think of proof terms as expressions in a programming language and to view a
sequent derivation as a typing derivation. The third is to view proof terms as a
compact notation for sequent derivations from which they may essentially be
reconstructed. This view is particularly useful for our endeavor, since the represen-
tation in a logical framework should also have this property.

The first step is to label hypotheses. The second is to record a proof term d on
the right of the sequent arrow. A sequent then has the form 1 � d: A, where 1 has
the form h1 : A1 , ..., hn : An . We assume that all hypothesis labels in a context are
distinct. In order to avoid confusion with similar, but subtly different proof term
notations in the literature, we systematically introduce precisely one new proof term
constructor for each inference rule of the sequent calculus and give each a descrip-
tive name. Rules that introduce parameters or hypotheses bind variables at the level
of proof terms��a phenomenon which should be familiar from the Curry�Howard
isomorphism. The idea of higher-order abstract syntax (here applied to a syntax for
proof terms) is to reduce all binding operators to one, namely *. This makes it
immediately syntactically apparent which variables are bound and where. We also
indicate the type of bound variables: they may bind individuals (x : i), formulas
( p : o), or hypotheses (h : A):

1, h : A � axiom h : A
I

1 � d1 : A 1 � d2 : B
1 � andr d1 d2 : A 7 B

7 R

1, h : A 7 B, h1 : A � d : C
1, h : A 7 B � andl1(*h1 : A .d ) h : C

7 L1

1, h : A 7 B, h2 : B � d : C
1, h : A 7 B � andl2(*h2 : B .d ) h : C

7 L2

1, h : A � d : B
1 � impr(*h : A .d ) : A#B

#R
1, h : A#B � d1 : A 1, h : A#B, h2 : B � d2 : C

1, h : A#B � impl d1(*h2 : B .d2) h : C
#L

93STRUCTURAL CUT ELIMINATION



1 � d : A
1 � orrB

1 d : A 6 B
6 R1

1 � d : B
1 � orrA

2 d : A 6 B
6

1, h : A 6 B, h1 : A � d1 : C 1, h : A 6 B, h2 : B � d2 : C
1, h : A 6 B � orl(*h1 : A .d1)(*h2 : B .d2) h : C

6 L

1, h : A � d : p
1 � notr(*p : o .*h : A .d ) : cA

cR p 1, h :cA � d : A
1, h :cA � notlC d h : C

cL

1 � truer: �
�R

1, h : = � falseC h : C
=L

1 � d : [a�x] A
1 � forallr(*a : i .d ) : \x .A

\Ra 1, h : \x .A, h1 : [t�x] A � d : C
1, h : \x .A � foralll t(*h1 : [t�x] A .d ) h : C

\L

1 � d : [t�x] A
1 � existsr t d : _x .A

_R
1, h : _x .A, h1 : [a�x] A � d : C

1, h : _x .A � existsl(*a : i .*h1 : [a�x] A .d ) h : C
_La

Cut is not included as a primitive rule of inference, but its proof term (see
Appendix B.1) would once again only reflect the structure of the derivation:

1 � d : A 1, h : A � e : C
1 � cut d (*h : A .e) : C

Cut.

Erasure of the proof terms from a sequent derivation in this calculus yields
derivations from the rules given in the previous section. The proofs of the following
properties are all immediate structural inductions. For typographical reasons we
often write D :: (J ) if D is a derivation of judgment J. The notion of substitution
into a derivation should be self-explanatory, perhaps with the exception of
[h1 �h2] D, where h1 : A and h2 : A are hypotheses. Here we mean the result of eras-
ing hypothesis h2 on the left-hand side of every sequent occurring in D and sub-
stituting h1 in every place where h2 occurs on the right-hand side of a sequent. This
may require renaming some locally bound hypotheses to avoid capture of h1 . We
write (D, h : A) for the result of adding hypothesis h : A to every sequent in D,
possibly renaming parameters introduced in D so as not to conflict with parameters
in A.

Lemma 3.1 (Basic Properties of Sequent Calculus with Proof Terms). The intui-
tionistic sequent calculus with proof terms satisfies the following properties.

1. Weakening: If D :: (1 � d: C ), then (D, h: A) :: (1, h: A � d: C ), where h
is a new label.

2. Contraction or Hypothesis Substitution: If D :: (1, h1 : A, h2 : A � d: C),
then [h1 �h2] D :: (1, h1 : A � [h1 �h2] d: C).

3. Term Substitution: If D :: (1 � d: C ) is a derivation with free individual
parameter a, then [t�a] D :: ([t�a] 1 � [t�a] d: [t�a] C ).

4. Formula Substitution: If D :: (1 � d: C ) is a derivation with free formula
parameter p, then [A�p] D :: ([A�p] 1 � [A�p] d: [A�p] C ).
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5. Uniqueness: If D :: (1 � d: C ) and D$ :: (1 � d: C$), then D=D$ and
C=C$ (modulo variable renaming).

4. REPRESENTING SEQUENT DERIVATIONS IN LF

In this section we briefly summarize the representation of formulas in LF using
the idea of higher-order abstract syntax and we show how the proof terms of the
previous section can be converted to an adequate encoding of the sequent calculus.
Readers interested primarily in the proof of cut elimination itself may safely skip
this section.

For the sake of brevity we show the actual code in Elf [Pfe91], an implementa-
tion of LF which permits type declarations with implicit quantifiers. Elf also gives
an operational interpretation to signatures as logic programs which will be of
interest later in the implementation of cut elimination. First, the representation of
formulas. The obvious representation function C } c is a compositional bijection
between canonical (=long ;') LF objects of type o (in an appropriate context) and
formulas (see [HHP93]). An important characteristic of this encoding (and the
others we give below) is that variables of the object language are mapped to
variables of the metalanguage. Consequently, variables that are bound in the object
language must be bound with corresponding scope in the metalanguage.

i: type. 0 individuals
o: type. 0 formulas

and: o&>o&>o. true: o.
imp: o&>o&>o. false: o.
or: o&>o&>o. forall: (i&>o)&>o.
not: o&>o. exists: (i&>o)&>o.

As an example, consider the formula

(\x . (Ax#B))#((_x .Ax)#B).

Here, A and B are meta-variables, and Ax indicates that A may contain free
occurrences of x while B may not. In the LF meta-language, this is implemented by
an explicit abstraction. Using infix notation (which is supported in Elf) the formula
above is represented by

(forall [x:i] (A x imp B)) imp ((exists [x:i] A x) imp B).

in a context with A:i&>o and B:o. The concrete syntax [x:U] M stands for
*x : U .M in the logical framework.

Before giving the signature for the sequent calculus we state the adequacy
theorem since it is a useful guide in interpreting the declarations. We use |&LF for
derivability in LF under the signature consisting of the declarations yet to come.
Assume we have a derivation

D

h1 : A1 , ..., hn : An � d: C
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with free individual parameters among a1 , ..., ak and propositional parameters
among p1 , ..., pm . Its representation CDc is a canonical object M such that

a1 : i, ..., ak : i, p1 : o, ..., pm : o, h1 : hyp CA1
c , ..., hn : hyp CAn

c |&LF M: conc CCc,

where hyp and conc are type families indexed by formulas. We call the representa-
tion adequate if C } c is a bijection between cut-free sequent derivations and such
well-typed canonical objects and if it is also compositional in the sense that

C[t�a] Dc=[Ctc�a] CDc,
C[C�p] Dc=[CCc�p] CDc,

and

C[h1 �h2] Dc=[h1 �h2] CDc.

One observes a strong similarity between the proof terms d and the representing LF
objects M. In transcribing the proof terms into LF, we mainly have to take care to
distinguish between hypotheses and conclusions via the type families hyp and conc.
We do not give an explicit definition of CDc��the declarations below and their
correspondence to proof terms are suggestive so that the diligent reader should be
able to write it out without any problems. Note that 0 denotes a comment which
extends to the end of the line, that [x:U] V is Elf 's concrete syntax for 6x : U .V,
and that [x:U] M stands for *x : U .M. Most 6-quantifiers are left implicit and are
reconstructed by Elf 's front end in proper dependency order and with their most
general types:

hyp: o&>type. 0 Hypotheses (left)
conc: o&>type. 0 Conclusion (right)

axiom: (hyp A&>conc A).

andl1: (hyp A&>conc C)

andr: conc A &>(hyp(A and B)&>conc C).

&>conc B

&>conc(A and B). andl2: (hyp B&>conc C)

&>(hyp(A and B)&>conc C).

impr: (hyp A&>conc B) impl: conc A

&>conc(A imp B). &>(hyp B&>conc C)

&>(hyp(A imp B)&>conc C).

orr1: conc A

&>conc(A or B). orl: (hyp A&>conc C)

&>(hyp B&>conc C)

orr2: conc B &>(hyp(A or B)&>conc C).

&>conc(A or B).

notr: ([p:o] hyp A&>conc p) notl: conc A

&>conc(not A). &>(hyp(not A)&>conc C).

truer: conc(true).

falsel: (hyp(false) &>conc C).
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forallr: ([a:i] conc(A a)) foralll: [T:i] (hyp(A T)&>conc C)

&>conc(forall A). &>(hyp(forall A)&>conc C).

existsr: [T:i] conc(A T) existsl: ([a:i] hyp(A a)&>conc C)

&>conc(exists A). &>(hyp(exists A)&>conc C).

The encoding satisfies the representation theorem as outlined above. It circum-
vents many of the problems that ordinarily arise in representations of the sequent
calculus. Multi-sets are avoided, since hypotheses on the left-hand side of the
sequent arrow are transported into the LF context. Variable naming conditions are
encoded through the usual functional representation of parametric judgments.

Theorem 4 (Adequacy of Sequent Representation). The representation of
sequent derivations in LF is adequate.

Proof. By inductions over the structure of sequent derivations and canonical
forms in LF. The proof requires Lemma 3. K

Since the representation is adequate, checking the validity of sequent derivations
can be accomplished by type-checking their representations in LF. As an example,
consider the cut-free sequent derivation

(\x . (Ax#B)), (_x .Ax), Aa, (Aa#B) � Aa
I

(\x . (Ax#B)), (_x .Ax), Aa, (Aa#B), B � B
I

(\x . (Ax#B)), (_x .Ax), Aa, (Aa#B) � B
(\x . (Ax#B)), (_x .Ax), Aa � B

\L
#L

(\x . (Ax#B)), (_x .Ax) � B
_La

(\x . (Ax#B)) � ((_x .Ax)#B)
#R

�((\x . (Ax#B))#((_x .Ax)#B))
#R

Its representation in Elf is the following term:

[A:i&>o] [B:o]

(impr[h1:hyp(forall[x:i] A x imp B)]
(impr[h2:hyp(exists[x:i] A x)]

(existsl([a:i][h3:hyp(A a)]
foralll a ([h4:hyp(A a imp B)]

impl(axiom h3)
([h5:hyp B] axiom h5)
h4)

h1)
h2)))

Note that the values of variables that were implicitly quantified in the constant
declarations are not explicitly supplied here, but reconstructed by Elf 's front end.

5. ADMISSIBILITY OF CUT

The proof of cut elimination uses one principal lemma: the admissibility of cut
in the cut-free system. From this, cut elimination follows by a simple structural
induction (see Appendix B).
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Theorem 5 ([Admissibility of Cut). Let D :: (1 � d: A) and E :: (1, h: A � e: C)
be cut-free sequent derivations. Then there exist a proof term f and a cut-free sequent
derivation F :: (1 � f : C).

Proof. The proof proceeds by three nested structural inductions on A, d, and e.
More precisely, we may use the induction hypothesis for (immediate) subformulas
of A and arbitrary d and e, or for A, a subterm of d, and e, and for A, d, and a
subterm of e. We distinguish cases for D and E, which is the same as distinguishing
cases for the proof terms d and e, since they determine the derivation (Lemma 3(5)).
The proof is constructive, so it describes an algorithm that computes a derivation
F given the derivations D and E.

The cases can be divided into four categories: (1) Either D or E is initial with A
as its principal formula, (2) A is the principal formula of the last inference in both
D and E, (3) A is a side formula of the last inference in D, and (4) A is a side
formula of the last inference in E. These classes are not mutually exclusive, so the
algorithm induced by our proof is nondeterministic. We capture this nondeter-
minism as a relation between CAc, CDc, CEc, and CFc, which is implemented
by a type family

ca: [A:o] conc A&>(hyp A&>conc C)&>conc C&>type.

Note that CEc may use the hypothesis A in addition to the ambient hypotheses 1
which are implicit. We show how each case in the proof contributes a declaration
to ca. First, we show the two cases where either D or E is an initial sequent with
principal formula A.

Case.

D=
1 $, H: A � axiom H: A

I

and E :: (1 $, H: A, h: A � e: C) is arbitrary. Here 1=1 $, H: A, and d=axiom H.
Then we let f =[H�h] e and

[H�h] E

F=1 $, H: A � [H�h] e: C.

The substitution of H for h in E is represented by applying the function that
represents E to the representation of H. This gives the correct representation of the
result by compositionality of C } c and Lemma 3(2).

ca�axiom�l : ca A(axiom H) E (E H).

Case.

E=
1, h: A � axiom h: A

I
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and D :: (1 � d: A) is arbitrary. Then we let f =d and F=D. The representation
of this case is immediate.

ca�axiom�r : ca A D([h:hyp A] axiom h) D.

Next we consider a case where the cut formula A is the principal formula of the
last inference in both D and E.

Case.

D=
D2

1, h1 : A1 � d2 : A2

1 � impr(*h1 : A1 .d2): A1 #A2

#R

and

E=
E1 E2

1, h: A1 #A2 � e1 : A1 1, h: A1 #A2 , h2 : A2 � e2 : C
1, h: A1 #A2 � impl e1 (*h2 : A2 .e2) h: C

#L.

Here d=impr (*h1 : A1 .d2) and e=impl e1 (*h2 : A2 .e2) h. In this case we first need
to eliminate the remaining copies of A1 #A2 from the hypotheses of E1 and E2 . To
this end we apply the induction hypothesis with all of D and the subderivation E1

to obtain an e$1 and E$1 such that

E$1 :: (1 � e$1: A1) By i.h. on A1 #A2 , d, and e1 .

Similarly, we would like to eliminate the hypothesis h from E2 , but E2 has an
additional hypothesis h2 . Thus we must first weaken D to (D, h2 : A2) ::
(1, h2 : A2 � d: A1 #A2 ). By Lemma 3(1), this does not change the proof term d.
We can thus apply the induction hypothesis and obtain

E$2 :: (1, h2 : A2 � e$2: C) By i.h. on A1 #A2 , d, and e2 .

Now that we have eliminated the additional copies of A1 #A2 we can apply the
ordinary step of reducing the cut to two new cuts, but both on smaller formulas (A1

and A2). Note that the proof terms e$1, e$2, and d $2 involved in these cuts may be
much bigger, since they are the result of earlier appeals to the induction hypothesis:

D$2 :: (1 � d $2: A2) By i.h. on A1 , e$1, and d2

F :: (1 � f: C) By i.h. on A2 , d $2 , and e$2 .

In the Elf representation, each of the four appeals to the induction hypothesis are
implemented as recursive calls to ca. We use A<&B for B&>A to emphasize the
operational reading of this declaration as part of a logic program in Elf to perform
cut elimination. The backward arrow associates to the left:
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ca�imp : ca(A1 imp A2)(impr D2)
([h:hyp(A1 imp A2)] impl(E1 h)(E2 h) h) F
<&ca(A1 imp A2)(impr D2) E1 E1'
<&([h2:hyp A2]

ca(A1 imp A2)(impr D2)
([h:hyp(A1 imp A2)] E2 h h2)(E2' h2))

<&ca A1 E1' D2 D2'
<&ca A2 D2' E2' F.

The weakening we mentioned above is implemented by the weakening which holds
for LF: in the second subgoal, D2 slips inside the scope of h2, but it may not
actually depend on it.

Next we show a case where the cut formula A is a side formula of the last
inference in E. The idea in all cases where the cut formula is a side formula of
the last inference R is the same: we appeal to the induction hypothesis on the
premise(s) and then apply R to the resulting derivation(s).

Case.

E=
E1

1 $, H: B1 7 B2 , h1 : B1 , h: A � e1 : C
1 $, H: B1 7B2 , h: A � andl1(*h1 : B1 .e1) H: C

7 L1

and D :: (1 $, H: B1 7 B2 � d: A) is arbitrary. In this case, 1=1 $, H: B1 7B2 and
e=andl1 (*h1 : B1 .e1) H. After weakening D (without changing the proof term d !)
we ``cut'' (D, h1 : B1) and E1 to obtain

E$1 ::(1 $, H: B1 7 B2 , h1 : B1 � e$1: C) By i.h. on A, d, e1

We now obtain F by applying the 7 L1 to E$1 :

F=
E$1

1 $, H: B1 7 B2 , h1 : B1 � e$1: C
1 $, H: B1 7 B2 � andl1 (*h1 : B1 .e$1) H: C

7L1

Note how explicit abstractions and applications are employed to represent scoping
of hypotheses in the Elf implementation of this case.

car�andl1: ca A D([h:hyp A] andl1(E1 h) H)(andl1 E1' H)
<&([h1:hyp B1] ca A D([h:hyp A] E1 h h1)(E1' h1)).

All the remaining cases (there are 35 altogether) follow similar patterns. They are
given in a more compact form in Appendix A.1. They require the usual substitution
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of terms for individual parameters in the cases of quantifiers, and of formulas for
propositional parameters in the case of negation. In the quantifier case we need that
[t�x] A is a subformula of \x .A for any t. This is precisely the inference allowed
by the structural induction principle for first-order formulas, although it is often
stated as an induction on the number of quantifiers and connectives in a
formula. K

What does the proof representation we show above achieve? First, it is opera-
tionally adequate; that is, it provides an implementation of a nondeterministic
algorithm that eliminates cuts from sequent derivations. Execution of the signature
above as an Elf program is illustrated through an example below. Furthermore, the
implementation describes not just any admissibility proof of cut, but captures the
computational content of the particular, informal constructive proof we presented.
Clearly, this must remain an informal statement, since our constructive proof is not
a formal, mathematical object.

Our implementation is partially verified by the type checker which ensures
correctness of the result of applying cut to the two given derivations. Here the
dependent types play a critical role in guaranteeing the validity of all sequent
derivations in the signature statically, which is the subject of the adequacy theorem
(Theorem 4). On the other hand, due to the absence of induction principles in LF,
parts of the informal argument are not formally verified through the type checker.
They require an additional argument external to LF which is possible to carry out
by hand, but exceedingly tedious. Automation of this external check is the subject
of ongoing research [Roh94].

Even if an external checker would verify that the signature represented a proof
of admissibility of cut, there would still remain the issue of whther such a check can
always be trusted (there may be bugs in the implementation, for example). Thus we
believe that it is important that we should be able to recover informal, mathemati-
cal proofs from their formalization in a framework, that is, a proof checker should
be able to explain itself. For this particular case study we have implemented a
program that translates the Elf signature into the critical parts of the informal argu-
ment, namely the sequences of appeals to the induction hypotheses in each case of
the admissibility proof. We then inspected each of the 35 cases in the same way we
would judge a proof in a paper submitted to a journal and verified the correctness
of the implementation of the proof in Elf. The complete implementation and the
informal presentation of each case are given in full detail in Appendix A.1. It
remains to convince oneself that all cases are covered, which is not difficult since
they are enumerated systematically.

In the remainder of this section, we illustrate how Elf can be used to execute the
(constructive) proof of the admissibility theorem for cut. The first derivation (called
D in the statement of the theorem) is

(_x . (Ax 6 Bx)), (Aa 6 Ba), Aa � Aa
I

(_x .(Ax 6 Bx)), (Aa 6 Ba), Aa � (_x .Ax)
_R

(_x .(Ax6 Bx)), (Aa 6 Ba), Ba � Ba
I

(_x . (Ax6 Bx)), (Aa 6 Ba), Ba � (_x .Bx)
_R

(_x . (Ax 6 Bx)), (Aa 6 Ba), Aa � ((_x . Ax) 6 (_x .Bx))
6 R1 (_x . (Ax 6 Bx)), (Aa 6 Ba), Ba � ((_x .Ax) 6 (_x .Bx))

6 R2

(_x . (Ax 6Bx)), (Aa 6 Ba) � ((_x .Ax) 6 (_x .Bx))
(_x . (Ax 6 Bx)) � ((_x .Ax) 6 (_x .Bx))

_La

6 L
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which is represented by

[A:i&>o][B:i &>o]
[h1:hyp(exists[x:i](A x or B x))]

(existsl([a:i][h2:hyp(A a or B a)]
(orl([h3:hyp(A a)] orr1(existsr a (axiom h3)))

([h4:hyp(B a)] orr2 (existsr a (axiom h4)))
h2))

h1)

The second derivation (slightly more general than we need) is

(A$ 6 B$), A$ � A$
I

(A$ 6 B$), A$ � (B$ 6 A$)
6 R2

(A$ 6 B$), B$ � B$
I

(A$6 B$), B$ � (B$ 6A$)
6R1

(A$ 6 B$) � (B$ 6A$)
6 L

which is represented by

[A':o][B':o]
[h:hyp(A' or B')]

(orl([h2:hyp A'] orr2(axiom h2))
([h3:hyp B'] orr1(axiom h3))
h)

In this second derivation we instantiate the meta-variables A$ and B$ to _x .Ax
and _x .Bx, respectively. To obtain a cut-free derivation of _x . (Ax6 Bx) � (_x .Bx)
6 (_x .Ax) we then pose the following query.

?&[A:i&>o][B:i&>o]
[h1:hyp(exists[x:i](A x or B x))]
ca((exists[x:i] A x) or (exists[x:i] B x))

(existsl([a:i][h2:hyp(A a or B a)]
(orl([h3:hyp(A a)] orr1(existsr a(axiom h3)))

([h4:hyp(B a)] orr2(existsr a(axiom h4)))
h2))

h1)
([h:hyp((exists[x:i] A x) or (exists[x:i] B x))]

(orl([h2:hyp(exists[x:i] A x)] orr2(axiom h2))
([h3:hyp(exists[x:i] B x)] orr1(axiom h3))
h))

(F A B h1).

The only free variable in this query is F which may depend on A, B, and
the hypothesis h1. The first (and in this case only) answer we obtain is the sub-
stitution
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F=
[A:i&>o][B:i &>o][h1:hyp(exists[x:i] A x or B x)]

existsl
([a:i][h:hyp(A a or B a)]

orl([h11:hyp(A a)] orr2(existsr a (axiom h11)))
([h2:hyp(B a)] orr1(existsr a(axiom h2))) h) h1.

This represents the expected derivation

(_x . (Ax 6 Bx)), (Aa 6 Ba), Aa � Aa
I

(_x . (Ax 6 Bx)), (Aa 6 Ba), Aa � (_x .Ax)
_R

(_x . (Ax6 Bx)), (Aa 6 Ba), Ba � Ba
I

(_x . (Ax6 Bx)), (Aa 6 Ba), Ba � (_x .Bx)
_R

(_x . (Ax 6 Bx)), (Aa 6 Ba), Aa � ((_x .Bx) 6 (_x .Ax))
6 R2 (_x . (Ax6 Bx)), (Aa 6 Ba), Ba � ((_x .Bx) 6 (_x .Ax))

6 R1

(_x . (Ax 6Bx)), (Aa 6 Ba) � ((_x .Bx) 6 (_x .Ax))
(_x . (Ax 6 Bx)) � ((_x .Bx) 6 (_x .Ax))

_La

6 L

6. EXTENSION TO CLASSICAL LOGIC

In natural deduction we obtain classical logic by adding another inference rule
that breaks the symmetry of introduction and elimination rules. This rule might be
excluded middle, indirect proof, or double negation elimination. In sequent
calculus, classical logic is usually handled by allowing multiple conclusions, that is,
a sequent has the form 1 � 2, where both 1 and 2 are lists (or multisets) of for-
mulas. This exhibits deep symmetries in classical logic which are not so obvious in
natural deduction form. The duality between left and right rules is now perfect, as
are the dualities of conjunction and disjunction, truth and falsehood, universal and
existential quantification, and the self-duality of negation. Unfortunately, the gap
between natural deduction and sequent calculus has become wider, so our rules are
motivated by an extension of the intuitionistic case to multiple conclusions, rather
than directly from natural deduction. For the proof of cut elimination and our
representation it is important that Gentzen's structural rules remain implicit: The
principal formula of an inference must always be copied to all premises along with
all side formulas:

1, A � A, 2
I

1 � A, A 7 B, 2 1 � B, A 7 B, 2
1 � A 7 B, 2

7 R

1, A7 B, A � 2
1, A 7 B � 2

7 L1

1, A7 B, B � 2
1, A 7 B � 2

7 L2

1, A � B, A#B, 2
1 � A#B, 2

#R
1, A#B � A, 2 1, A#B, B � 2

1, A#B � 2
#L

1 � A, A 6 B, 2
1 � A 6B, 2

6 R1

1 � B, A 6B, 2
1 � A 6B, 2

6 R2

1, A 6 B, A � 2 1, A 6 B, B � 2
1, A 6B � 2

6 L
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1, A � cA, 2
1 � cA, 2

cR
1, cA � A, 2

1, cA � 2
cL

1 � �, 2
�R

1, = � 2
=L

1 � [a�x] A, \x .A, 2
1 � \x .A, 2

\Ra 1, \x .A, [t�x] A � 2
1, \x .A � 2

\L

1 � [t�x] A, _x .A, 2
1 � _x .A, 2

_R
1, _x .A, [a�x] A � 2

1, _x .A � 2
_La

As in the intuitionistic case, we exclude cut from the system and show that it is
admissible. It has the form

1 � A, 2 1, A � 2
1 � 2

Cut.

The classical calculus satisfies weakening and contraction on both sides, and also
the usual substitution properties. Weakening and contraction do not change the
structure of the proof, which is made explicit below in Lemma 6. The equivalence
to Gentzen's calculus LK is also easy to establish by inserting or removing
appropriate structural rules; we skip the routine details here.

The assignment of proof terms reflects the symmetry between the left- and right-
hand sides of a sequent in that we label both negative (left-hand side) and positive
(right-hand side) formulas with variables. A proof term d then annotates the whole
sequent; we write it above the sequent arrow:

n1 : A1 , ..., nj : Aj w�d p1 : C1 , ..., pk : Ck .

We use n (negative) for labels of formulas occurring on the left of the sequent arrow
and p ( positive) for labels of formulas occurring on the right of the sequent arrow.
As in the intuitionistic calculus, our proof terms faithfully record the structure of
the sequent derivation and have no immediate connection to computational inter-
pretations. We again use * and the idea of higher-order abstract syntax to delimit
scope:

1, n: A www�
axiom n p p: A, 2

I

1 w�
d1 p1: A, p: A 7B, 2 1 w�

d2 p2: B, p: A 7 B, 2

1 wwwwwwwww�
andr(*p1: A .d1)(*p2 : B .d2) p

p: A 7B, 2
7 R

1, n: A 7 B, n1 : A w�
d1 2

1, n: A 7 B wwwww�
andl1(*n1 : B .d2) n

2
7 L1

1, n: A 7 B, n2 : B w�
d2 2

1, n: A7 B wwwww�
andl2(*n2: B .d2) n

2
7 L2

1, n1 : A w�
d p2 : B, p: A#B, 2

1 wwwwwwww�
impr(*n1 : A .*p2 : B .d ) p

p: A#B, 2
#R

1, n: A#B w�
d1 p1 : A, 2 1, n: A#B, n2 : B w�

d2 2

1, n: A#B wwwwwwwww�
impl(*p1: A .d1)(*n2 : B .d2) n

2
#L
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1 w�
d1 p1 : A, p: A 6B, 2

1 wwwww�
orr1(*p1 : A .d1) p

p: A 6 B, 2
6 R1

1 w�
d2 p2 : B, p: A 6B, 2

1 wwww�
orr2(*p2 : B .d2) p

p: A6 B, 2
6 R2

1, n: A 6B, n1 : A w�
d1 2 1, n: A6 B, n2 : B w�

d2 2

1, n: A6 B wwwwwwww�
orl(*n1 : A .d1)(*n2 : B .d2) n

2
6 L

1, n: A w�
d p: cA, 2

1 wwwww�
notr(*n: A .d ) p

p: cA, 2
cR

1, n: cA w�
d p: A, 2

1, n: cA wwwww�
notr(*p: A .d ) n 2

cL

1 ww�
truer p

p: �, 2
�R

1, n: = ww�
falsel n

2
=L

1 w�
d p1 : [a�x] A, p: \x .A, 2

1 wwwwwwwww�
forallr(*a : i .*p1 : [a�x] A .d ) p

p: \x .A, 2
\Ra

1, n: \x .A, n1: [t�x] A w�
d 2

1, n: \x .A wwwwwwwwww�
foralll t(*n1 : [t�x] A .d ) n

2
\L

1 w�
d p1 : [t�x] A, p: _x .A, 2

1 wwwwwwww�
existsr t(*p1 : [t�x] A .d ) p

p: _x .A, 2
_R

1, n: _x .A, n1 : [a�x] A w�
d 2

1, n: _x .A wwwwwwwww�
existsl(*a: i .*n1 : [a�x] A .d ) n

2
_La

We generalize the various notions of substitution and weakening from the intui-
tionistic case in the obvious way. Substitution for formula parameters is not
necessary here, since negation is handled in a different way. We then have:

Lemma 6 (Basic Properties of Classical Sequent Calculus with Proof Terms.
The classical sequent calculus with proof terms satisfies the following properties.

1. Weakening: If D :: (1 w�d 2), then (D, n: A) :: (1, n: A w�d 2) and (D, p: A)
:: (1 w�d p: A, 2), where n and p are new labels.

2. Contraction: If D :: (1, n1 : A, n2 : A w�d 2), then [n1 �n2] D :: (1, n1 :
A www�

[n1 �n2] d
2). Furthermore, if D :: (1 w�d p1 : A, p2 : A, 2), then [ p1 �p2] D ::

(1 www�
[ p1 �p2] d

p1 : A, 2).

3. Term Substitution: If D :: (1 w�d 2) is a derivation with free individual
parameter a, then [t�a] D :: ([t�a] 1 ww�

[t�a] d
[t�a] 2).

4. Uniqueness: If D :: (1 w�d 2) and D$ :: (1 w�d 2) then D=D$.

Proof. By simple structural inductions. K

The LF representation closely models proof terms and is thus also symmetric
with respect to formulas on the left and right: Both appear in the context of the LF
typing judgment. That is, a cut-free derivation

D

n1 : A1 , ..., nj : Aj w�d p1 : C1 , ..., pk : Ck

with free individual parameters among a1 , ..., am is represented by a term M= CDc

such that

a1 : i, ..., am : i, n1 : neg CA1
c , ..., nj : neg CA j

c ,

p1 : pos CC1
c, ..., pk : pos CCk

c |&LF M: *,
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where neg and pos are type families indexed by formulas, and * is a new type, the
type of every valid proof term. If we interpreted a sequent calculus as a refutational
calculus, * would represent a contradiction. Below we show the representation of
cut-free sequent derivations as an LF signature in the concrete syntax of Elf.

*: type.

neg: o&>type.

pos: o&>type.

axiom': (neg A&>pos A&>*).

andl1': (neg A&>*)

andr': (pos A&>*) &>(neg(A and B)&>*).

&>(pos B&>*)

&>(pos(A and B)&>*). andl2': (neg B&>*)

&>(neg(A and B)&>*).

impr': (neg A&>pos B&>*) impl': (pos A&>*)

&>(pos(A imp B)&>*). &>(neg B&>*)

&>(neg(A imp B)&>*).

orr1': (pos A&>*)

&>(pos(A or B)&>*). orl': (neg A&>*)

&>(neg B&>*)

orr2': (pos B&>*) &>(neg(A or B)&>*).

&>(pos(A or B)&>*).

notr': (neg A&>*) notl': (pos A&>*)

&>(pos(not A)&>*). &>(neg(not A)&>*).

truer': (pos(true) &>*).

falsel': (neg(false) &>*).

forallr': ([a:i] pos(A a)&>*) foralll': [T:i](neg(A T)&>*)

&>(pos(forall A)&>*). &>(neg(forall A)&>*).

existsr': [T:i](pos(A T)&>*) existsl': ([a:i] neg(A a)&>*)

&>(pos(exists A)&>*). &>(neg(exists A)&>*).

The cut rule can be added in a similar style (see Appendix B.2). The representa-
tion is adequate and compositional; we skip the routine formulation of such a
theorem.

We consider two examples of classical sequent derivations and their representa-
tion in Elf. The first is the law of excluded middle:

A � c(A), A, (A 6 c(A))
I

�c(A), A, (A6 c(A))
cR

�A, (A 6 c(A))
�(A6 c(A))

6 R1

6R2
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Note how multiple conclusions are necessary so that both right rules for disjunction
may be applied in succession. This derivation is represented by the term

([A:o][p:pos(A or not A)]
orr1'([p1:pos A]

orr2'([p2:pos(not A)]
notr'([n1:neg A] axiom' n1 p1)
p2)

p)
p)

:
[A:o] pos(A or not A)&>*.

The following example provides another illustration of the differences between
intuitionistic and classical reasoning in the sequent calculus:

c((\x .Ax)), Aa � c(Aa), Aa, (\x .Ax), (_x .c(Ax))
I

c((\x .Ax)) � c(Aa), Aa, (\x .Ax), (_x .c(Ax))
cR

c((\x .Ax)) � Aa, (\x .Ax), (_x .c(Ax))
c((\x .Ax)) � (\x .Ax), (_x .c(Ax))

\Ra

_R

c((\x .Ax)) � (_x .c(Ax))
cL

It is represented by the term

([A:i&>o][n:neg(not(forall[x] A x))]
[p:pos(exists[x] not (A x))]
notl'([p1:pos(forall[x] A x)]

forallr'([a:i][p2:pos(A a)]
existsr' a([p3:pos(not(A a))]

notr'([n1:neg(A a)]
axiom' n1 p2)

p3)
p)

p1)
n)

:
[A:i&>o]

neg(not(forall[x] A x))
&>pos(exists[x] not(A x))
&>*.

The admissibility of the cut rule for the cut-free calculus is once again the central
lemma for cut elimination. There are now more cases, since there may be side
formulas on the right-hand sides of sequents. However, due to the symmetry of the
rules, the proof is even more systematic than in the intuitionistic case. It also
follows by three nested structural inductions.
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Theorem 7 (Classical Admissibility of Cut). Let D :: (1 w�d p: A, 2) and
E :: (1, n: A w�e 2) be cut-free derivations in the classical sequent calculus G3 . Then
there is a proof term f and a cut-free sequent derivation of F :: (1 w�

f
2).

Proof. By nested structural induction on A, d, and e as in the intuitionistic case.
See Appendix A.2 for the proof details. K

The notion of a cross-cut [ML68, Gal93, Her95] (without multiplicities) surfaces
naturally in this proof: Since formulas are never discarded they must be eliminated
explicitly from both premises of a cut in a ``cross-cut'' fashion before the essential
cut reduction can take place. The implementation of the proof is by a type family

ca':[A:o](pos A&>*)&>(neg A&>*)&>*&>type

that implements the relation among A, the derivation D, the derivation E, and the
resulting derivation F.

We only show the representation of one case in the proof of admissibility here.
The complete proof representation including an informal version of each case may
be found in Appendix A.2. The first three appeals to the induction hypothesis below
are cross-cuts:

ca�imp':

ca' (A imp B)([p] impr'(D1 p) p)([n] impl'(E1 n)(E2 n) n) F

<&([p1:pos A] ca'(A imp B)([p] impr'(D1 p) p)([n] E1 n p1)(E1' p1))

<&([n2:neg B] ca'(A imp B)([p] impr'(D1 p) p)([n] E2 n n2)(E2' n2))

<&([n1:neg A][p2:pos B]
ca'(A imp B)([p] D1 p n1 p2)([n] impl'(E1 n)(E2 n) n)

(D1' n1 p2))

<&([p2:pos B] ca' A([p1] E1' p1)([n1] D1' n1 p2)(F2 p2))

<&ca' B([p2] F2 p2)([n2] E2' n2) F.

7. CONCLUSION

We have presented variants of Martin-Lo� f 's and Herbelin's proofs of cut elimina-
tion [ML68, Her95] for intuitionistic and classical sequent calculi. The proof in the
intuitionistic case is motivated by maintaining a close correspondence between
proof search for natural deduction and sequent derivations. It is this proximity that
permits a natural representation of the sequent calculus in LF. Furthermore, we
show how the proof of cut elimination can be implemented in Elf, although the fact
that this implementation models the informal argument is still partly an informal
property, just like the adequacy of the LF encoding of derivations. The proof
representation is extremely concise and much shorter than an informal proof of the
same argument (if all the cases were given, of course). In the two appendices below
we give the details of the proofs which were obtained via a program that translates
the internal form of Elf declarations to LaTeX source. This ``informalized'' version
of the proof representation can be inspected for correctness like ordinary informal
mathematical proofs.
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Another analysis of cut elimination for a small propositional fragment of classical
logic is given by Matthews [Mat94] in FS0 . His proof is traditional��sequents are
represented as lists, and termination is proved by induction on a standard com-
plexity measure. It has not yet been implemented, but it is clear from the sketched
development that it would require much time and effort just to prove basic
properties of sequent derivations, their lengths, etc. For the predicate calculus this
overhead would be even higher, since a theory of binding would have to be
developed first. Also related is Herbelin's development [Her95] who, after reprising
Martin-Lo� f 's proof, proceeds to assign proof terms to restricted sequent calculi
which he then analyzes in depth. He shows that the restricted calculi (LJT and LKT
for intuitionistic and classical logics, respectively) correspond more strongly to
natural deduction in both cases. He also presents an implementation of normaliza-
tion in ML but gives no formal analysis of cut elimination or normalization in a
theorem prover or logical framework.

Once the structural proof of admissibility has been found and implemented, it is
natural to ask if it can also be encoded in stronger frameworks such as
Coq [DFH+93] so that structural inductions are made explicit and the proof is
fully formally verified. There are several aspects of our proof which make this
difficult. The first is the use of higher-order abstract syntax, which is not available
in a similarly straightforward fashion in other candidate environments. Thus one
either has to try ideas from [DH94, DFH95] (which we have not attempted) or
has to use an encoding such as de Bruijn indices and explicitly represent contexts.
In either case one has to prove a number of auxiliary lemmas regarding substitu-
tions which are not needed in our representation. The second difficulty arises from
the non-deterministic nature of the cut elimination algorithm contained in the
proof. Making it deterministic in the form of a primitive recursion (which would be
required for a functional framework) would lead to an explosion in the number
of cases that would have to be considered. It appears the only way to avoid at
least some of this combinatorial explosion is to introduce termination measures
after all, which requires a new sequence of lemmas regarding sizes of formulas and
derivations. We conclude that a similarly elegant representation of cut elimi-
nation in other systems is a non-trivial challenge which, we hope, others will take
up.

In future work we plan to verify mechanically that the given signatures indeed
implement meta-theoretic proofs. The prototype implementation of the schema-
checker sketched in [Roh94] currently accepts them, but the (meta-meta-)theoreti-
cal analysis of schema-checker itself is not yet complete. In other future work we
plan to reexamine the connection between normalization and cut elimination (see,
for example, [Zuc74, Her95]) in the same framework. Another direction is to study
cut elimination in a formulation as a higher-order rewrite system along the lines of
Nipkow [Nip91], but using dependent types. We first note that our system of rules
is terminating (note that we cannot permute adjacent cuts!). Using the complete-
ness of a critical pair criterion for the dependently typed pattern calculus [Vir95]
we may be able to show that the intuitionistic system is confluent modulo Kleene's
permutations of adjacent inference rules in the cut-free system. This would mean
that our cut conversions do not identify intuitively unrelated sequent derivations.
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Without further restriction, however, this method fails for the classical calculus
since it is inherently too non-deterministic and simply not confluent. The critical
case here is a cut between two initial sequents with the cut formula as a side
formula.

Finally, we have applied the ideas in this paper to obtain similar structural cut
elimination results for intuitionistic and classical linear logics. These are sketched
in [Pfe95] and given in more detail in [Pfe94]. They will be the subject of a subse-
quent paper [Pfe].

APPENDIX A. DETAILED ADMISSIBILITY PROOFS FOR CUT

In this appendix we give the details of the admissibility of cut for intuitionistic
and classical sequent calculi. For each case in the two proofs we show the
formalization as an Elf declaration, followed by an automatically generated infor-
mal rendering of the case. In order to make the informal proof cases more readable
we omit explicit proof terms. This means that appeals to weakening and contrac-
tion lemmas are not visible (see the implicit contraction in the first case, for example).
We apologize for the nonintuitive naming of variables. Variable names are chosen
by Elf during type reconstruction and printing, and our naming heuristics are
currently too simplistic.

Substitution for individual and propositional parameters arises in the
admissibility proof for cut in a few cases. When a formula or derivation may
depend on a variable x or parameter a we indicate this, for example, by writing Ax
or Da. Instead of [t�x] A or [t�a] D we then write At or Dt for the result of a
substitution t for x or a. This is more perspicuous and also closer to the Elf
implementation and therefore much easier to generate.

A.1. Intuitionistic Calculus

A case in the proof of admissibility of cut in the intuitionistic sequent calculus is
represented as a transformation

D E F

1 � A�1, A � C O 1 � C

where F may refer to derivations constructed by appeals to the induction
hypothesis. These are given below the first line (which identifies the case under
consideration) in an appropriate order. In all cases the decreasing structural
component should be apparent; it would have been awkward to include this infor-
mation, since proof terms have been omitted. In the remarks we loosely refer to the
principal formula or side formula when properly speaking we mean the principal
formula occurrence or side formula occurrence. We could be pedantic using labelled
hypotheses, but only at a heavy cost in legibility.

The relation between D, E, and F is implemented as a type family

ca: [A:o] conc A&>(hyp A&>conc C)&>conc C&>type.
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The cases below are divided into the four classes mentioned in the proof of
Theorem 5. In analogy to other published proofs we call them initial conversions
(one of D or E is initial with the cut formula as a principal formula), essential
conversions (cut formula is principal in D and E), left commutative conversions (cut
formula is side formula in D), and right commutative conversions (cut formula is
side formula in E).

Initial conversions. These are the cases in the proof where either D or E is an
initial sequent with principal formula being the cut formula A:

ca�axiom�l: ca A(axiom H) E(E H).

1, A1 � A1

I
�

N
1, A1 , A1 � A O

N
1, A1 � A

ca�axiom�r: ca A D([h:hyp A] axiom h) D.

N
1 � A�1, A � A

I
O

N
1 � A

Essential conversions. These are the steps in the proof where the cut formula is
the principal formula of the last inference in both D and E:

ca�and1: ca(A1 and A2)(andr D1 D2)
([h:hyp(A1 and A2)] andl1(E1 h) h) F
<&([h1:hyp A1]

ca(A1 and A2)(andr D1 D2)
([h:hyp(A1 and A2)] E1 h h1)(E1' h1))

<&ca A1 D1 E1' F.

N
1 � A1

N3

1 � A2

1 � (A1 7 A2)
7 R

�

N4

1, (A1 7 A2), A1 � A
1, (A1 7A2) � A

7 L1 O
N2

1 � A

N
1, A1 � A1

N3

1, A1 � A2

1, A1 � (A1 7 A2)
7R

�
N4

1, A1 , (A1 7 A2) � A O
N1

1, A1 � A

N
1 � A1�

N1

1, A1 � A O
N2

1 � A

ca�and2: ca(A1 and A2)(andr D1 D2)
([h:hyp (A1 and A2)] andl2(E2 h) h) F
<&([h2:hyp A2]

ca(A1 and A2)(andr D1 D2)
([h:hyp(A1 and A2)] E2 h h2)(E2' h2))

<&ca A2 D2 E2' F.
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N3

1 � A2

N
1 � A1

1 � (A2 7 A1)
7 R

�

N4

1, (A2 7 A1), A1 � A
1, (A2 7A1) � A

7 L2 O
N2

1 � A

N3

1, A1 � A2

N
1, A1 � A1

1, A1 � (A2 7 A1)
7R

�
N4

1, A1 , (A2 7 A1) � A O
N1

1, A1 � A

N
1 � A1�

N1

1, A1 � A O
N2

1 � A

ca�imp: ca(A1 imp A2)(impr D2)
([h:hyp(A1 imp A2)] impl(E 1 h)(E2 h) h) F
<&ca(A1 imp A2)(impr D2) E1 E1'
<&([h2:hyp A2]

ca(A1 imp A2)(impr D2)
([h:hyp(A1 imp A2)] E2 h h2)(E2' h2))

<&ca A1 E1' D2 D2'
<&ca A2 D2' E2' F.

N4

1, A2 � A1

1 � (A2#A1)
#R

�

N6

1, (A2#A1) � A2

N5

1, (A2#A1), A1 � A
1, (A2#A1) � A

#L
O

N2

1 � A

N4

1, A2 � A1

1 � (A2#A1)
#R

�
N6

1, (A2#A1) � A2 O
N3

1 � A2

N4

1, A1 , A2 � A1

1, A1 � (A2#A1)
#R

�
N5

1, A1 , (A2#A1) � A O
N1

1, A1 � A

N3

1 � A2�
N4

1, A2 � A1 O
N

1 � A1

N
1 � A1�

N1

1, A1 � A O
N2

1 � A

ca�or1: ca(A1 or A2)(orr1 D1)
([h:hyp(A1 or A2)] orl(E1 h)(E2 h) h) F
<&([h1:hyp A1]

ca(A1 or A2)(orr1 D1)
([h:hyp(A1 or A2)] E1 h h1)(E1' h1))

<&ca A1 D1 E1' F.
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N
1 � A1

1 � (A1 6 A2)
6 R1 �

N3

1, (A1 6 A2), A1 � A
N4

1, (A1 6 A2), A2 � A
1, (A1 6A2) � A

6 L
O

N2

1 � A

N
1, A1 � A1

1, A1 � (A1 6 A2)
6 R1�

N3

1, A1 , (A1 6 A2) � A O
N1

1, A1 � A

N
1 � A1�

N1

1, A1 � A O
N2

1 � A

ca�or2: ca(A1 or A2)(orr2 D2)
([h:hyp(A1 or A2)] orl(E1 h)(E2 h) h)F
<&([h2:hyp A2]

ca(A1 or A2)(orr2 D2)
([h:hyp(A1 or A2)] E2 h h2)(E2' h2))

<&ca A2 D2 E2' F.

N
1 � A1

1 � (A2 6 A1)
6 R2 �

N4

1, (A2 6 A1), A2 � A
N3

1, (A2 6 A1), A1 � A
1, (A2 6A1) � A

6 L
O

N2

1 � A

N
1, A1 � A1

1, A1 � (A2 6 A1)
6 R2�

N3

1, A1 , (A2 6 A1) � A O
N1

1, A1 � A

N
1 � A1�

N1

1, A1 � A O
N2

1 � A

ca�not: ca(not A1)(notr D1)
([h:hyp(not A1)] notl(E1 h ) h)(F2 C)
<&ca(not A1)(notr D1) E1 F1
<&([p:o] ca A1 F1 ([h1:hyp A1] D1 p h1)(F2 p)).

N1 p1

1, A � p1

1 � c(A)
cR p1

�

N3

1, c(A) � A
1, c(A) � A1

cL
O

N2A1

1 � A1

N1 p1

1, A � p1

1 � c(A)
cR p1

�
N3

1, c(A) � A O
N

1 � A

N
1 � A�

N1 p
1, A � p O

N2 p
1 � p
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ca�forall: ca(forall A1)(forallr D1)
([h:hyp(forall A1)] foralll T(E1 h) h) F
<&([h2:hyp(A1 T)]

ca(forall A1)(forallr D1)
([h:hyp(forall A1)] E1 h h2)(E1' h2))

<&ca(A1 T)(D1 T) E1' F.

Na
1 � A1a

1 � (\x .A1 x)
\Ra

�

N3

1, (\x .A1x), A1 t � A
1, (\x .A1x) � A

\L
O

N2

1 � A

Na
1, A1 t � A1a

1, A1 t � (\x .A1x)
\Ra

�
N3

1, A1 t, (\x .A1 x) � A O
N1

1, A1 t � A

Nt
1 � A1 t�

N1

1, A1 t � A O
N2

1 � A

ca�exists: ca(exists A1)(existsr T D1)
([h:hyp(exists A1)] existsl(E1 h) h) F
<&([a:i][h1:hyp (A1 a)]

ca(exists A1)(existsr T D1)
([h:hyp(exists A1)] E1 h a h1)(E1' a h1))

<&ca(A1 T) D1(E1' T) F.

N
1 � A1t

1 � (_x .A1 x)
_R

�

N3 a2

1, (_x .A1x), A1 a2 � A
1, (_x .A1x) � A

_La2

O
N2

1 � A

N
1, A1a � A1 t

1, A1a � (_x .A1 x)
_R

�
N3 a

1, A1 a, (_x .A1x) � A O
N1 a

1, A1a � A

N
1 � A1 t�

N1 t
1, A1 t � A O

N2

1 � A

Left commutative conversions. In these cases the cut formula is a side formula in
the deduction D :: (1 � A). Note that the deduction D must end in a left rule, since
otherwise A would be its principal formula:

cal�andl1: ca A(andl1 D1 H) E(andl1 D1' H)
<&[h1:hyp B1] ca A(D1 h1) E(D1' h1).

N
1, (A 7 A3), A � A2

1, (A 7A3) � A2

7 L1�
N1

1, (A7 A3), A2 � A1 O

N2

1, (A 7 A3), A � A1

1, (A 7 A3) � A1

7 L1

N
1, (A7 A3), A � A2 �

N1

1, (A 7 A3), A, A2 � A1 O
N2

1, (A 7A3), A � A1
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cal�andl2: ca A(andl2 D2 H) E(andl2 D2' H)
<&[h2:hyp B2] ca A(D2 h2) E(D2' h2).

N
1, (A3 7A), A � A2

1, (A3 7 A) � A2

7 L2�
N1

1, (A3 7 A), A2 � A1 O

N2

1, (A3 7A), A � A1

1, (A3 7 A) � A1

7 L2

N
1, (A3 7 A), A � A2 �

N1

1, (A3 7 A), A, A2 � A1 O
N2

1, (A3 7 A), A � A1

cal�impl: ca A(impl D1 D2 H) E(impl D1 D2' H)
<&([h2:hyp B2] ca A(D2 h2) E(D2' h2)).

N3

1, (A3#A) � A3

N
1, (A3#A), A � A2

1, (A3#A) � A2

#L
�

N1

1, (A3#A), A2 � A1

O

N3

1, (A3#A) � A3

N2

1, (A3#A), A � A1

1, (A3#A) � A1

#L

N
1, (A3#A), A � A2 �

N1

1, (A3#A), A, A2 � A1 O
N2

1, (A3#A), A � A1

cal�orl: ca A(orl D1 D2 H) E(orl D1' D2' H)
<&([h1:hyp B1] ca A(D1 h1) E(D1' h1))
<&([h2:hyp B2] ca A(D2 h2) E(D2' h2)).

N3

1, (A3 6A), A3 � A2

N
1, (A3 6 A), A � A2

1, (A3 6 A) � A2

6 L
�

N1

1, (A3 6 A), A2 � A1

O

N4

1, (A3 6 A), A3 � A1

N2

1, (A3 6 A), A � A1

1, (A3 6A) � A1

6 L

N3

1, (A3 6 A), A3 � A2 �
N1

1, (A3 6 A), A3 , A2 � A1 O
N4

1, (A3 6 A), A3 � A1

N
1, (A3 6 A), A � A2 �

N1

1, (A3 6 A), A, A2 � A1 O
N2

1, (A3 6 A), A � A1

cal�notl: ca A(notl D1 H) E(notl D1 H).

N
1, c(A2) � A2

1, c(A2) � A1

cL
�

N1

1, c(A2), A1 � A O

N
1, c(A2) � A2

1, c(A2) � A
cL

115STRUCTURAL CUT ELIMINATION



cal�falsel: ca A(falsel H) E(falsel H).

1, = � A1

=L
�

N
1, =, A1 � A O 1, = � A

=L

cal�foralll: ca A(foralll T D1 H) E(foralll T D1' H)
<&([h] ca A(D1 h) E(D1' h)).

N
1, (\x .Ax), At � A2

1, (\x .Ax) � A2

\L
�

N1

1, (\x .Ax), A2 � A1 O

N2

1, (\x .Ax), At � A1

1, (\x .Ax) � A1

\L

N
1, (\x .Ax), At � A2�

N1

1, (\x .Ax), At, A2 � A1 O
N2

1, (\x .Ax), At � A1

cal�existsl: ca A(existsl D1 H) E(existsl D1' H)
<&([a:i][h:hyp (B1 a)]

ca A(D1 a h) E(D1' a h)).

Na1

1, (_x .Ax), Aa1 � A2

1, (_x .Ax) � A2

_La1

�
N1

1, (_x .Ax), A2 � A1 O

N2a1

1, (_x .Ax), Aa1 � A1

1, (_x .Ax) � A1

_La1

Na
1, (_x .Ax), Aa � A2�

N1

1, (_x .Ax), Aa, A2 � A1 O
N2a

1, (_x .Ax), Aa � A1

Right commutative conversions. In these cases, the formula A in E :: (1, A � C)
is a side formula of the last inference in E. These cases are not necessarily exclusive
with the left commutative conversions above. There are three classes of subcases:
The last inference in E may be an axiom, a left rule, or a right rule:

car�axiom: ca A D([h:hyp A] axiom H1)(axiom H1).

N
1, A � A1�1, A, A1 � A

I
O 1, A � A

I

car�andr: ca A D([h:hyp A] andr(E1 h)(E2 h))(andr E1' E2')
<&ca A D E1 E1'
<&ca A D E2 E2'.

N
1 � A1�

N3

1, A1 � A2

N1

1, A1 � A
1, A1 � (A2 7 A)

7R
O

N4

1 � A2

N2

1 � A
1 � (A2 7A)

7 R

N
1 � A1�

N3

1, A1 � A2 O
N4

1 � A2

N
1 � A1�

N1

1, A1 � A O
N2

1 � A
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car�andl1: ca A D([h:hyp A] andl1(E1 h) H)(andl1 E1' H)
<&([h1:hyp B1] ca A D([h:hyp A] E1 h h1)(E1' h1)).

N
1, (A 7 A3) � A2 �

N1

1, (A 7 A3), A2 , A � A1

1, (A 7 A3), A2 � A1

7 L1 O

N2

1, (A 7 A3), A � A1

1, (A 7A3) � A1

7 L1

N
1, (A7 A3), A � A2 �

N1

1, (A 7 A3), A, A2 � A1 O
N2

1, (A 7A3), A � A1

car�andl2: ca A D([h:hyp A] andl2(E2 h) H)(andl2 E2' H)
<&([h2:hyp B2] ca A D([h:hyp A] E2 h h2)(E2' h2)).

N
1, (A3 7A) � A2 �

N1

1, (A3 7 A), A2 , A � A1

1, (A3 7 A), A2 � A1

7 L2 O

N2

1, (A3 7 A), A � A1

1, (A3 7A) � A1

7 L2

N
1, (A3 7 A), A � A2 �

N1

1, (A3 7 A), A2 � A1 O
N2

1, (A3 7 A), A � A1

car�impr: ca A D([h:hyp A] impr(E2 h))(impr E2')
<&([h1:hyp B1] ca A D([h:hyp A] E2 h h1)(E2' h1)).

N
1 � A2�

N1

1, A2 , A � A1

1, A2 � (A#A1)
#R

O

N2

1, A � A1

1 � (A#A1)
#R

N
1, A � A2�

N1

1, A, A2 � A1 O
N2

1, A � A1

car�impl: ca A D([h:hyp A] impl(E1 h)(E2 h) H)(impl E1' E2' H)
<&ca A D E1 E1'
<&([h2:hyp B2] ca A D([h:hyp A] E2 h h2)(E2' h2)).

N
1, (A3#A) � A2�

N3

1, (A3#A), A2 � A3

N1

1, (A3#A), A2 , A � A1

1, (A3#A), A2 � A1

#L

O

N4

1, (A3#A) � A3

N2

1, (A3#A), A � A1

1, (A3#A) � A1

#L

N
1, (A3#A) � A2�

N3

1, (A3#A), A2 � A3 O
N2

1, (A3#A) � A3

N
1, (A3#A), A � A2 �

N1

1, (A3#A), A, A2 � A1 O
N2

1, (A3#A), A � A1
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car�orr1: ca A D([h:hyp A] orr1(E1 h))(orr1 E1')
<&ca A D E1 E1'.

N
1 � A1�

N1

1, A1 � A
1, A1 � (A6 A2)

6 R1 O

N2

1 � A
1 � (A 6A2)

6 R1

N
1 � A1�

N1

1, A1 � A O
N2

1 � A

car�orr2: ca A D([h:hyp A] orr2(E2 h))(orr2 E2')
<&ca A D E2 E2'.

N
1 � A1�

N1

1, A1 � A
1, A1 � (A2 6 A)

6 R2 O

N2

1 � A
1 � (A2 6 A)

6 R2

N
1 � A1�

N1

1, A1 � A O
N2

1 � A

car�orl: ca A D([h:hyp A] orl(E1 h)(E2 h) H)(orl E1' E2' H)
<&([h1:hyp B1] ca A D([h:hyp A] E1 h h1)(E1' h1))
<&([h2:hyp B2] ca A D([h:hyp A] E2 h h2)(E2' h2)).

N
1, (A3 6 A) � A2 �

N3

1, (A3 6 A), A2 , A3 � A1

N1

1, (A3 6 A), A2, A � A1

1, (A3 6 A), A2 � A1

6 L

O

N4

1, (A3 6A), A3 � A1

N2

1, (A3 6 A), A � A1

1, (A3 6 A) � A1

6 L

N
1, (A3 6 A), A3 � A2�

N3

1, (A3 6 A), A3 , A2 � A1 O
N4

1, (A3 6 A), A3 � A1

N
1, (A3 6 A), A � A2 �

N1

1, (A3 6 A), A, A2 � A1 O
N2

1, (A3 6 A), A � A1

car�notr: ca A D([h:hyp A] notr(E1 h))(notr E1')
<&([p:o][h1:hyp B1] ca A D([h:hyp A] E1 h p h1)

(E1' p h1)).

N
1 � A1�

N1 p1

1, A1 , A � p1

1, A1 � c(A)
cR p1

O

N2 p1

1, A � p1

1 � c(A)
cR p1

N
1, A � A1�

N1 p
1, A, A1 � p O

N2 p
1, A � p
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car�notl: ca A D([h:hyp A] notl(E1 h) H)(notl E1' H)
<&ca A D E1 E1'.

N
1, c(A) � A1�

N1

1, c(A), A1 � A
1, c(A), A1 � A2

cL
O

N2

1, c(A) � A
1, c(A) � A2

cL

N
1, c(A) � A1�

N1

1, c(A), A1 � A O
N2

1, c(A) � A

car�truer: ca A D([h:hyp A] truer)(truer).

N
1 � A�1, A � �

�R
O 1 � �

�R

car�falsel: ca A D([h:hyp A] falsel H)(falsel H).

N
1, = � A1 �1, =, A1 � A

=L
O 1, = � A

=L

car�forallr: ca A D([h:hyp A] forallr(E1 h))(forallr E1')
<&([a:i] ca A D([h:hyp A] E1 h a)(E1' a)).

N
1 � A1�

N1 a1

1, A1 � Aa1

1, A1 � (\x .Ax)
\Ra1

O

N2a1

1 � Aa1

1 � (\x .Ax)
\Ra1

N
1 � A1�

N1 a
1, A1 � Aa O

N2 a
1 � Aa

car�foralll: ca A D([h:hyp A] foralll T(E1 h) H)(foralll T E1' H)
<&([h1] ca A D([h:hyp A] E1 h h1)(E1' h1)).

N
1, (\x .Ax) � A2�

N1

1, (\x .Ax), A2 , At � A1

1, (\x .Ax), A2 � A1

\L
O

N2

1, (\x .Ax), At � A1

1, (\x .Ax) � A1

\L

N
1, (\x .Ax), At � A2�

N1

1, (\x .Ax), At, A2 � A1 O
N2

1, (\x .Ax), At � A1

car�existsr: ca A D([h:hyp A] existsr T(E1 h))(existsr T E1')
<&ca A D E1 E1'.

N
1 � A1�

N1

1, A1 � At
1, A1 � (_x .Ax)

_R
O

N2

1 � At
1 � (_x .Ax)

_R

N
1 � A1�

N1

1, A1 � At O
N2

1 � At
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car�existsl: ca A D([h:hyp A] existsl (E1 h) H)(existsl E1' H)
<&([a:i][h1:hyp(B1 a)]

ca A D([h:hyp A] E1 h a h1)(E1' a h1)).

N
1, (_x .Ax) � A2�

N1a1

1, (_x .Ax), A2 , Aa1 � A1

1, (_x .Ax), A2 � A1

_La1

O

N2 a1

1, (_x .Ax), Aa1 � A1

1, (_x .Ax) � A1

_La1

N
1, (_x .Ax), Aa � A2�

N1a
1, (_x .Ax), Aa, A2 � A1 O

N2a
1, (_x .Ax), Aa � A1

A.2. Classical Calculus

We list the cases using the same conventions as for the intuitionistic calculus
above. A transformation now has the form

D

1 � A, 2�
E

1, A � 2 O
F

1 � 2

where F may refer to derivations constructed by appeals to the induction
hypothesis. This relation is implemented by a type family

ca': [A:o](pos A&>*)&>(neg A&>*)&>*&>type.

Initial conversions. Here either D or E is initial with the cut formula A as the
principal formula. Note that appeals to contraction are implicit since we omit proof
terms in this presentation. Recall that contraction does not change the structure of
the derivation (only the proof term by substituting one formula label for another):

ca�axiom'l: ca' A([p] axiom' N p) E(E N).

1, A � A, 2
I
�

N
1, A, A � 2 O

N
1, A � 2

ca�axiom'r: ca' A D([n] axiom' n P)(D P).

N
1 � A, A, 2�1, A � A, 2

I
O

N
1 � A, 2

Essential conversions. Here the cut formula A is the principal formula of the last
inference in both D and E:

ca�and1':
ca'(A and B)([p] andr'(D1 p)(D2 p) p)([n] andl1'(E1 n) n) F

<&([p1:pos A] ca'(A and B)([p] D1 p p1)
([n] andl1'(E1 n) n)(D1' p1))

<&([n1:neg A]
ca'(A and B)([p] andr'(D1 p)(D2 p) p)
([n] E1 n n1)(E1' n1))

<&ca' A([p1] D1' p1)([n1] E1' n1) F.
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N3

1 � A, (A 7 A1), 2
N4

1 � A1 , (A 7A1), 2
1 � (A 7 A1), 2

7 R
�

N5

1, (A 7 A1), A � 2
1, (A 7 A1) � 2

7 L1

O
N2

1 � 2

N3

1 � (A7 A1), A, 2�

N5

1, (A 7 A1), A � A, 2
1, (A 7A1) � A, 2

7 L1 O
N

1 � A, 2

N3

1, A � A, (A 7 A1), 2
N4

1, A � A1 , (A 7 A1), 2
1, A � (A 7 A1), 2

7 R
�

N5

1, A, (A 7 A1) � 2

O
N1

1, A � 2

N
1 � A, 2�

N1

1, A � 2 O
N2

1 � 2

ca�and2':
ca'(A and B)([p] andr'(D1 p)(D2 p) p)([n] andl2'(E2 n) n) F

<&([p2:pos B] ca'(A and B)([p] D2 p p2)
([n] andl2'(E2 n) n)(D2' p2))

<&([n2:neg B]
ca'(A and B)([p] andr'(D1 p)(D2 p) p)
([n] E2 n n2)(E2' n2))

<&ca' B([p2] D2' p2)([n2] E2' n2) F.

N3

1 � A1 , (A1 7A), 2
N4

1 � A, (A1 7A), 2
1 � (A1 7 A), 2

7 R
�

N5

1, (A1 7A), A � 2
1, (A1 7 A) � 2

7L2

O
N2

1 � 2

N4

1 � (A1 7 A), A, 2�

N5

1, (A1 7A), A � A, 2
1, (A1 7 A) � A, 2

7 L2 O
N

1 � A, 2

N3

1, A � A1 , (A1 7 A), 2
N4

1, A � A, (A1 7 A), 2
1, A � (A1 7 A), 2

7 R
�

N5

1, A, (A1 7 A) � 2

O
N1

1, A � 2

N
1 � A, 2�

N1

1, A � 2 O
N2

1 � 2

121STRUCTURAL CUT ELIMINATION



ca�imp':
ca'(A imp B)([p] impr'(D1 p) p)([n] impl'(E1 n)(E2 n) n) F

<&([p1:pos A] ca'(A imp B)([p] impr'(D1 p) p)
([n] E1 n p1)(E1' p1))

<&([n2:neg B] ca'(A imp B)([p] impr'(D1 p) p)
([n] E2 n n2)(E2' n2))

<&([n1:neg A][p2:pos B]
ca'(A imp B)([p] D1 p n1 p2)([n] impl'(E1 n)(E2 n) n)
(D1' n1 p2))

<&([p2:pos B] ca' A([p1] E1' p1)([n1] D1' n1 p2)(F2 p2))
<&ca' B([p2] F2 p2)([n2] E2' n2) F.

N5

1, A1 � A, (A1#A), 2
1 � (A1#A), 2

#R
�

N6

1, (A1#A) � A1 ,
N7

1, (A1#A), A � 2
1, (A1#A) � 2

#L

O
N2

1 � 2

N5

1, A1 � A, (A1#A), A1 , 2
1 � (A1#A), A1 , 2

#R
�

N6

1, (A1#A) � A1 , 2
O

N3

1 � A1 , 2

N5

1, A, A1 � A, (A1#A), 2
1, A � (A1#A), 2

#R
�

N7

1, A, (A1#A) � 2 O
N1

1, A � 2

N5

1, A1 � (A1#A), A, 2

�

N6

1, A1 , (A1#A) � A1 , A, 2
N7

1, A1 , (A1#A), A � A, 2
1, A1 , (A1#A) � A, 2

#L

O
N4

1, A1 � A, 2

N3

1 � A1 , A, 2�
N4

1, A1 � A, 2 O
N

1 � A, 2

N
1 � A, 2�

N1

1, A � 2 O
N2

1 � 2

ca�or1':
ca'(A or B)([p] orr1'(D1 p) p)([n] orl'(E1 n)(E2 n) n) F

<&([n1:neg A] ca'(A or B)([p] orr1'(D1 p) p)
([n] E1 n n1)(E1' n1))

<&([p1:pos A] ca'(A or B)([p] D1 p p1)
([n] orl'(E1 n)(E2 n) n)(D1' p1))

<&ca' A D1' E1' F.
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N3

1 � A, (A 6 A1), 2
1 � (A 6 A1), 2

6 R1 �

N4

1, (A 6 A1), A � 2
N5

1, (A 6 A1), A1 � 2
1, (A 6 A1) � 2

6 L

O
N2

1 � 2

N3

1, A � A, (A6 A1), 2
1, A � (A 6A1), 2

6 R1 �
N4

1, A, (A 6A1) � 2 O
N1

1, A � 2

N3

1 � (A 6A1), A, 2�

N4

1, (A 6 A1), A � A, 2
N5

1, (A 6 A1), A1 � A, 2
1, (A 6 A1) � A, 2

6 L

O
N

1 � A, 2

N
1 � A, 2�

N1

1, A � 2 O
N2

1 � 2

ca�or2':
ca'(A or B)([p] orr2'(D2 p) p)([n] orl'(E1 n)(E2 n) n) F

<&([n2:neg B] ca'(A or B)([p] orr2'(D2 p) p)
([n] E2 n n2)(E2' n2))

<&([p2:pos B] ca'(A or B)([p] D2 p p2)([n] orl'
(E1 n)(E2 n) n)(D2' p2))

<&ca' B D2' E2' F.

N3

1 � A, (A1 6 A), 2
1 � (A1 6A), 2 �

N4

1, (A1 6 A), A1 � 2
N5

1, (A1 6 A), A � 2
1, (A1 6 A) � 2

6 L

O
N2

1 � 2

N3

1, A � A, (A1 6 A), 2
1, A � (A1 6 A), 2

6 R2 �
N5

1, A, (A1 6 A) � 2 O
N1

1, A � 2

N3

1 � (A1 6 A), A, 2�

N4

1, (A1 6 A), A1 � A, 2
N5

1, (A1 6 A), A � A, 2
1, (A1 6 A) � A, 2

6 L

O
N

1 � A, 2

N
1 � A, 2�

N1

1, A � 2 O
N2

1 � 2
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ca�not':
ca'(not A)([p] notr'(D1 p) p)([n] notl'(E1 n) n) F

<&([p1:pos A] ca'(not A)([p] notr'(D1 p) p)([n] E1 n p1)
(E1' p1))

<&([n1:neg A] ca'(not A)([p] D1 p n1)([n] notl'(E1 n) n)
(D1' n1))

<&ca' A E1' D1' F.

N3

1, A � c(A), 2
1 � c(A), 2

cR
�

N4

1, c(A) � A, 2
1, c(A) � 2

cL
O

N2

1 � 2

N3

1, A � c(A), A, 2
1 � c(A), A, 2

cR
�

N4

1, c(A) � A, 2 O
N

1 � A, 2

N3

1, A � c(A), 2�

N4

1, A, c(A) � A, 2
1, A, c(A) � 2

cL
O

N1

1, A � 2

N
1 � A, 2�

N1

1, A � 2 O
N2

1 � 2

ca�forall':
ca'(forall A)([p] forallr'(D1 p) p)([n] foralll' T(E1 n) n) F

<&([n1] ca'(forall A)([p] forallr'(D1 p) p)
([n] E1 n n1)(E1' n1))

<&([p1] ca'(forall A)([p] D1 p T p1)([n] foralll' T(E1 n) n)
(D1' p1))

<&ca'(A T) D1' E1' F.

N3 a
1 � Aa, (\x .Ax), 2

1 � (\x .Ax), 2
\Ra

�

N4

1, (\x .Ax), At � 2
1, (\x .Ax) � 2

\L
O

N2

1 � 2

N3a
1, At � Aa, (\x .Ax), 2

1, At � (\x .Ax),
\Ra

�
N4

1, At, (\x .Ax) � 2 O
N1

1, At � 2

N3 t
1 � (\x .Ax), At, 2�

N4

1, (\x .Ax), At � At, 2
1, (\x .Ax) � At, 2

\L
O

N
1 � At, 2

N
1 � At, 2�

N1

1, At � 2 O
N2

1 � 2
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ca�exists':
ca'(exists A)([p] existsr' T(D1 p) p)([n] existsl'(E1 n) n) F

<&([n1] ca'(exists A)([p] existsr' T(D1 p) p)
([n] E1 n T n1)(E1' n1))

<&([p1] ca'(exists A)([p] D1 p p1)([n] existsl'(E1 n) n)
(D1' p1))

<&ca'(A T) D1' E1' F.

N3

1 � At, (_x .Ax), 2
1 � (_x .Ax), 2

_R
�

N4a
1, (_x .Ax), Aa � 2

1, (_x .Ax) � 2
_La

O
N2

1 � 2

N3

1, At � At, (_x .Ax), 2
1, At � (_x .Ax), 2

_R
�

N4 t
1, At, (_x .Ax) � 2 O

N1

1, At � 2

N3

1 � (_x .Ax), At, 2�

N4 a
1, (_x .Ax), Aa � At, 2

1, (_x .Ax) � At, 2
_La

O
N

1 � At, 2

N
1 � At, 2�

N1

1, At � 2 O
N2

1 � 2

Right commutative conversions. Here the cut formula is a side formula of the last
inference in E:

car�axiom': ca' A D([n] axiom' N P)(axiom' N P):

N
1, A1 � A, A1 , 2�1, A1 , A � A1 , 2

I
O 1, A1 � A1 , 2

I

car�andr':
ca' A D([n] andr'(E1 n)(E2 n) P)(andr' F1 F2 P)

<&([p1:pos B1] ca' A D([n] E1 n p1)(F1 p1))
<&([p2:pos B2] ca' A D([n] E2 n p2)(F2 p2)).

N
1 � A1 , (A2 7 A), 2�

N3

1, A1 � A2 , (A2 7 A), 2
N1

1, A1 � A, (A2 7A), 2
1, A1 � (A2 7 A), 2

7 R

O

N4

1 � A2 , (A2 7A), 2
N2

1 � A, (A2 7A), 2
1 � (A2 7 A), 2

7 R

N
1 � A1 , A2 , (A2 7A), 2�

N3

1, A1 � A2 , (A2 7 A), 2 O
N4

1 � A2 , (A2 7 A), 2

N
1 � A1 , A, (A2 7A), 2�

N1

1, A1 � A, (A2 7 A), 2 O
N2

1 � A, (A2 7A), 2
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car�andl1':
ca' A D([n] andl1'(E1 n) N)(andl1' F1 N)

<&([n1:neg B1] ca' A D([n] E1 n n1)(F1 n1)).

N
1, (A7 A2) � A1 , 2�

N1

1, (A7 A2), A1 , A � 2
1, (A 7A2), A1 � 2

7 L1 O

N2

1, (A 7A2), A � 2
1, (A7 A2) � 2

7 L1

N
1, (A7 A2), A � A1 , 2�

N1

1, (A 7 A2), A, A1 � 2 O
N2

1, (A 7 A2), A � 2

car�andl2':
ca' A D([n] andl2'(E2 n) N)(andl2' F2 N)

<&([n2:neg B2] ca' A D([n] E2 n n2)(F2 n2)).

N
1, (A2 7 A) � A1 , 2�

N1

1, (A2 7 A), A1 , A � 2
1, (A2 7 A), A1 � 2

7 L2 O

N2

1, (A2 7 A), A � 2
1, (A2 7 A) � 2

7 L2

N
1, (A2 7 A), A � A1 , 2�

N1

1, (A2 7A), A, A1 � 2 O
N2

1, (A2 7 A), A � 2

car�impr':
ca' A D([n] impr'(E1 n) P)(impr' F1 P)

<&([n1:neg B1][p2:pos B2]
ca' A D([n] E1 n n1 p2)(F1 n1 p2)).

N
1 � A2 , (A#A1), 2�

N1

1, A2 , A � A1 , (A#A1), 2
1, A2 � (A#A1), 2

#R

O

N2

1, A � A1 , (A#A1), 2
1 � (A#A1), 2

#R

N
1, A � A2 , A1 , (A#A1), 2�

N1

1, A, A2 � A1 , (A#A1), 2

O
N2

1, A � A1 , (A#A1), 2

car�impl':
ca' A D([n] impl'(E1 n)(E2 n) N)(impl' F1 F2 N)

<&([p1:pos B1] ca' A D([n] E1 n p1)(F1 p1))
<&([n2:neg B2] ca' A D([n] E2 n n2)(F2 n2)).

126 FRANK PFENNING



N
1, (A2#A) � A1 , 2�

N3

1, (A2#A), A1 � A2 , 2
N1

1, (A2#A), A1 , A � 2
1, (A2#A), A1 � 2

#L

O

N4

1, (A2#A) � A2 , 2
N2

1, (A2#A), A � 2
1, (A2#A) � 2

#L

N
1, (A2#A) � A1 , A2 , 2�

N3

1, (A2#A), A1 � A2 , 2 O
N4

1, (A2#A) � A2 , 2

N
1, (A2#A), A � A1 , 2�

N1

1, (A2#A), A, A1 � 2 O
N2

1, (A2#A), A � 2

car�orr1':
ca' A D([n] orr1'(E1 n) P)(orr1' F1 P)

<&([p1:pos B1] ca' A D([n] E1 n p1)(F1 p1)).

N
1 � A1 , (A7 A2), 2�

N1

1, A1 � A, (A 6A2), 2
1, A1 � (A 6 A2), 2

6 R1 O

N2

1 � A, (A 6A2), 2
1 � (A6 A2), 2

6 R1

N
1 � A1 , A, (A 6 A2), 2�

N1

1, A1 � A, (A 6A2), 2 O
N2

1 � A, (A 6 A2), 2

car�orr2':
ca' A D([n] orr2'(E2 n) P)(orr2' F2 P)

<&([p2:pos B2] ca' A D([n] E2 n p2)(F2 p2)).

N
1 � A1 , (A2 6 A), 2�

N1

1, A1 � A, (A2 6 A), 2
1, A1 � (A2 6 A), 2

6 R2 O

N2

1 � A, (A2 6 A), 2
1 � (A2 6 A), 2

6 R2

N
1 � A1 , A, (A2 6A), 2�

N1

1, A1 � A, (A2 6 A), 2 O
N2

1 � A, (A2 6A), 2

car�orl':
ca' A D([n] orl'(E1 n)(E2 n) N)(orl' F1 F2 N)

<&([n1:neg B1] ca' A D([n] E1 n n1)(F1 n1))
<&([n2:neg B2] ca' A D([n] E2 n n2)(F2 n2)).

N
1, (A2 6 A) � A1 , 2�

N3

1, (A2 6 A), A1 , A2 � 2
N1

1, (A2 6 A), A1 , A � 2
1, (A2 6 A), A1 � 2

6 L

O

N4

1, (A2 6A), A2 � 2
N2

1, (A2 6 A), A � 2
1, (A2 6 A) � 2

6 L
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N
1, (A2 6A), A2 � A1 , 2�

N3

1, (A2 6 A), A2 , A1 � 2 O
N4

1, (A2 6 A), A2 � 2

N
1, (A2 6 A), A � A1 , 2�

N1

1, (A2 6A), A, A1 � 2 O
N2

1, (A2 6 A), A � 2

car�notr':
ca' A D([n] notr'(E1 n) P)(notr' F1 P)

<&([n1:neg B1] ca' A D([n] E1 n n1)(F1 n1)).

N
1 � A1 , c(A), 2�

N1

1, A1 , A � c(A), 2
1, A1 � c(A), 2

cR
O

N2

1, A � c(A), 2
1 � c(A), 2

cR

N
1, A � A1 , c(A), 2�

N1

1, A, A1 � c(A), 2 O
N2

1, A � c(A), 2

car�notl':
ca' A D([n] notl'(E1 n) N)(notl' F1 N)

<&([p1:pos B1] ca' A D([n] E1 n p1)(F1 p1)).

N
1, c(A) � A1 , 2�

N1

1, c(A), A1 � A, 2
1, c(A), A1 � 2

cL
O

N2

1, c(A) � 2
1, c(A) � 2

cL

N
1, c(A) � A1 , A, 2�

N1

1, c(A), A1 � A, 2 O
N2

1, c(A) � A, 2

car�truer':
ca' A D([n] truer' P)(truer' P).

N
1 � A, �, 2�1, A � �, 2

�R
O 1 � �, 2

�R

car�falsel':
ca' A D([n] falsel' N)(falsel' N).

N
1, = � A, 2�1, =, A � 2

=L
O 1, = � 2

=L

car�forallr':
ca' A D([n] forallr'(E1 n) P)(forallr' F1 P)

<&([a:i][p1:pos(B1 a)]
ca' A D([n] E1 n a p1)(F1 a p1)).
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N
1 � A1 , Aa, (\x .Ax), 2�

N1a1

1, A1 � Aa1 , (\x .Ax), 2
1, A1 � (\x .Ax), 2

\Ra1

O

N2a1

1 � Aa1 , (\x .Ax), 2
1 � (\x .Ax), 2

\Ra1

N
1 � A1 , Aa, (\x .Ax), 2�

N1 a
1, A1 � Aa, (\x .Ax), 2 O

N2 a
1 � Aa, (\x .Ax), 2

car�foralll':
ca' A D([n] foralll' T (E1 n) N)(foralll' T F1 N)

<&([n1] ca' A D([n] E1 n n1)(F1 n1)).

N
1, (\x .Ax) � A1 , 2�

N1

1, (\x .Ax), A1 , At � 2
1, (\x .Ax), A1 � 2

\L
O

N2

1, (\x .Ax), At � 2
1, (\x .Ax) � 2

\L

N
1, (\x .Ax), At � A1 , 2�

N1

1, (\x .Ax), At, A1 � 2 O
N2

1, (\x .Ax), At � 2

car�existsr':
ca' A D([n] existsr' T(E1 n) P)(existsr' T F1 P)

<&([p1] ca' A D([n] E1 n p1)(F1 p1)).

N
1 � A1 , (_x .Ax), 2�

N1

1, A1 � At, (_x .Ax), 2
1, A1 � (_x .Ax), 2

_R
O

N2

1 � At, (_x .Ax), 2
1 � (_x .Ax), 2

_R

N
1 � A1 , At, (_x .Ax), 2�

N1

1, A1 � At, (_x .Ax), 2 O
N2

1 � At, (_x .Ax), 2

car�existsl':
ca' A D([n] existsl'(E1 n) N)(existsl' F1 N)

<&([a:i][n1:neg(B1 a)]
ca' A D([n] E1 n a n1)(F1 a n1)).

N
1, (_x .Ax) � A1 , 2�

N1 a1

1, (_x .Ax), A1 , Aa1 � 2
1, (_x .Ax), A1 � 2

_La1

O

N2 a1

1, (_x .Ax), Aa1 � 2
1, (_x .Ax) � 2

_La1

N
1, (_x .Ax), Aa � A1 , 2�

N1a
1, (_x .Ax), Aa, A1 � 2 O

N2 a
1, (_x .Ax), Aa � 2
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Left commutative conversions. Here the cut formula A is a side formula of the
last inference in D:

cal�axiom': ca' A([p] axiom' N P) E(axiom' N P).

N
1, A1 � A, A1, 2�1, A1 , A � A1 , 2

I
O 1, A1 � A1 , 2

I

cal�andr':
ca' A([p] andr'(D1 p)(D2 p) P) E(andr' F1 F2 P)

<&([p1:pos B1] ca' A([p] D1 p p1) E(F1 p1))
<&([p2:pos B2] ca' A([p] D2 p p2) E(F2 p2)).

N3

1 � A2 , A1 , (A2 7 A), 2
N

1 � A, A1 , (A2 7 A), 2
1 � A1 , (A2 7 A), 2

7 R
�

N1

1, A1 � (A2 7A), 2

O

N4

1 � A2 , (A2 7 A), 2
N2

1 � A, (A2 7A), 2
1 � (A2 7 A), 2

7 R

N3

1 � A1 , A2 , (A2 7A), 2�
N1

1, A1 � A2 , (A2 7 A), 2 O
N4

1 � A2 , (A2 7 A), 2

N
1 � A1 , A, (A2 7A), 2�

N1

1, A1 � A, (A2 7 A), 2 O
N2

1 � A, (A2 7A), 2

cal�andl1':
ca' A([p] andl1'(D1 p) N) E(andl1' F1 N)

<&([n1:neg B1] ca' A([p] D1 p n1) E(F1 n1)).

N
1, (A 7 A2), A � A1 , 2

1, (A 7A2) � A1 , 2
7 L1�

N1

1, (A 7 A2), A1 � 2 O

N2

1, (A 7 A2), A � 2
1, (A 7A2) � 2

7 L1

N
1, (A7 A2), A � A1 , 2�

N1

1, (A 7 A2), A, A1 � 2 O
N2

1, (A 7 A2), A � 2

cal�andl2':
ca' A([p] andl2'(D2 p) N) E (andl2' F2 N)

<&([n2:neg B2] ca' A([p] D2 p n2) E(F2 n2)).

N
1, (A2 7 A), A � A1 , 2

1, (A2 7 A) � A1 , 2
7 L2�

N1

1, (A2 7A), A1 � 2 O

N2

1, (A2 7A), A � 2
1, (A2 7 A) �

7 L2

N
1, (A2 7 A), A � A1 , 2�

N1

1, (A2 7A), A, A1 � 2 O
N2

1, (A2 7 A), A � 2
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cal�impr':
ca' A([p] impr'(D1 p) P) E(impr' F1 P)

<&([n1:neg B1][p2:pos B2]
ca' A([p] D1 p n1 p2) E(F1 n1 p2)).

N
1, A � A1 , A2 , (A#A1), 2

1 � A2 , (A#A1), 2
#R

�
N1

1, A2 � (A#A1), 2

O

N2

1, A � A1 , (A#A1), 2
1 � (A#A1), 2

#R

N
1, A � A2 , A1 , (A#A1), 2�

N1

1, A, A2 � A1 , (A#A1), 2 O
N2

1, A � A1 , (A#A1), 2

cal�impl':
ca' A([p] impl'(D1 p)(D2 p) N) E(impl' F1 F2 N)

<&([p1:pos B1] ca' A([p] D1 p p1) E(F1 p1))
<&([n2:neg B2] ca' A([p] D2 p n2) E(F2 n2)).

N3

1, (A2#A) � A2 , A1 , 2
N

1, (A2#A), A � A1 , 2
1, (A2#A) � A1 , 2

#L
�

N1

1, (A2#A), A1 � 2

O

N4

1, (A2#A) � A2 , 2
N2

1, (A2#A), A � 2
1, (A2#A) � 2

#L

N3

1, (A2#A) � A1 , A2 , 2�
N1

1, (A2#A), A1 � A2 , 2 O
N4

1, (A2#A) � A2 , 2

N
1, (A2#A), A � A1 , 2�

N1

1, (A2#A), A, A1 � 2 O
N2

1, (A2#A), A � 2

cal�orr1':
ca' A([p] orr1'(D1 p) P) E(orr1' F1 P)

<&([p1:pos B1] ca' A([p] D1 p p1) E(F1 p1)).

N
1 � A, A1 , (A 6 A2), 2

1 � A1 , (A 6A2), 2
6 R1�

N1

1, A1 � (A 6 A2), 2 O

N2

1 � A, (A 6A2), 2
1 � (A6 A2), 2

6 R1

N
1 � A1 , A, (A 6 A2), 2�

N1

1, A1 � A, (A 6A2), 2 O
N2

1 � A, (A 6 A2), 2
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cal�orr2':
ca' A([p] orr2'(D2 p) P) E(orr2' F2 P)

<&([p2:pos B2] ca' A([p] D2 p p2) E(F2 p2)).

N
1 � A, A1 , (A2 6A), 2

1 � A1 , (A2 6 A), 2
6 R2�

N1

1, A1 � (A2 6A), 2 O

N2

1 � A, (A2 6 A), 2
1 � (A2 6 A), 2

6 R2

N
1 � A1 , A, (A2 6A), 2�

N1

1, A1 � A,(A2 6 A), 2 O
N2

1 � A, (A2 6A), 2

cal�orl':
ca' A([p] orl'(D1 p)(D2 p) N) E(orl' F1 F2 N)

<&([n1:neg B1] ca' A([p] D1 p n1) E(F1 n1))
<&([n2:neg B2] ca' A([p] D2 p n2) E(F2 n2)).

N3

1, (A2 6 A), A2 � A1 , 2
N

1, (A2 6 A), A � A1 , 2
1, (A2 6 A) � A1 , 2

6 L
�

N1

1, (A2 6A), A1 � 2

O

N4

1, (A2 6A), A2 � 2
N2

1, (A2 6 A), A � 2
1, (A2 6 A) � 2

6 L

N3

1, (A2 6A), A2 � A1 , 2�
N1

1, (A2 6 A), A2 , A1 � 2 O
N4

1, (A2 6 A), A2 � 2

N
1, (A2 6 A), A � A1 , 2�

N1

1, (A2 6A), A, A1 � 2 O
N2

1, (A2 6 A), A � 2

cal�notr':
ca' A([p] notr'(D1 p) P) E(notr' F1 P)

<&([n1:neg B1] ca' A([p] D1 p n1) E(F1 n1)).

N
1, A � A1 , c(A), 2

1 � A1 , c(A),2
cR

�
N1

1, A1 � c(A), 2 O

N2

1, A � c(A), 2
1 � c(A), 2

cR

N
1, A � A1 , c(A), 2�

N1

1, A, A1 � c(A), 2 O
N2

1, A � c(A), 2

cal�notl':
ca' A([p] notl'(D1 p) N) E(notl' F1 N)

<&([p1:pos B1] ca' A([p] D1 p p1) E(F1 p1)).
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N
1, c(A) � A, A1 , 2

1, c(A) � A1 , 2
cL

�
N1

1, c(A), A1 � 2 O

N2

1, c(A) � A, 2
1, c(A) � 2

cL

N
1, c(A) � A1 , A, 2�

N1

1, c(A), A1 � A, 2 O
N2

1, c(A) � A, 2

cal�truer':
ca' A([p] truer' P) E(truer' P).

1 � A, �, 2
�R

�
N

1, A � �, 2 O 1 � �, 2
�R

cal�falsel':
ca' A([p] falsel' N) E(falsel' N).

1, = � A, 2
=L

�
N

1, =, A � 2 O 1, = � 2
=L

cal�forallr':
ca' A([p] forallr'(D1 p) P) E(forallr' F1 P)

<&([a:i][p1:pos(B1 a)]
ca' A([p] D1 p a p1) E(F1 a p1)).

Na1

1 � Aa1 , A1 , (\x .Ax), 2
1 � A1 , (\x .Ax), 2

\Ra1

�
N1

1, A1 � (\x .Ax), 2 O

N2 a1

1 � Aa1 , (\x .Ax), 2
1 � (\x .Ax), 2

\Ra1

Na
1 � A1 , Aa, (\x .Ax), 2�

N1

1, A1 � Aa, (\x .Ax), 2 O
N2a

1 � Aa, (\x .Ax), 2

cal�foralll':
ca' A([p] foralll' T(D1 p) N) E(foralll' T F1 N)

<&([n1] ca' A([p] D1 p n1) E(F1 n1)).

N
1, (\x .Ax), At � A1 , 2

1, (\x .Ax) � A1 , 2
\L

�
N1

1, (\x .Ax), A1 � 2 O

N2

1, (\x .Ax), At � 2
1, (\x .Ax) � 2

\L

N
1, (\x .Ax), At � A1 , 2�

N1

1, (\x .Ax), At, A1 � 2 O
N2

1, (\x .Ax), At � 2

cal�existsr':
ca' A([p] existsr' T(D1 p) P) E(existsr' T F1 P)

<&([p1] ca' A([p] D1 p p1) E(F1 p1)).
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N
1 � At, A1 , (_x .Ax), 2

1 � A1 , (_x .Ax), 2 �
N1

1, A1 � (_x .Ax), 2 O

N2

1 � At, (_x .Ax), 2
1 � (_x .Ax), 2

_R

N
1 � A1 , At, (_x .Ax), 2�

N1

1, A1 � At, (_x .Ax), 2 O
N2

1 � At, (_x .Ax), 2

cal�existsl':
ca'A([p] existsl'(D1 p) N) E(existsl' F1 N)

<&([a:i][n1:neg(B1 a)]
ca' A([p] D1 p a n1) E(F1 a n1)).

Na1

1, (_x .Ax), Aa1 � A1 , 2
1, (_x .Ax) � A1 , 2

_La1

�
N1

1, (_x .Ax), A1 � 2 O

N2 a1

1, (_x .Ax), Aa1 � 2
1, (_x .Ax) � 2

_La1

Na
1, (_x .Ax), Aa � A1 , 2�

N1

1, (_x .Ax), Aa, A1 � 2 O
N2 a

1, (_x .Ax), Aa � 2

APPENDIX B. CUT ELIMINATION

In this appendix we define intuitionistic and classical sequent calculi with a
primitive rule of cut and we show that they can be translated to cut-free derivations.
In both cases the proof is a straightforward induction on the structure of deriva-
tions, taking advantage of admissibility of cut in the cut-free system.

B.1. Intuitionistic Calculus

We use 1 �+ C for sequents in the system G+
3 with cut which is obtained by

adding

1 �+ A 1, A �+ C
1 �+ C

Cut

to the rules of the cut-free system G3 . With proof terms this rule reads

1 �+ d: A 1, h: A �+ e: C
1 �+ cut d(*h : A .e): C

Cut.

In order to represent derivations in G+
3 we introduce another judgment,

conc* A, rename all the rules for the cut-free calculus, and add

cut*: [A:o] conc* A
&>(hyp A&>conc* C)
&>conc* C.

The complete implementation is given below. Note that we do not need to rename
the hypothesis judgment hyp, since the hypotheses play the same role in both
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systems. The main lemmas concerning G+
3 such as weakening, contraction, sub-

stitution, and the adequacy of the encoding follow as before.

conc*: o&>type.

cut*: [A:o] conc* A
&>(hyp A&>conc* C)
&>conc* C.

axiom*: (hyp A&>conc* A).

andr*: conc* A
&>conc* B
&>conc*(A and B).

andl1*: (hyp A&>conc* C)
&>(hyp (A and B) &>conc* C).

andl2*: (hyp B&>conc* C)
&>(hyp (A and B) &>conc* C).

impr*: (hyp A&>conc* B)
&>conc*(A imp B).

impl*: conc* A
&>(hyp B&>conc* C)
&>(hyp (A imp B) &>conc* C).

orr1*: conc* A
&>conc*(A or B).

orr2*: conc* B
&>conc*(A or B).

orl*: (hyp A&>conc* C)
&>(hyp B&>conc* C)
&>(hyp (A or B)&>conc* C).

notr*: ([p:o] hyp A&>conc* p)
&>conc*(not A).

notl*: conc* A
&>(hyp (not A)&>conc* C).

truer*: conc*(true).

falsel*: (hyp (false) &>conc* C).

forallr*: ([a:i] conc*(A a))
&>conc*(forall A).

foralll*: [T:i](hyp (A T) &>conc* C)&>(hyp (forall A)&>conc* C).

existsr*: [T:i]conc*(A T)&>conc*(exists A).

existsl*: ([a:i]hyp (A a) &>conc* C)
&>(hyp (exists A)&>conc* C).

The theorem of cut elimination explicitly relates derivations in G+
3 to G3 .
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Theorem 8 (Cut Elimination). If D* :: (1 �+ d*: C ) is a derivation in G+
3 then

there exists a cut-free derivation D :: (1 � d: C) in G3 .

Proof. By structural induction on d, when the last inference R is not a cut we
appeal to the induction hypothesis on the premise(s) of the last inference and com-
bine the resulting cut-free derivation(s) with R. If the last inference is a cut we
generate cut-free derivations of the premises by induction hypothesis and then use
admissibility of cut to obtain a cut-free derivation for the conclusion. K

This proof is implemented by a relation between sequent derivations in the
system with cut and sequent derivations in the system without cut. We use the con-
vention that variables whose names end in a star (*) represent derivations that may
contain cut:

ce: conc* C&>conc C&>type.

ce�cut: ce(cut* A D1* D2*) D
<&ce D1* D1
<&([h1:hyp A] ce(D2* h1)(D2 h1))
<& ca A D1 D2 D.

ce�axiom: ce(axiom* H)(axiom H).

ce�andr: ce(andr* D1* D2*)(andr D1 D2)
<&ce D1* D1
<&ce D2* D2.

ce�andl1: ce(andl1* D1* H)(andl1 D1 H)
<&([h1:hyp A] ce(D1* h1)(D1 h1)).

ce�andl2: ce(andl2* D2* H)(andl2 D2 H)
<&([h2:hyp B] ce(D2* h2)(D2 h2)).

ce�impr: ce(impr* D1*)(impr D1)
<&([h1:hyp A] ce(D1* h1)(D1 h1)).

ce�impl: ce(impl* D1* D2* H)(impl D1 D2 H)
<&ce D1* D1
<&([h2:hyp B] ce(D2* h2)(D2 h2)).

ce�orr1: ce(orr1* D1*)(orr1 D1)
<&ce D1* D1.

ce�orr2: ce(orr2* D2*)(orr2 D2)
<&ce D2* D2.

ce�orl: ce(orl* D1* D2* H)(orl D1 D2 H)
<&([h1:hyp A] ce(D1* h1)(D1 h1))
<&([h2:hyp B] ce(D2* h2)(D2 h2)).

ce�notr: ce(notr* D1*)(notr D1)
<&([p:o][h1:hyp A] ce(D1* p h1)(D1 p h1)).

ce�notl: ce(notl* D1* H)(notl D1 H)
<&ce D1* D1.

ce�truer: ce(truer*)(truer).
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ce�falsel: ce(falsel* H)(falsel H).

ce�forallr: ce(forallr* D1*)(forallr D1)
<&[a:i] ce(D1* a)(D1 a).

ce�foralll: ce(foralll* T D1* H)(foralll T D1 H)
<&([h1] ce(D1* h1)(D1 h1)).

ce�existsr: ce(existsr* T D1*)(existsr T D1)
<&ce D1* D1.

ce�existsl: ce(existsl* D1* H)(existsl D1 H)
<&([a:i][h1:hyp (A1 a)] ce(D1* a h1)(D1 a h1)).

B.2. Classical Calculus

We write 1 �+ 2 for a sequent in the classical system with cut as a primitive rule
of inference. It is obtained by adding

1 �+ A, 2 1, A �+ 2
1 �+ 2

Cut

to the other rules of inference. With proof terms we have

1 w�d + p: A, 2 1, n: A w�e + 2

1 wwwwwww�cut(*p : A .d )(*n : A .e)
+ 2

Cut.

This system continues to satisfy weakening, contraction, and substitution
lemmas. The signature below specifies an adequate encoding of this extended
calculus in LF. We need a new judgment � that replaces * as the type of proof
terms in the representation. We systematically copy all declarations from the
cut-free system (appending � to their name) and add the cut rule as cut ^ :

�: type.
cut ^ : (pos A&>�)

&>(neg A&>�)
&>�.

axiom ^ : (neg A&>pos A&>�).

andr ^ : (pos A&>�)
&>(pos B&>�)
&>(pos(A and B)&>�).

andl1 ^ : (neg A&>�)
&>(neg(A and B)&>�).

andl2 ^ : (neg B&>�)
&>(neg(A and B)&>�).
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impr ^ : (neg A&>pos B&>�)
&>(pos(A imp B)&>�).

impl ^ : (pos A&>�)
&>(neg B&>�)
&>(neg(A imp B)&>�).

orr1 ^ : (pos A&>�)
&>(pos(A or B)&>�).

orr2 ^ : (pos B&>�)
&>(pos(A or B)&>�).

orl ^ : (neg A&>�)
&>(neg B&>�)
&>(neg(A or B)&>�).

notr ^ : (neg A&>�)
&>(pos(not A)&>�).

notl ^ : (pos A&>�)
&>(neg(not A)&>�).

truer ^ : (pos(true) &>�).

falsel ^ : (neg(false) &>�).

forallr ^ : ([a:i] pos(A a)&>�)
&>(pos(forall A)&>�).

foralll ^ : [T:i](neg(A T)&>�)
&>(neg(forall A)&>�).

existsr ^ : [T:i](pos(A T)&>�)
&>(pos(exists A)&>�).

existsl ^ : ([a:i]neg(A a)&>�)
&>(neg(exists A)&>�).

Cut elimination follows by a simple structural induction from the admissibility of
cut in the cut-free system. We present here only the Elf code implementing this
proof.

Theorem 9 (Classical cut elimination. Let D :: (1 w�d + 2) be a classical
sequent derivation possibly containing cut. Thus there exists a cut-free derivation
D$ :: (1 w�d $ 2)

Proof. By structural induction on d for each inference rule except cut we apply
the induction hypothesis to the premises and then reconstruct a cut-free derivation
with the same inference rule. In the case of cut, we appeal to the induction
hypothesis and then to admissibility of cut on the resulting two cut-free
derivations. K

This proof is implemented as a type family relating derivations with cut to
cut-free derivations. Note how the appeal to admissibility in the case of a cut is
implemented as a call to ca'.
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ce': �&>*&>type.

ce�cut': ce'(cut ^ D E) F
<&([p:pos A] ce'(Dp)(D' p))
<&([n:neg A] ce'(E n)(E' n))
<&ca' A D' E' F.

ce�axiom': ce'(axiom ^ N P)(axiom' N P).

ce�andr': ce'(andr ^ D1 D2 P)(andr' D1' D2' P)
<&([p1] ce'(D1 p1)(D1' p1))
<&([p2] ce'(D2 p2)(D2' p2)).

ce�andl1': ce'(andl1 ^ N1 N)(andl1' N1' N)
<&([n1] ce'(N1 n1)(N1' n1)).

ce�andl2': ce'(andl2 ^ N2 N)(andl2' N2' N)
<&([n2] ce'(N2 n2)(N2' n2)).

ce�impr': ce'(impr ^ D1 P)(impr' D1' P)
<&([n1][p2] ce'(D1 n1 p2)(D1' n1p2)).

ce�impl': ce'(impl ^ D1 D2 N)(impl' D1' D2' N)
<&([p1] ce'(D1 p1)(D1' p1))
<&([n2] ce'(D2 n2)(D2' n2)).

ce�orr1': ce'(orr1 ^ D1 P)(orr1' D1' P)
<&([p1] ce'(D1 p1)(D1' p1)).

ce�orr2': ce'(orr2 ^ D2 P)(orr2' D2' P)
<&([p2] ce'(D2 p2)(D2' p2)).

ce�orl': ce'(orl ^ D1 D2 N)(orl' D1' D2' N)
<&([n1] ce'(D1 n1)(D1' n1))
<&([n2] ce'(D2 n2)(D2' n2)).

ce�notr': ce'(notr ^ D1 P)(notr' D1' P)
<&([n1] ce'(D1 n1)(D1' n1)).

ce�norl': ce'(notl ^ D1 N)(notl' D1' N)
<&([p1] ce'(D1 p1)(D1' p1)).

ce�truer': ce'(truer ^ P)(truer' P).

ce�falsel': ce'(falsel ^ N)(falsel' N).

ce�forallr': ce'(forallr ^ D1 P)(forallr' D1' P)
<&([a:i][p1:pos(A1 a)] ce'(D1 a p1)(D1' a p1)).

ce�foralll': ce'(foralll ^ T D1 N)(foralll' T D1' N)
<&([n1] ce'(D1 n1)(D1' n1)).

ce�existsr': ce'(existsr ^ T D1 P)(existsr' T D1' P)
<&([p1] ce'(D1 p1)(D1' p1)).

ce�existsl': ce'(existsl ^ D1 N)(existsl' D1' N)
<&([a:i][n1:neg(A1 a)] ce'(D1 a n1)(D1' a n1)).
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