HOOTS99 Preliminary Version

On proving syntactic properties of CPS programs

Olivier Danvy and Belmina Dzafic!

BRICS
Department of Computer Science, University of Aarhus
Building 540, Ny Munkegade, DK-8000 Aarhus C, Denmark.
E-mail: {danvy,belmina} @brics.dk

Frank Pfenning 2

School of Computer Science, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213-3891, USA.
E-mail: fp@cs.cmu.edu

Abstract

Higher-order program transformations raise new challenges for proving properties of
their output, since they resist traditional, first-order proof techniques. In this work,
we consider (1) the “one-pass” continuation-passing style (CPS) transformation,
which is second-order, and (2) the occurrences of parameters of continuations in its
output. To this end, we specify the one-pass CPS transformation relationally and
we use the proof technique of logical relations.

1 Introduction

We are interested in two syntactic properties of CPS programs: the occur-
rences of continuation identifiers and of parameters of continuations. The
first occurrence formalizes a folklore property in the continuation community
that “one k is enough” [10]. The second occurrence was informally stated
in connection with the direct-style transformation, which is an inverse of the
CPS transformation [3]. We address the second occurrence property here.
CPS programs are typically obtained by CPS transformation, and the
canonical CPS transformation is due to Plotkin, in the mid-70’s [17]. It, how-
ever, gives rise to annoying “administrative reductions” that are interleaved
with actual reductions. Proving properties of CPS programs such as relating

! Basic Research in Computer Science (http://www.brics.dk),
Centre of the Danish National Research Foundation.
2 This work is supported by NSF Grant CCR-9303383.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

DANvy, DzAFIC, AND PFENNING

their reduction steps with the corresponding reduction steps in direct style
thus required Plotkin to develop a so-called “colon translation” [17] which has
stuck [12,19].

In the late 80’s, however, a new CPS transformation was developed that
operates in one pass and performs administrative reductions at transformation
time [1,6,23]. This one-pass transformation is higher-order (or more precisely:
second-order), and it is not clear how to prove properties about it, which is
our goal here.

This work.

We restate the one-pass CPS transformation in relational form and we
present a proof technique using logical relations to prove a syntactic property
of the output of the CPS transformation. This note grew out of a general
study of the two syntactic properties mentioned above [5,7,9].

Overview.

The rest of this note is organized as follows. In Section 2, we present a
BNF of the A-calculus in direct style, the corresponding BNF of the A-calculus
in CPS, and two successive refinements of the CPS transformation: Plotkin’s
original specification, the one-pass specification in functional form, and our
one-pass specification in relational form. In Section 3, we present the syntactic
property of interest, and we prove that it is satisfied by the output of the CPS
transformation. Section 4 concludes.

2 Direct style, continuation-passing style, and the CPS
transformation

2.1 Direct-style (DS) programs

The BNF of the pure A-calculus reads as follows. We refer to this A-calculus
as direct style (DS) to distinguish it from the continuation-passing style (CPS)
calculus introduced below.

r € DRoot — DS terms ro=e

e € DExp — DS expressions en=eger |t
t € DTriv — DS trivial expressions to= x| Axor
x € lde — identifiers

The distinction between trivial expressions and (serious) expressions orig-
inates in Reynolds’s work [18].

2.2 Continuation-passing style (CPS) programs

The BNF of CPS terms reads as follows. (NB: We distinguish between the
original identifiers x coming from the direct-style term, and the fresh identifiers
k and v denoting continuations and the arguments of continuations.)

20

DANvy, DzAFIC, AND PFENNING

[[6]] DRoot _ [[6]] DExp

[[6() 61]]DEXP = \k. Heo]]DEXp)\’U(). Hel]]DEXp)\’01.’00 V1 k
where k, vy and v, are fresh.
[t]°5® = Ae.k [t]°™ where k is fresh.

[[l‘]] DTriv =1

[[)\.’L'.T]]DTﬁV = \r. [[,r]]DRoot

Fig. 1. Plotkin’s left-to-right, call-by-value CPS transformation

r € CRoot — CPS terms ro= Ak.e

e € CExp — CPS (serious) expression en=totic | ct

t € CTriv. — CPS trivial expression te=x | der | v
¢ € CCont — CPS continuations cu=Xv.e | k

x € lde — source identifiers

k- € Cont — fresh continuation identifiers

v € Var — fresh parameters of continuations

CPS terms are remarkable in that they satisfy the three properties of in-
difference, simulation, and translation [14,17,20]. Indifference: CPS terms are
evaluation-order independent. Simulation: the CPS transformation encodes
an evaluation order. Translation: there is an equational correspondence be-
tween direct-style and CPS calculi.

2.8 The CPS transformation

2.3.1 From Plotkin’s CPS transformation to the one-pass CPS transforma-
tion

Plotkin’s original call-by-value CPS transformation is displayed in Figure 1,

where it is phrased to match the syntactic domains of Section 2.1 [17]. Using

it as a first-order rewriting system, however, gives rise to the notion of ad-

ministrative redexes: redexes solely due to the CPS transformation and not

corresponding to an actual reduction step in the original program. The corre-

sponding administrative reductions are annoying because they are interleaved
with actual reductions [12,13,17,19,20]:

actual O CPS ' Oadministrative
reductions \~ g transformation CPS + actual

reductions

Let us consider the following simple example, using Figure 1.

[Az.z 2]PRot = Nk.k Az Ak.(Mk.k x) (Mvg.(Me.k) (Avy.vgv1 k))
21

DANvy, DzAFIC, AND PFENNING

[-]°R°t : DRoot — CRoot
[e] PR = k. [e]°™*P([t] kt) where k is fresh.

[]P® : DExp — (CTriv — CExp) — CExp
[[6() 61]]DEXP = [K}] Heo]]DEXp [t()] Hel]]DEXp [tl] t() tl)\’U.Ii(’U)

where v is fresh.
[[t]]DEXp — [K}] K}([[t]]DTnV)

[1°™Y : DTriv — CTriv
[[.’L‘]] DTriv =7

[[)\.’L'.T]]DTﬁV = \r. [[,r]]DRoot

Fig. 2. The one-pass CPS transformation formulated as a function

The CPS-transformed program contains two administrative redexes: the two
occurrences of (Ak....).... And reducing them yields two more administrative
redexes.

It turns out, however, that administrative reductions can be factored out
of a CPS program, so that the resulting reductions are actual ones:

actual O CPS administrative O actual
reductions ‘< pg transformationCPS reductions CPS~ reductions

Sabry and Felleisen have documented such an approach [2,19-21].

Furthermore, it turns out that CPS transformation and administrative
reductions can be integrated into one, higher-order, rewriting system that
directly produces a CPS program without administrative redexes, in one pass
[1,6,8,23]:

actual CPS actual
reductions QS transfoimatlon CQ reductions

administrative
reductions

Let us revisit the simple example above, using Figure 2.

[Az.z 2]PRot = \k.k Az Nk.x x k

We consider this higher-order CPS transformation here, as displayed in
Figure 2, where it is phrased to match the syntactic domains of Sections 2.1
and 2.2. The one-pass CPS transformation requires meta-level abstractions,
written as [t] e, and the corresponding applications, written as k(t), where &

22

DANvy, DzAFIC, AND PFENNING

Cei [kt = e ¢ Py
e Dﬂgt Mk.e! - ¢ K DEx /g(t/)
=e1; [ti]tots Av.k(v) DExp e e [to] €, DExp
Feger s k¥ ¢

DRoot
Fr— 7
DTriv DTriv
Fae — x F A x.r — Az’

Fig. 3. The one-pass CPS transformation formulated as a judgment

ranges over meta-level functions from trivial CPS expressions to CPS expres-
sions. The key type reads

[]°®® : DExp — (CTriv — CExp) — CExp.

2.4 The one-pass CPS transformation in relational form

For the purpose of our work here, Figure 3 re-expresses the one-pass CPS
transformation of Figure 2 in relational form. It uses three judgments. A
direct-style term r is transformed into a CPS term 7’ whenever the judgment

e
is satisfied. Given a (higher-order) accumulator x, a direct-style expression e
is transformed into a CPS expression ¢ whenever the judgment
Fe; k DB o
is satisfied. Finally, a direct-style trivial expression t is transformed into a
CPS trivial expression t' whenever the judgment

e

is satisfied.

These judgments can be interpreted operationally by assuming that r, e
and k, or t are given and 7', ¢/, and t' are to be constructed by building a
derivation in a bottom-up fashion. The meta-level applications arising in two
of the rules are reduced administratively.

NB: In the inference rule for applications, ty is “new”, i.e., the deduction
of the left premise is parametric in ty. This parameter may, however, occur
free in €/, which means that we can substitute an arbitrary trivial term ¢ for ¢,
in this derivation and obtain a derivation of - ey ; [t1]t 1 Av.k(v) DExp el ft/to]
This property is exploited crucially in the proof of Section 3.

23

DANvy, DzAFIC, AND PFENNING

. CExp CTriv =/ |_CCont
® |_Var e = |_Var t) = — |_Var c
| CRoot — |_CExp
|_Var Ak.e — [~ Var ct
| CTnvt — |_CTrin .= ’ CCont
= ~Var —1 [Var 0, =0 — Var
— |_CExp
= |_Var t() tic
|_CRoot
= |_CTriv = CTriv = = . CTriv =
EEva x; 2 E vy Arr; 2 E,0 v, v; 2
- _ CExp
=0 Py €
° |_CCont k = |:Cgont \v.e
Fig. 4. Valid occurrences of parameters of continuations in a CPS term

2.5 Summary and conclusion

We have specified (1) the input language of Plotkin’s left-to-right, call-by-value
CPS transformation, (2) the corresponding output language, which inciden-
tally is closed under B-reduction, and (3) a one-pass version of Plotkin’s CPS
transformation in relational form.

3 A syntactic property of CPS programs

The CPS transformation introduces two classes of fresh identifiers: the con-
tinuation identifiers £ and the parameters of continuations v. We consider the
occurrences of v’s here.

Figure 4 characterizes the occurrence conditions on the formal parameters
of continuations v, which occur in a stack-like fashion [3]. Here we use E to
range over stacks of continuation parameters defined below, where o denotes
the empty stack.

E =6 | E 0
Figure 4 should be read as follows. Given a CPS term Ak.e, the judgment
=t Ak.e
is satisfied whenever the parameters of continuations declared in e occur prop-
erly in e. Given a CPS expression e occurring in the scope of parameters of

continuations properly listed in =, the judgment

— |_CExp
= Fvar €

is satisfied whenever the variables in = and all the other parameters of con-
tinuations declared in e occur properly in e. Similarly, given a trivial term ¢

24

DANvy, DzAFIC, AND PFENNING

occurring in the scope of parameters of continuations properly listed in =, the
judgment

= LCTiiv 4 . =
— [~ Var) =

is satisfied whenever Z' is a prefix of = and the remaining variables of = occur
properly in ¢t. And finally, given a continuation ¢ occurring in the scope of

parameters of continuations properly listed in a list =, the judgment

—= |__CCont
— [~ Var c

is satisfied whenever all the parameters of continuations declared in ¢ and the
variables listed in = occur properly in c.

This occurrence condition essentially says that formal parameters of con-
tinuations are introduced and used in a stack-like manner.

Let us prove that CPS-transforming a direct-style term r yields a CPS term
r" whose continuation identifiers satisfy the occurrence conditions of Figure 4.
In other words, we would like to show that

DRoot
if Fr =%y then (R0t

Clearly, we cannot prove this inductively by itself since properties at the root
of a term are defined in terms of the expressions it contains. The critical is-
sue is the property of the higher-order accumulators x we must prove (in the
inductive conclusion) and require (in the inductive hypothesis) for the trans-
lation of expressions in Figure 3. In the CPS transformation, a higher-order
accumulator is a (meta-level) function from trivial terms to expressions, which
suggests the method of logical relations [22]. The idea behind binary logical
relations is to consider two functions related if they map related arguments to
related results. In unary form: a function is valid if it maps valid arguments to
valid results. This kind of definition is pervasive in the application of logical
frameworks to meta-theoretic reasoning (e.g., [9,15]). It works smoothly here.

Four notions of validity arise: for root terms, for serious expressions, for
trivial expressions, and for accumulators. In their definitions, we must account
for the context = in which an expression might occur. For root terms, serious
expressions, and trivial expressions, the notion of validity is derived directly
from the property we are trying to prove; for accumulators it arises from the
considerations of logical relations as motivated above. We also streamline the
definitions by considering separately the case of a trivial variable v, since such
a variable is never the result of the translation of a trivial direct-style term
(see Theorem 3.2 (3)).

Definition 3.1
(1) r'" is Var-valid if |_CRoot ,
(2) € is E-Var-valid if 2 =027 ¢
(8) t' is Var-valid if = |:‘C/3;7’w t: = for every =.
(4) K is E-Var-valid if
(a) =, v |_€£Ip (), and

25

DANvy, DzAFIC, AND PFENNING

b) = =SB w ("), for any Var-valid t'.
(Var
(5) c is 2-Var-valid if = E§C c.

This definition is more complex than it may appear at first, since it involves
meta-level applications x(v) and x(t') and therefore, implicitly, substitution.

Theorem 3.2
(1) If Er PRoSt 11 then 1 s Var-valid.

(2) If k is Z-Var-valid and e ; Kk P55 ¢! then ¢ is =-Var-valid.

(3) If -t DIy then ¢ is Var-valid.

Proof. By mutual mductlon on the derivations R, £, and T of F r DRoot r,

Fe; Kk DExp e, and ¢t DTy ', respectively.

In a slight abuse of notation, we write e(ty) and £(tp) to indicate the
dependence of e or £ on a parameter ¢y and e(t) and £(t) for the result of
substituting ¢ for ¢ in e and &, respectively.

&
DEX
- t
Case R = L]
e i€
Then k = [t] kt is O—Var-vahd
_CTriv ,, .
(a) * v Yo v e holds, and
e, v |:Var Pk
° |_8Triv
(b) e é{EXP for any Var-valid ¢
I~ Var
Hence, by mductlon hypothesis (2) on £, o |—85Xp ' and thus =R \k.e',
51 (tO) 5()
DEx DEx
Case £ — €1 [t totr Av.k(v) = €i(to) Feo; [to] €i(to) ¢
Feger; i
Assume £ is Z-Var-valid. We need to show that ko = [to] €] (to) is E-Var-

valid, since then Z = ¢’ by induction hypothesis (2) on &. Thus we

need to show Properties (a) and (b) of Definition 3.1(4) for .
(a) We need Z, vy o™ ko(vg). Consider

51 (’U())
Foep; [t1] vt Av.k(v) DExp e (vo)

We would like to show that
K1 = [t1] vo t1 Mv.k(v)

is =, vo-Var-valid, since then €} (vy) = ko(vo) is Z, vo-Var-valid by in-
duction hypothesis (2) on & (vg). Therefore we need to consider the two

26

DANvy, DzAFIC, AND PFENNING

cases of Definition 3.1(4).
(a) E, vo, v1 =y k1 (v1). We derive this as follows:

since Kk is =-Var-valid

CExp
i ‘—‘? v ’_Var H(U)
E, v, v1 EGEY 015 B vg Z, v EGEY vy 5 2 = ECont Ay k(v)

=, v, V1 Eo® vg vy M.k (v)
(b) 2, vo EVE® ky(t)), where t) is Var-valid. This is established by the
derivation
since Kk is =-Var-valid
CExp
Z U Fvar - #(v)

CTEv 4o 3 = 2 E=9Cont Xu.k(v)

since ¢ is Var-valid
= CT .= =
=, Yo |_Va1:er 15 = Vo =, Vo |_
= . CExp /
E, V0 Fvar~ Vot) Av.k(v)
Thus k; is =, vp-Var-valid. Therefore, by induction hypothesis on

51 (UO)7

=, vo Fva " Fo(vo)-
(b) We need Z =y k(t)) for any Var-valid ¢). Consider
& (ty)
Fer; [t]tht ak(v) =X € (th)
——
= ro(tp)
We would like to show that
K1 = [t1] ty t1 Av.k(v)
is =-Var-valid, so we can apply the induction hypothesis to & (tg).

Again we need to consider the two clauses of Definition 3.1(4).
(a) B, vy =y ki (v1). We derive this as follows:

since & is :—Var—valid

since t is Var-valid E,v |_Varxp K(v)
S F v 2 EESIVESE E RO ()

2, 01 o th vy M.k (v)

(b) E _CExp (t}) for any Var-valid ¢]. We construct:

— I Var

since k is =-Var-valid

since t} is Var-valid since t{, is Var-valid E, v Fvar . K£(V)
E Va5 B E EVarto5 = 2 EVa™ k()
= oot Av.k(v)
Hence k; is =-Var-valid and thus = |:SiXp é@ by induction

= Fo(tp)
hypothesis (2) on & (tg).
Thus kg is Z-Var-valid. Hence €’ is Z-Var-valid by induction hypothesis

(2) on &.
27

DANvy, DzAFIC, AND PFENNING

T

-t 2R g

Ft; K DExp k(1) .
By induction hypothesis (3) on 7, ¢’ is Var-valid. Since we assume that s
is Z-Var-valid, x(t') is also =-Var-valid by clause 4b in Definition 3.1.

Case T =

Case € =

DTriv
Fx — ‘ _
= LChv . = is an axiom for any =.
— ™ Var y
R
DRoot
Fr—" 7

Case T =

-z 22)\x.r’.
by i.h. (1) on R
__CRoot ,./

= r
We construct — CTVM
riv

= = N
2 v Az 2

4 Conclusion

We have characterized an occurrence condition in CPS programs, Var-validity,
and we have proven that this condition holds for the output of the one-pass
CPS transformation. To this end, we developed a third-order proof technique
matching the second-order nature of the one-pass CPS transformation.

Elsewhere [5,9], we investigate another, similar, occurrence condition on
continuation identifiers. Using the same technique, we prove that the one-pass
CPS transformation yields terms that satisfy this other occurrence condition.
We then consider the closure of both occurrence conditions under S-reduction
and their application to the direct-style transformation and to stack-based
abstract machines for CPS programs.

We have also formalized most of the languages, transformations, proper-
ties, and proofs in Elf, a constraint logic-programming language based on the
logical framework LF [9,11,16]. This formalization is small but non-trivial. It
captures the computational content of the translations and the meta-theoretic
reasoning in a declarative, yet executable way. Because Elf is built around the
notions of substitution and meta-level function, the formalization is direct
and (we find) elegant. It is also unusual in that since it abstracts over con-
tinuations, it requires third-order constants for the CPS transformation. This
exemplifies a new technique for representing deductive systems in LF, which
is interesting in its own right.

We can summarize this new technique as follows: we translate a two-level
functional presentation to a relational representation in a logical framework
by mapping “static” abstractions and applications directly to meta-level ab-
stractions and applications. This means that static redexes of a two-level func-
tional representation become (3-redexes in the logical framework. Statically

28

DANvy, DzAFIC, AND PFENNING

convertible terms are therefore definitionally equal, avoiding explicit treatment
of administrative reductions. A direct encoding of the meta-theory of such a
representation will be third-order, since we reason about second-order objects.

Examples of two-level functional presentations include all one-pass CPS
transformations, state-passing transformations, etc., and more generally the
one-pass transformation into monadic style [13]. Type-directed partial evalu-
ation provides another example of two-level functional presentations [4,9].

Finally, and most significantly, the encoding suggested the proof technique.
This work thus demonstrates, on a small scale, the value of a logical framework
as a conceptual tool in the theoretical study of programming languages.

References

[1] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
New York, 1992.

[2] Gilles Barthe, John Hatcliff, and Morten Heine Sgrensen. Reflections on
reflections. In Hugh Glaser, H. Hartel, and Herbert Kuchen, editors, Ninth
International Symposium on Programming Language Implementation and Logic
Programming, number 1292 in Lecture Notes in Computer Science, pages 241—
258, Southampton, UK, September 1997. Springer-Verlag.

[3] Olivier Danvy. Back to direct style. Science of Computer Programming,
22(3):183-195, 1994.

[4] Olivier Danvy. Type-directed partial evaluation. Lecture Notes BRICS LN-98-
3, Department of Computer Science, University of Aarhus, Aarhus, Denmark,
December 1998. Extended version.

[5] Olivier Danvy, Belmina Dzafic, and Frank Pfenning. On the occurrence of
continuation parameters in CPS programs. Unpublished note, June 1999.

[6] Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361-391,
December 1992.

[7] Olivier Danvy and Frank Pfenning. The occurrence of continuation parameters
in CPS terms. Technical report CMU-CS-95-121, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, February 1995.

[8] Olivier Danvy and Kristoffer Hagsbro Rose. Higher-order rewriting and partial
evaluation. In Tobias Nipkow, editor, Rewriting Techniques and Applications,
Lecture Notes in Computer Science, Kyoto, Japan, March 1998. Springer-
Verlag. Extended version available as the technical report BRICS-RS-97-46.

[9] Belmina Dzafic. Formalizing program transformations. Master’s thesis, DAIMI,
Department of Computer Science, University of Aarhus, Aarhus, Denmark,
December 1998.

29

DANvy, DzAFIC, AND PFENNING

[10] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The
essence of compiling with continuations. In David W. Wall, editor, Proceedings
of the ACM SIGPLAN’93 Conference on Programming Languages Design and
Implementation, SIGPLAN Notices, Vol. 28, No 6, pages 237-247, Albuquerque,
New Mexico, June 1993. ACM Press.

[11] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. Journal of the ACM, 40(1):143-184, 1993. A preliminary version
appeared in the proceedings of the First IEEE Symposium on Logic in
Computer Science, pages 194-204, June 1987.

[12] John Hatcliff. The Structure of Continuation-Passing Styles. PhD thesis,
Department of Computing and Information Sciences, Kansas State University,
Manhattan, Kansas, June 1994.

[13] John Hatcliff and Olivier Danvy. A generic account of continuation-passing
styles. In Hans-J. Boehm, editor, Proceedings of the Twenty-First Annual ACM
Symposium on Principles of Programming Languages, pages 458-471, Portland,
Oregon, January 1994. ACM Press.

[14] John Hatcliff and Olivier Danvy. Thunks and the A-calculus. Journal of
Functional Programming, 7(2):303-319, 1997.

[15] Frank Pfenning. A proof of the Church-Rosser theorem and its representation
in a logical framework. Journal of Automated Reasoning. To appear. A
preliminary version is available as Carnegie Mellon Technical Report CMU-
(CS-92-186, September 1992.

[16] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages 149-181.
Cambridge University Press, 1991.

[17] Gordon D. Plotkin. Call-by-name, call-by-value and the A-calculus. Theoretical
Computer Science, 1:125-159, 1975.

[18] John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363-397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference (1972).

[19] Amr Sabry. The Formal Relationship between Direct and Continuation-Passing
Style Optimizing Compilers: A Synthesis of Two Paradigms. PhD thesis,
Computer Science Department, Rice University, Houston, Texas, August 1994.
Technical report TR94-242.

[20] Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-
passing style. Lisp and Symbolic Computation, 6(3/4):289-360, December 1993.

[21] Amr Sabry and Philip Wadler. A reflection on call-by-value. ACM Transactions
on Programming Languages and Systems, 19(6):916-941, November 1997.

[22] W. W. Tait. Intensional interpretation of functionals of finite type I. Journal
of Symbolic Logic, 32:198-212, 1967.

30

DANvy, DzAFIC, AND PFENNING

[23] Mitchell Wand. Correctness of procedure representations in higher-order
assembly language. In Stephen Brookes, Michael Main, Austin Melton, Michael
Mislove, and David Schmidt, editors, Proceedings of the 7th International
Conference on Mathematical Foundations of Programming Semantics, number
598 in Lecture Notes in Computer Science, pages 294-311, Pittsburgh,
Pennsylvania, March 1991. Springer-Verlag.

31

