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Abstract

Higher-order program transformations raise new challenges for proving properties of
their output, since they resist traditional, first-order proof techniques. In this work,
we consider (1) the “one-pass” continuation-passing style (CPS) transformation,
which is second-order, and (2) the occurrences of parameters of continuations in its
output. To this end, we specify the one-pass CPS transformation relationally and
we use the proof technique of logical relations.

1 Introduction

We are interested in two syntactic properties of CPS programs: the occur-
rences of continuation identifiers and of parameters of continuations. The
first occurrence formalizes a folklore property in the continuation community
that “one k is enough” [10]. The second occurrence was informally stated
in connection with the direct-style transformation, which is an inverse of the
CPS transformation [3]. We address the second occurrence property here.
CPS programs are typically obtained by CPS transformation, and the
canonical CPS transformation is due to Plotkin, in the mid-70’s [17]. It, how-
ever, gives rise to annoying “administrative reductions” that are interleaved
with actual reductions. Proving properties of CPS programs such as relating
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their reduction steps with the corresponding reduction steps in direct style
thus required Plotkin to develop a so-called “colon translation” [17] which has
stuck [12,19].

In the late 80’s, however, a new CPS transformation was developed that
operates in one pass and performs administrative reductions at transformation
time [1,6,23]. This one-pass transformation is higher-order (or more precisely:
second-order), and it is not clear how to prove properties about it, which is
our goal here.

This work.

We restate the one-pass CPS transformation in relational form and we
present a proof technique using logical relations to prove a syntactic property
of the output of the CPS transformation. This note grew out of a general
study of the two syntactic properties mentioned above [5,7,9].

Overview.

The rest of this note is organized as follows. In Section 2, we present a
BNF of the A-calculus in direct style, the corresponding BNF of the A-calculus
in CPS, and two successive refinements of the CPS transformation: Plotkin’s
original specification, the one-pass specification in functional form, and our
one-pass specification in relational form. In Section 3, we present the syntactic
property of interest, and we prove that it is satisfied by the output of the CPS
transformation. Section 4 concludes.

2 Direct style, continuation-passing style, and the CPS
transformation

2.1 Direct-style (DS) programs

The BNF of the pure A-calculus reads as follows. We refer to this A-calculus
as direct style (DS) to distinguish it from the continuation-passing style (CPS)
calculus introduced below.

r € DRoot — DS terms ro=e

e € DExp — DS expressions en=eger |t
t € DTriv — DS trivial expressions to= x| Axor
x € lde — identifiers

The distinction between trivial expressions and (serious) expressions orig-
inates in Reynolds’s work [18].

2.2 Continuation-passing style (CPS) programs

The BNF of CPS terms reads as follows. (NB: We distinguish between the
original identifiers x coming from the direct-style term, and the fresh identifiers
k and v denoting continuations and the arguments of continuations.)

20
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[[6]] DRoot _ [[6]] DExp

[[6() 61]]DEXP = \k. Heo]]DEXp )\’U(). Hel]]DEXp )\’01.’00 V1 k
where k, vy and v, are fresh.
[t]°5® = Ae.k [t]°™  where k is fresh.

[[ l‘]] DTriv =1

[[)\.’L'.T]]DTﬁV = \r. [[,r]]DRoot

Fig. 1. Plotkin’s left-to-right, call-by-value CPS transformation

r € CRoot — CPS terms ro= Ak.e

e € CExp — CPS (serious) expression en=totic | ct

t € CTriv. — CPS trivial expression te=x | der | v
¢ € CCont — CPS continuations cu=Xv.e | k

x € lde — source identifiers

k- € Cont — fresh continuation identifiers

v € Var — fresh parameters of continuations

CPS terms are remarkable in that they satisfy the three properties of in-
difference, simulation, and translation [14,17,20]. Indifference: CPS terms are
evaluation-order independent. Simulation: the CPS transformation encodes
an evaluation order. Translation: there is an equational correspondence be-
tween direct-style and CPS calculi.

2.8 The CPS transformation

2.3.1 From Plotkin’s CPS transformation to the one-pass CPS transforma-
tion

Plotkin’s original call-by-value CPS transformation is displayed in Figure 1,

where it is phrased to match the syntactic domains of Section 2.1 [17]. Using

it as a first-order rewriting system, however, gives rise to the notion of ad-

ministrative redexes: redexes solely due to the CPS transformation and not

corresponding to an actual reduction step in the original program. The corre-

sponding administrative reductions are annoying because they are interleaved
with actual reductions [12,13,17,19,20]:

actual O CPS ' Oadministrative
reductions \~ g transformation CPS + actual

reductions

Let us consider the following simple example, using Figure 1.

[Az.z 2]PRot = Nk.k Az Ak.(Mk.k x) (Mvg.(Me.k ) (Avy.vgv1 k))
21
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[-]°R°t : DRoot — CRoot
[e] PR = k. [e]°™*P([t] kt) where k is fresh.

[]P® : DExp — (CTriv — CExp) — CExp
[[6() 61]]DEXP = [K}] Heo]]DEXp [t()] Hel]]DEXp [tl] t() tl )\’U.Ii(’U)

where v is fresh.
[[t]]DEXp — [K}] K}([[t]]DTnV)

[1°™Y : DTriv — CTriv
[[ .’L‘]] DTriv =7

[[)\.’L'.T]]DTﬁV = \r. [[,r]]DRoot

Fig. 2. The one-pass CPS transformation formulated as a function

The CPS-transformed program contains two administrative redexes: the two
occurrences of (Ak....).... And reducing them yields two more administrative
redexes.

It turns out, however, that administrative reductions can be factored out
of a CPS program, so that the resulting reductions are actual ones:

actual O CPS administrative O actual
reductions ‘< pg transformationCPS reductions CPS~ reductions

Sabry and Felleisen have documented such an approach [2,19-21].

Furthermore, it turns out that CPS transformation and administrative
reductions can be integrated into one, higher-order, rewriting system that
directly produces a CPS program without administrative redexes, in one pass
[1,6,8,23]:

actual CPS actual
reductions QS transfoimatlon CQ reductions

administrative
reductions

Let us revisit the simple example above, using Figure 2.

[Az.z 2]PRot = \k.k Az Nk.x x k

We consider this higher-order CPS transformation here, as displayed in
Figure 2, where it is phrased to match the syntactic domains of Sections 2.1
and 2.2. The one-pass CPS transformation requires meta-level abstractions,
written as [t] e, and the corresponding applications, written as k(t), where &
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Cei [kt = e ¢ Py
e Dﬂgt Mk.e! - ¢ K DEx /g(t/)
=e1; [ti]tots Av.k(v) DExp e e [to] €, DExp
Feger s k¥ ¢

DRoot
Fr— 7
DTriv DTriv
Fae — x F A x.r — Az’

Fig. 3. The one-pass CPS transformation formulated as a judgment

ranges over meta-level functions from trivial CPS expressions to CPS expres-
sions. The key type reads

[]°®® : DExp — (CTriv — CExp) — CExp.

2.4 The one-pass CPS transformation in relational form

For the purpose of our work here, Figure 3 re-expresses the one-pass CPS
transformation of Figure 2 in relational form. It uses three judgments. A
direct-style term r is transformed into a CPS term 7’ whenever the judgment

e
is satisfied. Given a (higher-order) accumulator x, a direct-style expression e
is transformed into a CPS expression ¢ whenever the judgment
Fe; k DB o
is satisfied. Finally, a direct-style trivial expression t is transformed into a
CPS trivial expression t' whenever the judgment

e

is satisfied.

These judgments can be interpreted operationally by assuming that r, e
and k, or t are given and 7', ¢/, and t' are to be constructed by building a
derivation in a bottom-up fashion. The meta-level applications arising in two
of the rules are reduced administratively.

NB: In the inference rule for applications, ty is “new”, i.e., the deduction
of the left premise is parametric in ty. This parameter may, however, occur
free in €/, which means that we can substitute an arbitrary trivial term ¢ for ¢,
in this derivation and obtain a derivation of - ey ; [t1]t 1 Av.k(v) DExp el ft/to]
This property is exploited crucially in the proof of Section 3.
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. CExp CTriv =/ |_CCont
® |_Var e = |_Var t ) = — |_Var c
| CRoot — |_CExp
|_Var Ak.e — [~ Var ct
| CTnvt — |_CTrin .= ’ CCont
= ~Var —1 [ Var 0, =0 — Var
— |_CExp
= |_Var t() tic
|_CRoot
= |_CTriv = CTriv = = . CTriv =
EEva x; 2 E vy Arr; 2 E,0 v, v; 2
- _ CExp
=0 Py €
° |_CCont k = |:Cgont \v.e
Fig. 4. Valid occurrences of parameters of continuations in a CPS term

2.5 Summary and conclusion

We have specified (1) the input language of Plotkin’s left-to-right, call-by-value
CPS transformation, (2) the corresponding output language, which inciden-
tally is closed under B-reduction, and (3) a one-pass version of Plotkin’s CPS
transformation in relational form.

3 A syntactic property of CPS programs

The CPS transformation introduces two classes of fresh identifiers: the con-
tinuation identifiers £ and the parameters of continuations v. We consider the
occurrences of v’s here.

Figure 4 characterizes the occurrence conditions on the formal parameters
of continuations v, which occur in a stack-like fashion [3]. Here we use E to
range over stacks of continuation parameters defined below, where o denotes
the empty stack.

E =6 | E 0
Figure 4 should be read as follows. Given a CPS term Ak.e, the judgment
=t Ak.e
is satisfied whenever the parameters of continuations declared in e occur prop-
erly in e. Given a CPS expression e occurring in the scope of parameters of

continuations properly listed in =, the judgment

— |_CExp
= Fvar €

is satisfied whenever the variables in = and all the other parameters of con-
tinuations declared in e occur properly in e. Similarly, given a trivial term ¢
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occurring in the scope of parameters of continuations properly listed in =, the
judgment

= LCTiiv 4 . =
— [~ Var ) =

is satisfied whenever Z' is a prefix of = and the remaining variables of = occur
properly in ¢t. And finally, given a continuation ¢ occurring in the scope of

parameters of continuations properly listed in a list =, the judgment

—= |__CCont
— [~ Var c

is satisfied whenever all the parameters of continuations declared in ¢ and the
variables listed in = occur properly in c.

This occurrence condition essentially says that formal parameters of con-
tinuations are introduced and used in a stack-like manner.

Let us prove that CPS-transforming a direct-style term r yields a CPS term
r" whose continuation identifiers satisfy the occurrence conditions of Figure 4.
In other words, we would like to show that

DRoot
if Fr =%y then (R0t

Clearly, we cannot prove this inductively by itself since properties at the root
of a term are defined in terms of the expressions it contains. The critical is-
sue is the property of the higher-order accumulators x we must prove (in the
inductive conclusion) and require (in the inductive hypothesis) for the trans-
lation of expressions in Figure 3. In the CPS transformation, a higher-order
accumulator is a (meta-level) function from trivial terms to expressions, which
suggests the method of logical relations [22]. The idea behind binary logical
relations is to consider two functions related if they map related arguments to
related results. In unary form: a function is valid if it maps valid arguments to
valid results. This kind of definition is pervasive in the application of logical
frameworks to meta-theoretic reasoning (e.g., [9,15]). It works smoothly here.

Four notions of validity arise: for root terms, for serious expressions, for
trivial expressions, and for accumulators. In their definitions, we must account
for the context = in which an expression might occur. For root terms, serious
expressions, and trivial expressions, the notion of validity is derived directly
from the property we are trying to prove; for accumulators it arises from the
considerations of logical relations as motivated above. We also streamline the
definitions by considering separately the case of a trivial variable v, since such
a variable is never the result of the translation of a trivial direct-style term
(see Theorem 3.2 (3)).

Definition 3.1
(1) r'" is Var-valid if |_CRoot ,
(2) € is E-Var-valid if 2 =027 ¢
(8) t' is Var-valid if = |:‘C/3;7’w t: = for every =.
(4) K is E-Var-valid if
(a) =, v |_€£Ip ( ), and
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b) = =SB w ("), for any Var-valid t'.
( Var
(5) c is 2-Var-valid if = E§C c.

This definition is more complex than it may appear at first, since it involves
meta-level applications x(v) and x(t') and therefore, implicitly, substitution.

Theorem 3.2
(1) If Er PRoSt 11 then 1 s Var-valid.

(2) If k is Z-Var-valid and e ; Kk P55 ¢! then ¢ is =-Var-valid.

(3) If -t DIy then ¢ is Var-valid.

Proof. By mutual mductlon on the derivations R, £, and T of F r DRoot r,

Fe; Kk DExp e, and ¢t DTy ', respectively.

In a slight abuse of notation, we write e(ty) and £(tp) to indicate the
dependence of e or £ on a parameter ¢y and e(t) and £(t) for the result of
substituting ¢ for ¢ in e and &, respectively.

&
DEX
- t
Case R = L]
e i€
Then k = [t] kt is O—Var-vahd
_CTriv ,, .
(a) * v Yo v e holds, and
e, v |:Var Pk
° |_8Triv
(b) e é{EXP for any Var-valid ¢
I~ Var
Hence, by mductlon hypothesis (2) on £, o |—85Xp ' and thus =R \k.e',
51 (tO) 5()
DEx DEx
Case £ — €1 [t totr Av.k(v) = €i(to)  Feo; [to] €i(to) ¢
Feger; i
Assume £ is Z-Var-valid. We need to show that ko = [to] €] (to) is E-Var-

valid, since then Z = ¢’ by induction hypothesis (2) on &. Thus we

need to show Properties (a) and (b) of Definition 3.1(4) for .
(a) We need Z, vy o™ ko(vg). Consider

51 (’U())
Foep; [t1] vt Av.k(v) DExp e (vo)

We would like to show that
K1 = [t1] vo t1 Mv.k(v)

is =, vo-Var-valid, since then €} (vy) = ko(vo) is Z, vo-Var-valid by in-
duction hypothesis (2) on & (vg). Therefore we need to consider the two
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cases of Definition 3.1(4).
(a) E, vo, v1 =y k1 (v1). We derive this as follows:

since Kk is =-Var-valid

CExp
i ‘—‘? v ’_Var H(U)
E, v, v1 EGEY 015 B vg Z, v EGEY vy 5 2 = ECont Ay k(v)

=, v, V1 Eo® vg vy M.k (v)
(b) 2, vo EVE® ky(t)), where t) is Var-valid. This is established by the
derivation
since Kk is =-Var-valid
CExp
Z U Fvar - #(v)

CTEv 4o 3 = 2 E=9Cont Xu.k(v)

since ¢ is Var-valid
= CT .= =
=, Yo |_Va1:er 15 = Vo =, Vo |_
= . CExp /
E, V0 Fvar~ Vot) Av.k(v)
Thus k; is =, vp-Var-valid. Therefore, by induction hypothesis on

51 (UO)7

=, vo Fva " Fo(vo)-
(b) We need Z =y k(t)) for any Var-valid ¢). Consider
& (ty)
Fer; [t]tht ak(v) =X € (th)
——
= ro(tp)
We would like to show that
K1 = [t1] ty t1 Av.k(v)
is =-Var-valid, so we can apply the induction hypothesis to & (tg).

Again we need to consider the two clauses of Definition 3.1(4).
(a) B, vy =y ki (v1). We derive this as follows:

since & is :—Var—valid

since t is Var-valid E,v |_Varxp K(v)
S F v 2 EESIVESE E RO ()

2, 01 o th vy M.k (v)

(b) E _CExp (t}) for any Var-valid ¢]. We construct:

— I Var

since k is =-Var-valid

since t} is Var-valid since t{, is Var-valid E, v Fvar . K£(V)
E Va5 B E EVarto5 = 2 EVa™ k()
= oot Av.k(v)
Hence k; is =-Var-valid and thus = |:SiXp é@ by induction

= Fo(tp)
hypothesis (2) on & (tg).
Thus kg is Z-Var-valid. Hence €’ is Z-Var-valid by induction hypothesis

(2) on &.
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T

-t 2R g

Ft; K DExp k(1) .
By induction hypothesis (3) on 7, ¢’ is Var-valid. Since we assume that s
is Z-Var-valid, x(t') is also =-Var-valid by clause 4b in Definition 3.1.

Case T =

Case € =

DTriv
Fx — ‘ _
= LChv . = is an axiom for any =.
— ™ Var y
R
DRoot
Fr—" 7

Case T =

-z 22 )\x.r’.
by i.h. (1) on R
__CRoot ,./

= r
We construct — CTVM
riv

= = N
2 v Az 2

4 Conclusion

We have characterized an occurrence condition in CPS programs, Var-validity,
and we have proven that this condition holds for the output of the one-pass
CPS transformation. To this end, we developed a third-order proof technique
matching the second-order nature of the one-pass CPS transformation.

Elsewhere [5,9], we investigate another, similar, occurrence condition on
continuation identifiers. Using the same technique, we prove that the one-pass
CPS transformation yields terms that satisfy this other occurrence condition.
We then consider the closure of both occurrence conditions under S-reduction
and their application to the direct-style transformation and to stack-based
abstract machines for CPS programs.

We have also formalized most of the languages, transformations, proper-
ties, and proofs in Elf, a constraint logic-programming language based on the
logical framework LF [9,11,16]. This formalization is small but non-trivial. It
captures the computational content of the translations and the meta-theoretic
reasoning in a declarative, yet executable way. Because Elf is built around the
notions of substitution and meta-level function, the formalization is direct
and (we find) elegant. It is also unusual in that since it abstracts over con-
tinuations, it requires third-order constants for the CPS transformation. This
exemplifies a new technique for representing deductive systems in LF, which
is interesting in its own right.

We can summarize this new technique as follows: we translate a two-level
functional presentation to a relational representation in a logical framework
by mapping “static” abstractions and applications directly to meta-level ab-
stractions and applications. This means that static redexes of a two-level func-
tional representation become (3-redexes in the logical framework. Statically
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convertible terms are therefore definitionally equal, avoiding explicit treatment
of administrative reductions. A direct encoding of the meta-theory of such a
representation will be third-order, since we reason about second-order objects.

Examples of two-level functional presentations include all one-pass CPS
transformations, state-passing transformations, etc., and more generally the
one-pass transformation into monadic style [13]. Type-directed partial evalu-
ation provides another example of two-level functional presentations [4,9].

Finally, and most significantly, the encoding suggested the proof technique.
This work thus demonstrates, on a small scale, the value of a logical framework
as a conceptual tool in the theoretical study of programming languages.
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