
Logic-Based Domain-Aware Session Types
Luı́s Caires∗, Jorge A. Pérez∗, Frank Pfenning† and Bernardo Toninho∗†

∗FCT - Universidade Nova de Lisboa
†Carnegie Mellon University

Abstract—Software services and governing communication
protocols are increasingly domain-aware. Domains can have
multiple interpretations, such as the principals on whose behalf
processes act or the location at which parties reside. Domains
impact protocol compliance and access control, two central issues
to overall functionality and correctness in distributed systems.

This paper proposes a session-typed process framework for
domain-aware communication-centric systems based on a Curry-
Howard interpretation of linear logic, here augmented with nom-
inals from hybrid logic indicating domains. These nominals are
explicit in the process expressions and govern domain migration,
subject to a parametric accessibility relation familiar from the
Kripke semantics for modal logic. Flexible access relationships
among domains can be elegantly defined and statically enforced.
The framework can also account for scenarios in which domain
information is discovered only at runtime.

Due to the logical origins of our systems, well-typed processes
enjoy session fidelity, global progress, and termination. Moreover,
well-typed processes always respect the accessibility relation and
satisfy a form of domain parametricity, two properties crucial to
show that domain-related properties of concrete programs are
satisfied.

I. INTRODUCTION

Modern software systems rely on communication between
heterogeneous services. Overall system correctness depends
on compliance to service protocols, which often combine
advanced forms of mobility, concurrency, and distribution.
As services are nowadays offered virtualized in third-party
platforms (e.g., cloud computing), structured communications
should span diverse software and hardware domains. As a
consequence, communication is increasingly domain-aware, in
the sense that a partner’s potential for interaction is influenced
by the domains in which it is involved in at various points of
a protocol. As partners frequently reside in different domains,
connectedness among domains plays a vital role in enabling
communications. Moreover, domain architectures are rarely
fully specified: to aid modularity and platform independence
system participants such as service developers, platform ven-
dors, or service clients often have only local and/or partial
views of actual domain structures. Despite the importance of
domains for protocol compliance, access control, and security,
its formal, logical status within models of communication-
centric systems remains largely unexplored.

This paper contributes to typed approaches to the analysis
of domain-aware structured communications, with a focus
on session-based concurrency. In this approach, concurrent
dialogues are structured into basic units called sessions; in-
teraction patterns are abstracted as session types [1], [2], [3],
against which process specifications may be checked. As these

specifications are usually given in the π-calculus [4], we obtain
processes interacting on so-called session channels which
connect exactly two subsystems. Communication correctness
is usually characterised by the combination of two properties:
session fidelity (type preservation) and freedom from deadlock
(progress). The former states that well-typed processes always
evolve to well-typed processes (a safety property); the latter
says that well-typed processes will never get into a stuck
state (a liveness property). Some disciplines also ensure that
well-typed processes are terminating (strongly normalizing).
Intuitively, this guarantees responsive partners which never
exhibit infinite internal behavior.

As a simple example, consider the session type WStore
below. It abstracts a typical interaction sequence between an
online store and its clients, seen from the store’s perspective:

WStore , addCart(&{buy : Payment , quit : 1}
Payment , ShipAddress(CCNumber(Receipt⊗ 1

WStore specifies a service that awaits an input (denoted by()
of items the client wishes to add to his shopping cart. After
some exchanges (elided), the store presents the client with a
choice (denoted with a labelled &) to either buy the selected
items or quit the session. If the client chooses to buy, the store
requires shipping and credit card information, after which it
emits (denoted by ⊗) a receipt and closes the interaction (1).

A main motivation for this paper is the contrast between
(a) the growing relevance of domain-awareness in real commu-
nicating systems and (b) the expressiveness of existing session
types frameworks, which appear inadequate to specify and
enforce requirements related to domain-awareness. These limi-
tations may hinder the effectiveness of the analysis techniques
derived from these theories. Even a small interface such as
WStore witnesses these limitations: although it captures the
communication behavior intended for this service, its high-
level of abstraction is insufficient in realistic scenarios. In
fact, online stores are expected to request the client’s sensitive
information only after entering a trusted domain (e.g., by
establishing an HTTPS connection). Dually, the online store
should not allow insecure client accesses to its payment infras-
tructure. Unfortunately, these domain-specific details are very
hard to express appropriately in existing session type systems.
As type structures are typically defined with particular process
models in mind, expressiveness issues at the level of types are
often reflected also at the level of processes. As a result, usual
typed process languages do not capture domain-awareness
in specifications. All of this calls for a typed framework in
which structured communication and domain-awareness issues

are treated in a unified way, relying on carefully designed
integrations of richer type structures with suitably extended
process languages.

This paper contains four main contributions. The first is
a process model with explicit domain-based migration (§ II).
We consider a session π-calculus enriched with domain in-
formation that can be exchanged by processes and domain
movement prefixes x〈y@w〉.P and x(y@w).Q. Intuitively,
x〈y@w〉.P denotes a process that is prepared to migrate the
communication actions in P offered along x to a channel y
that is located at domain w. Typing will ensure that y is fresh,
so this is used as a bound output. A process x(y@w).Q is
complementary: it signals a session x to migrate to domain
w by continuing communication along a (fresh) channel y
it receives. These two prefixes may synchronize to realize
coordinated migration to w with continuations P and Q.

Our second main contribution is a logic-based session-typed
discipline over domain-aware communicating processes (§ IV).
By relying on a variant of intuitionistic linear logic with
features from hybrid logic [5] (HILL, defined in § III), we
generalize an interpretation of linear logic propositions as
session types given in prior work [6]. There are two key
aspects. First, we interpret a (modal) world as a domain
where session behavior resides. As a result, judgments in our
system not only describe the services that a process requires to
implement a given session behavior (as in [6]), but they also
stipulate the domains in which such services should be present.
Second, the hybrid connective @w of HILL is interpreted as
a migration step to domain/world w, which at the level of
π-calculus processes is made explicit by referencing w itself
in combination with name mobility. Domains and migration
steps are governed by a parametric accessibility relation.

The type construct @w is intended to address the lack
of expressiveness of extant session frameworks by placing
domain migration information explicitly in typed interfaces.
For instance, we may refine the type WStore above as follows:

WStoresec , addCart(&{buy : @sec Payment, quit : 1}

Intuitively, WStoresec decrees that communication behavior
pertinent to type Payment should be preceded by a migration
step to trusted domain sec, which should be directly reachable
from WStoresec’s current domain. Note that that migration for
Payment can be specified quite precisely within the type.

Despite the expressiveness gain brought by type @sec, type
WStoresec may not be flexible enough, for domain sec is
“hardwired” in the interface. This is inconvenient when the
secure payment domain is different from sec (e.g., when using
a different encryption protocol), and is especially so when
such a domain is not known in advance, which is a frequent
situation. Our third technical contribution is an extension of the
interpretation in § IV to dynamic domain associations (§V).
We extend our type structure with universal and existential
quantification over domains. This brings flexibility and ex-
pressiveness: by interpreting these connectives simply as the
communication of domain identities, session types may refer
to unknown domains which are resolved only at runtime.

Returning to our example, we may define the following type:

WStore∃ , addCart(&{buy : ∃α.@α Payment, quit : 1}

In WStore∃, α stands for a domain variable: intuitively, it
represents a directly reachable payment domain, unknown a
priori to clients of WStore∃. As we will see, a process typed
with WStore∃ will output the identity w of the domain α to
the client, after which actual domain migration may follow.
Under some assumptions about the reachability relation, com-
munication to domain w will be secure (see §VII).

Our fourth contribution concerns the strong guarantees for
domain-aware processes which are ensured by typing (§VI).
The logical foundations of our framework ensure that well-
typed processes enjoy the following guarantees: session fi-
delity (type preservation), global progress (lock-freedom), and
termination (strong normalisation). These are same properties
that well-typed processes in [6] enjoy.

The above properties related to correctness of structured
communication are complemented by a property tied to the
domain-awareness dimension of our framework, dubbed do-
main preservation, ensuring that process communication al-
ways respects domain-related conditions as defined by the
accessibility relation. The second property, domain para-
metricity, intuitively guarantees that well-typed processes re-
spect prescribed session types independently of the domain
information provided by their environment at runtime.

We also note that our framework assumes domain un-
connectedness by default: because the domains (and related
accessibility relations) in which session behaviors are available
are often only partially known, our framework does not fix
a priori the domain connectivity. This fact is crucial to
consistently enforce valid intra-domain interactions by typing.

In §VII we develop three different applications of our
framework. They illustrate how domains in our setting may
admit several useful interpretations: §VII-A discusses our
motivating example in greater depth; §VII-B revisits λ5, a
Curry-Howard interpretation of intuitionistic modal logic S5
that models sequential distributed computation [7]; and §VII-C
shows how to capture information flow with declassification
in our system, where security levels are encoded using the ac-
cessibility relation and the declassified information is precisely
specified in types of “high” processes.

In our view, the expressiveness of our typed process frame-
work significantly improves on that of known session types
disciplines. To the best of our knowledge, our framework is the
first in adopting a unified view of structured communication
and domain-awareness concerns via a purely logic approach.

II. PROCESS MODEL: SYNTAX AND SEMANTICS

We introduce a variant of the synchronous π-calculus [8]
with labeled choice and domain migration via communication.

Definition 2.1: Given infinite, disjoint sets Λ of names
(x, y, z, u, v) andW of domain tags (w,w′, w′′), respectively,

2

the set of processes (P,Q,R) is defined by

P ::= [x↔y] | P | Q | (νy)P
| x〈y〉.P | x(y).P | !x(y).P
| x.case(P,Q) | x.inr;P | x.inl;P
| x〈y@w〉.P | x(y@w).P | 0

Domain tags are present only in the migration prefixes of the
last line. As we make precise in the typed setting of § IV, these
constructs realize mobility, in the usual sense of the π-calculus:
migration to a domain is always associated to mobility with a
fresh name. For this reason, our notation for migration prefixes
is close to that for input and output prefixes.

The operators 0 (inaction), P | Q (parallel composition)
and (νy)P (name restriction) are standard. We then have
x〈y〉.P (send y on x and proceed as P), x(y).P (receive
z on x and proceed as P with parameter y replaced by
z), and !x(y).P which denotes replicated (persistent) input.
The forwarding construct [x ↔ y] equates x and y; it is a
primitive representation of a copycat process. Constructs in
the third line define a minimal labeled choice mechanism; our
model handles binary choice, without loss of generality. The
first two operators in the fourth line define explicit domain
migration: given a domain w, x〈y@w〉.P denotes a process
that is prepared to migrate the communication actions in P
on endpoint x, to session y on w. Complementarily, process
x(y@w).P signals an endpoint x to move to w, providing
P with the appropriate session endpoint that is then bound
to y. In a typed setting, domain movement will be always
associated with a fresh session channel. Alternatively, this
form of coordinated migration can be read as an explicit
form of agreement (or authentication) in trusted domains.
Following [9], we abbreviate (νy)x〈y〉 and (νy)x〈y@w〉 as
x〈y〉 and x〈y@w〉, respectively.

In (νy)P , x(y).P , and x(y@w).P the distinguished oc-
currence of name y is binding with scope P . We identify
processes up to consistent renaming of bound names, writing
≡α for this congruence. P{x/y} denotes the capture-avoiding
substitution of x for y in P . While structural congruence ex-
presses identities on the basic structure of processes, reduction
expresses their behavior.

Definition 2.2: Structural congruence (P ≡ Q) is the least
congruence relation on processes such that

P | 0 ≡ P P ≡α Q⇒ P ≡ Q (νx)0 ≡ 0
P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R
x 6∈ fn(P)⇒ P | (νx)Q ≡ (νx)(P | Q)

[x↔y] ≡ [y↔x] (νx)(νy)P ≡ (νy)(νx)P

Definition 2.3: Reduction (P → Q) is the binary relation
on processes defined by the rules in Fig. 1.

By definition, reduction is closed under ≡. It specifies the
computations that a process performs on its own. To define the
interactions between a process and its environment, in §VI we
give a labeled transition system for well-typed processes.

For the sake of generality, reduction allows two complemen-
tary endpoints with the same name to interact, independently
of the domains of the involved subjects. The type discipline

x〈y〉.Q | x(z).P → Q | P{y/z}
x〈y〉.Q | !x(z).P → Q | P{y/z} | !x(z).P
(νx)([x↔y] | P)→ P{y/x} (x 6= y)

Q→ Q′ ⇒ P | Q→ P | Q′

P → Q⇒ (νy)P → (νy)Q
P ≡ P ′ ∧ P ′ → Q′ ∧Q′ ≡ Q⇒ P → Q

x.inr;P | x.case(Q,R)→ P | R
x.inl;P | x.case(Q,R)→ P | Q

x〈y@w〉.P | x(z@w′).Q→ P | Q{y/z}

Fig. 1. Reduction for domain-aware processes

in § IV will ensure, among other things, local reductions,
thus disallowing synchronisations among distinct, possibly
unreachable domains.

III. HYBRIDIZED INTUITIONISTIC LINEAR LOGIC (HILL)

Hybrid logic is often used as an umbrella term for a
class of logics that extend the expressiveness of traditional
modal logic by considering modal worlds as syntactic objects
in propositions. Here we present a particular formulation of
hybrid logic via the so-called judgmental approach (cf. [10]),
introducing the key connectives and their intended meaning in
a linear setting.

Recall w,w1, . . . stand for elements of W . Let us use
α, β, . . . to range over world variables. We consider a general-
ization of intuitionistic linear logic with hybrid logic operators,
where modal worlds are subject to an accessibility relation,
tracked in a separate context Ω. Intuitively, Ω collects direct
reachability hypotheses of the form w1 ≺ w2, meaning
that world w2 is directly reachable from world w1. We call
this logic hybridized intuitionistic linear logic (HILL, in the
sequel).

Definition 3.1 (HILL propositions): The syntax of proposi-
tions (A,B,C) is defined by

A ::= 1 | A(B | A⊗B
| @w A | A&B | A⊕B | !A

Logic connectives in HILL include multiplicative conjunction
and implication (⊗ and (, respectively), the multiplicative
unit 1, the additives & and ⊕ and the exponential !, all of
which have their usual meanings [11]. The only hybrid logic
connective that we consider is @wA: it denotes that A is true
at world w, directly reachable from the current world. Our
system consists of two judgments:

(i) Ω ` w1 ≺ w2 and (ii) Ω; Γ; ∆ ` A[w]

Judgment (i) states that w1 can directly reach w2 under the
hypotheses in Ω. We omit Ω when it is clear from context.
We write ≺∗ for the reflexive transitive closure of ≺, and
w1 6≺∗ w2 when w1 ≺∗ w2 does not hold. Judgment (ii)
states that proposition A is true at world w, under the
direct reachability hypotheses Ω, unrestricted (or exponential)
hypotheses Γ, and linear hypotheses ∆, where weakening and
contraction principles hold for Γ but not for ∆. Note that each
hypothesis in Γ and ∆ is itself labeled with a specific world.
When empty, Ω, Γ, ∆ are denoted by ‘·’.

3

We consider a sequent calculus presentation of HILL, made
up of so-called right rules (which specify how to prove a
particular proposition, marked with R) and left rules (which
specify how to use a given hypothesis, marked with L). A
subset of the rules of the system is given in Fig. 2; for the sake
of space, remaining rules are given in the Appendix (Fig. 5).
Notice that the actual logical rules are obtained by erasing
the names x, y, z, u and process terms (indicated in blue). The
rules essentially correspond to those for intuitionistic linear
logic DILL [11], extended with world labels and context Ω.

We consider a sequent Ω; Γ; ∆ ` C[w1] well-formed if
Ω ` w1 ≺∗ w2 for every A[w2] ∈ ∆, which we abbreviate
as Ω ` w1 ≺∗ ∆, meaning that all worlds mentioned in ∆
are reachable (not necessarily in a single direct step) from
w1. No such world requirement is imposed on Γ. If an end
sequent is well-formed, every sequent in its proof will also
be well-formed. For labels, all the rules (read bottom-up)
will preserve this invariant and only (cut), (copy), (@R) (and
later (∀L) and (∃R)) require explicit reachability checks (see
below). We can therefore restrict our attention to well-formed
sequents. This invariant will be of paramount importance in
the interpretation of § IV, since it automatically excludes the
possibility of processes on unreachable domains to interact
(cf. Theorem 6.6).

We briefly discuss some of the rules. Rule (⊗R) allows us
to prove A ⊗ B at w by splitting the linear context into two
parts, one used to prove A[w] and the other to prove B[w].
The cut rule enables compositional reasoning: if we can prove
C at w1 using A[w2], are also able to prove A[w2] and that
w1 ≺∗ w2 (in order to maintain the invariant that all worlds
tagging linear hypotheses must be reachable), then we can
prove C[w1] outright. Rule (@R) states that in order for @w2A
to be true at w1, we must be able to directly reach w2 from
w1 and A must be true at w2. Rule (@L) allows us to use an
assumption of @w3

A at w2 to prove C at w1, which justifies
the use of assumption A at w3 to prove C[w1].

Following our previous remark on well-formed sequents,
the only rules that appeal to accessibility are (@R), (@L),
(copy), and (cut). We notice that these conditions are directly
associated with varying degrees of flexibility/expressiveness
in terms of provability, depending on what relationship is
imposed between the world to the left and to the right of
the turnstile in the left rules. Most importantly, the conditions
have consequences on the metatheory of the logic, in partic-
ular, admissibility of cut (Theorem 3.3). Moreover, from the
standpoint of the process interpretation of HILL in § IV, these
conditions also impact on the kinds of typable processes.

It is straightforward to see that HILL orthogonally extends
DILL: we may recover the latter by tagging every proposition
with the same world with a reflexive accessibility relation.
Moreover, the usual (and central) soundness meta-theoretic
property of cut elimination holds for HILL, by relying on the
following world substitution property:

Lemma 3.2 (World Substitution): If Ω ` w1 ≺ w2 and
Ω, w1 ≺ w2; Γ; ∆ ` A[w] then Ω; Γ; ∆ ` A[w].

Theorem 3.3 (Cut Admissibility): If Ω; Γ; ∆ ` A[w] then

(whyp)

Ω, w1 ≺ w2 ` w1 ≺ w2

(id)

Ω; Γ;x:A[w] ` [x↔z] :: z:A[w]

(1L)
Ω; Γ; ∆ ` P :: z:C[w1]

Ω; Γ; ∆, x:1[w2] ` P :: z:C[w1]
((R)

Ω; Γ; ∆, y:A[w] ` P :: z:B[w]

Ω; Γ; ∆ ` z(y).P :: z:A(B[w]

(1R)

Ω; Γ; · ` 0 :: x:1[w]

(⊗R)
Ω; Γ; ∆1 ` P :: y:A[w] Ω; Γ; ∆2 ` Q :: z:B[w]

Ω; Γ; ∆1,∆2 ` z〈y〉.(P | Q) :: z:A⊗B[w]

(⊗L)
Ω; Γ; ∆, y:A[w2], x:B[w2] ` P :: z:C[w1]

Ω; Γ; ∆, x:A⊗B[w2] ` x(y).P :: z:C[w1]
((L)
Ω; Γ; ∆1 ` P :: y:A[w2] Ω; Γ; ∆2, x:B[w2] ` Q :: z:C[w1]

Ω; Γ; ∆1,∆2, x:A(B[w2] ` x〈y〉.(P | Q) :: z:C[w1]

(@R)
Ω ` w1 ≺ w2 Ω ` w2 ≺∗ ∆ Ω; Γ; ∆ ` P :: y:A[w2]

Ω; Γ; ∆ ` z〈y@w2〉.P :: z:@w2
A[w1]

(@L)
Ω, w2 ≺ w3; Γ; ∆, y:A[w3] ` P :: z:C[w1]

Ω; Γ; ∆, x:@w3
A[w2] ` x(y@w3).P :: z:C[w1]

(copy)
Ω ` w1 ≺∗ w2 Ω; Γ, u:A[w2]; ∆, y:A[w2] ` P :: z:C[w1]

Ω; Γ, u:A[w2]; ∆ ` u〈y〉.P :: z:C[w1]
(cut)

Ω ` w1 ≺∗ w2 Ω ` w2 ≺∗ ∆1

Ω; Γ; ∆1 ` P :: x:A[w2] Ω; Γ; ∆2, x:A[w2] ` Q :: z:C[w1]

Ω; Γ; ∆1,∆2 ` (νx)(P | Q) :: z:C[w1]
(cut!)
Ω; Γ; · ` P :: x:A[w1] Ω; Γ, u:A[w1]; ∆ ` Q :: z:C[w2]

Ω; Γ; ∆ ` (νu)(!u(x).P | Q) :: z:C[w2]

Fig. 2. HILL with proof terms in blue (omitted rules in Fig. 5)

there exists a derivation of Ω; Γ; ∆ ` A[w] that does not use
the rules (cut) or (cut!).

The two judgment presentation enables us to consider a par-
ticular accessibility relation as a parameter of the framework.
This allows changing accessibility relations without having to
modify the entire system. To consider the simplest possible
accessibility relation, the only defining rule for accessibility
would be rule (whyp) in Fig. 2. To consider an accessibility
relation which is an equivalence relation, then we would add
reflexivity, transitivity, and symmetry rules to the judgment.

IV. HILL PROPOSITIONS AS DOMAIN-AWARE SESSION
TYPES

Here we generalize the interpretation of DILL propositions
as session types given in [6] to the case of HILL. As in [6],
propositions are interpreted as session types, proofs as typing
derivations, and proof reduction as process communication.
Moreover, we interpret worlds as domains, and the hybrid
connective @w A as as the type of a session that moves to
a reachable domain w.

We now make these intuitions precise. Our type syntax coin-
cides exactly with that of HILL propositions (cf. Def. 3.1). For

4

simplicity, we do not consider base types. In our setting, types
are assigned to names; a type assignment x:A[w] enforces the
use of name x according to session A, in the domain w. A
type environment is a collection of type assignments. Besides
the accessibility context Ω, our typing judgments consider
two kinds of type environments, subject to different structural
properties: a linear part ∆ and an unrestricted part Γ. A
judgment is of the form

Ω; Γ; ∆ ` P :: z:A[w1]

where name declarations in Γ are always propagated un-
changed to all premises in the typing rules, while name
declarations in ∆ are handled multiplicatively or additively,
depending on the type being defined.

Such a judgment asserts: P is ensured to safely provide
the session behavior A on channel z, at a domain w, and
using the located sessions specified in ∆ (linearly) and Γ
(unrestrictedly) and adhering to the reachability assumptions
in Ω. Conditions on well-formed HILL sequents (described
in the previous section) also have a role in judgments for
processes, and they extend accordingly. Formally, judgment
Ω; Γ; ∆ ` z:A[w1] is well-formed if all the variables in Γ, ∆,
and z are pairwise distinct, and Ω ` w1 ≺∗ ∆ Recall that no
such world requirement is imposed on Γ. For variables, the
invariant is enforced by implicit α-conversion, as usual. Since
we identify a process by the channel along which it offers
communication, the world invariant expresses that a process
only uses sessions in reachable domains.

We always consider processes modulo structural congru-
ence; hence, typability is closed under ≡ by definition. The
typing rules for the system are given in Fig. 2. While right
rules specify how to offer a session of a given type, left rules
define how to use a session.

We recall some key features of the interpretation in [6],
which covers the non hybrid connectives in Def. 3.1. Type
A (B denotes a session that inputs a channel of type A
and proceeds as B. To offer z:A(B at domain w, we input
along z a channel y that will offer A at w and proceed, now
offering z:B at w:

((R)
Ω; Γ; ∆, y:A[w] ` P :: z:B[w]

Ω; Γ; ∆ ` z(y).P :: z:A(B[w]

Dually, A⊗B denotes a session that outputs a session that will
offer A and continue as B. To offer z:A⊗B, we perform an
output along z of a fresh name y, a session of type A provided
by P , and proceed as Q, offering z:B. In order to type linear
composition, we compose process P offering x:A[w2] with Q
using x:A[w2] to offer z:C[w1], provided that w1 ≺∗ w2, and
bind the scope of x to the two processes:
(cut)

Ω ` w1 ≺∗ w2 Ω ` w2 ≺∗ ∆1

Ω; Γ; ∆1 ` P :: x:A[w2] Ω; Γ; ∆2, x:A[w2] ` Q :: z:C[w1]

Ω; Γ; ∆1,∆2 ` (νx)(P | Q) :: z:C[w1]

Type 1 means that the session terminated, no further inter-
action will take place on it; names of type 1 may still be

passed around as opaque values. A&B types a session channel
that offers its partner a choice between an A behavior (“left”
choice) and a B behavior (“right” choice). Dually, A ⊕ B
types a session that either selects “left” and then proceeds as
specified by A, or else selects “right”, and then proceeds as
specified by B. Type !A types a shared (non-linear) channel,
to be used by a server for spawning an arbitrary number of
new sessions (possibly none), each one conforming to type A.

We now detail the elements of the interpretation induced
by HILL which represent enhancements over [6]. First, we
interpret the logical notion of world as a form of domain—a
designated site at which a session behavior is available. This
interpretation is natural, and gives rise to a form of explicitly
distributed session behavior that is described precisely by
typing assignments—which, as explained before, relate names,
session types, and domains. Typing rules obtained from the
sequent calculus for HILL ensure that inter-domain interaction
is only allowed between Ω-reachable domains.

Even if by virtue of the typing assignments labeled by
domains we obtain a model of distributed session behavior,
such a model is inherently static. To obtain more flexibility,
the hybrid type operator @w enables mobility, regulated by
Ω. A channel typed with @w2A denotes that behavior A is
available by first moving to domain w2, directly accessible
from the current domain. More precisely, we have:

(@R)
Ω ` w1 ≺ w2 Ω ` w2 ≺∗ ∆ Ω; Γ; ∆ ` P :: y:A[w2]

Ω; Γ; ∆ ` z〈y@w2〉.P :: z:@w2
A[w1]

Hence, given domains w1 and w2, a process offering a
behavior z:@w2

A at w1 ensures: (i) behavior A is available
at w2 along a fresh session channel y that is emitted along z
and (ii) w2 is directly reachable from w1. To maintain well-
formedness of the sequent we also need to check that all
domains in ∆ are still accessible from w2.

Dually, using a service x:@w3A[w2] entails receiving a
channel y that will offer the behavior A at domain w3 (and
also allowing the usage of the fact that w2 ≺ w3):

(@L)
Ω, w2 ≺ w3; Γ; ∆, y:A[w3] ` P :: z:C[w1]

Ω; Γ; ∆, x:@w3A[w2] ` x(y@w3).P :: z:C[w1]

This way, in our interpretation the type operator @w realizes
a domain migration mechanism which is specified both at
the level of types and of processes via name mobility tagged
with a domain name. However, processes themselves do not
necessarily need to move across domains in the sense of
mobile code, since domains are more abstract than physical
locations. See §VIII for discussions of related work.

Notice how the interpretation for the non-hybrid connectives
is as in [6]. We note the distinction between direct reachability
≺ in the hybrid connective rules and reachability ≺∗, po-
tentially requiring multiple accessibility “hops”, in the (copy)
and (cut) rules, which enforces the reachability invariant. This
pertains to the fact that we localize domain information at the
level of specifications, which is made explicit when we define
how to offer a service: to specify a service requiring domain

5

(∀R)
Ω, w1 ≺ α; Γ; ∆ ` P :: z:A[w1]

Ω; Γ; ∆ ` z(α).P :: z:∀α.A[w1]

(∀L)

Ω ` w2 ≺ w3

Ω; Γ; ∆, x:A{w3/α}[w2] ` Q :: z:C[w1]

Ω; Γ; ∆, x:∀α.A[w2] ` x〈w3〉.Q :: z:C[w1]

(∃R)
Ω ` w1 ≺ w2 Ω; Γ; ∆ ` P :: z:A{w2/α}[w1]

Ω; Γ; ∆ ` z〈w2〉.P :: z:∃α.A[w1]

(∃L)
Ω, w2 ≺ α; Γ; ∆, x:A[w2] ` Q :: z:C[w1]

Ω; Γ; ∆, x:∃α.A[w2] ` x(α).Q :: z:C[w1]

Fig. 3. HILL with quantification over worlds: Additional rules.

migration, we detail each migration step explicitly in terms
of Ω-reachability. For instance, we may want to distinguish
specifications of services that migrate from w1 to w2 to w3

from those that migrate directly from w1 to w3. However,
the usage of such services from the point of view of a client
located at, say w1, should only be constrained by being able
to reach w3 in some way (i.e., using ≺∗), not by the particular
migration steps the service takes. Of course, if we postulate
for a class of applications that ≺ is reflexive and transitive,
the two notions collapse into one.

Why is it necessary to consider reflexivity and transitivity at
all? First note that the identity rule (id) forwards between two
sessions in the same domain. Therefore, the current domain
should be accessible. Second, note that the (cut) rule, read
as composition, requires domains in ∆1, the hypotheses of
the first premise, to be accessible from w1, the domain of the
second premise. This follows from transitivity of ≺∗ using the
intermediary w2 but might otherwise be compromised.

V. DYNAMIC DOMAIN ASSOCIATIONS VIA
QUANTIFICATION OVER WORLDS

The system given thus far allows for dynamic associa-
tions between domains and typing assignments through the
@ operator. However, the domains themselves are fixed in
the sense that they are all known a priori and a type must
always mention a concrete (reachable) domain. To obtain extra
flexibility and expressiveness, we may extend our framework
with two other hybrid connectives, namely with a form of
universal and existential quantification over worlds.

At the process level, domain-quantified session types in-
troduce domains as parameters to types: a particular service
can be specified with the ability to refer to any existing
directly reachable domain (via universal quantification) or
to some a priori unspecified reachable domain. The typing
rules for domain-quantified session types are given in Fig. 3
(the associated logical rules can be recovered by erasing the
names and process terms in blue). We account for the hybrid
quantifiers by extending the process syntax with domain output
and input prefixes z〈w〉.P and z(α).P , respectively (where w
is a domain and α a domain variable). Rule (∀R) says that
a process seeking to offer ∀α.A[w1] denotes a service that

while located at domain w1, may refer to any domain directly
reachable from w1 in its service specification (through the
use of @). Operationally, this means that the process must
be ready to receive from its client a reference to the domain
being referred to in the type, which is bound to α. Dually,
rule (∀L) says that a process that interacts with a service
of type x:∀α.A[w2] must make concrete the domain that is
directly reachable from w2 it wishes to use, which is achieved
by the appropriate output action. Rules (∃L) and (∃R) for the
existential quantifier have a dual reading.

The interpretation of universal and existential quantification
as domain communication thus requires the reduction rule
(with the expected notion of capture-avoiding world substi-
tution):

x〈w〉.P | x(α).Q −→ P | Q{w/α}

This is justified logically by the principal cut reductions of the
connectives, appealing to a domain parametricity theorem and
Lemma 3.2 in order to account for domain variables.

Theorem 5.1 (Domain Parametricity):
Let α be a domain variable, and w1, w, w

′ be domains (con-
stants or variables). If Ω, w1 ≺ α; Γ; ∆ ` P :: z:A[w′] then
Ω, w1 ≺ w; Γ′; ∆′ ` P{w/α} :: z:A{w/α}[w′{w/α}], where
Γ′ = Γ{w/α} and ∆′ = ∆{w/α}.

VI. TECHNICAL RESULTS

We now state the main results for our typed model, namely
type safety in the form of type preservation (Theorem 6.3)
and global progress (Theorem 6.4). These results directly
ensure session fidelity and deadlock-freedom. Also, typing
ensures that processes are terminating, i.e., they do not exhibit
infinite reduction paths (Theorem 6.5). Moreover, as a prop-
erty specific to domain-aware processes, we show that well-
typed processes satisfy domain preservation, which says that
processes always respect their associated domain accessibility
conditions (Theorem 6.6).

Some Preliminaries

1) Labeled Transition System: Some technical results rely
on labeled transitions rather than on reduction. To characterize
the interactions of a well-typed process with its environment,
we extend the early labeled transition system (LTS) for the
π-calculus [8] with labels and transition rules for choice,
migration, and forwarding constructs. A transition P

λ−→ Q
denotes that P may evolve to Q by performing the action
represented by label λ. Transition labels are defined below:

λ ::= τ | x(y) | x(w) | x.inl | x.inr | x.y@w

| x y | x〈y〉 | xw | x.inl | x.inr | x.y@w

Actions are name input x(y), domain input x(w), the offers
x.inl and x.inr, migration x.y@w and their matching co-
actions, respectively the output x y and bound output x〈y〉
actions, the domain output xw, the left/ right selections x.inl
and x.inr, and domain migration x.y@w. Both the bound
output x〈y〉 and migration action x.y@w denote extrusion
of a fresh name y along x. Internal action is denoted by

6

(id) (νx)([x↔y] | P)
τ−→ P{y/x}

(n.out)

x〈y〉.P x y−−→ P

(n.in)

x(y).P
x(z)−−−→ P{z/y}

(d.out)

x〈w〉.P xw−−→ P

(d.in)

x(α).P
x(w)−−−→ P{w/α}

(move) x〈y@w〉.P x.y@w−−−−→ (νy)P

(move′) x(z@w).P
x.y@w−−−−→ P{y/z}

(par)
P

λ−→ Q

P | R λ−→ Q | R
(com)

P
λ−→ P ′ Q

λ−→ Q′

P | Q τ−→ P ′ | Q′

(res)
P

λ−→ Q

(νy)P
λ−→ (νy)Q

(open)
P

x y−−→ Q

(νy)P
x〈y〉−−−→ Q

(close)
P

x〈y〉−−−→ P ′ Q
x(y)−−−→ Q′

P | Q τ−→ (νy)(P ′ | Q′)

(rep)

!x(y).P
x(z)−−−→ P{z/y} | !x(y).P

(l.out)

x.inl;P
x.inl−−→ P

(r.out)

x.inr;P
x.inr−−→ P

(l.in)

x.case(P,Q)
x.inl−−→ P

(r.in)

x.case(P,Q)
x.inr−−→ Q

Fig. 4. Labeled Transition System.

τ . In general, an action requires a matching co-action in the
environment to enable progress.

Definition 6.1 (Labeled Transition System): The relation
labeled transition (P λ−→ Q) is defined by the rules in
Fig. 4, subject to the side conditions: in rule (res), we require
y 6∈ fn(λ); in rule (par), we require bn(λ) ∩ fn(R) = ∅; in
rule (close), we require y 6∈ fn(Q). We omit the symmetric
versions of rules (par), (com), and (close).

We write subj(λ) for the subject of the action λ, that
is, the channel along which the action takes place. Weak
transitions are defined as usual. Let us write ρ1ρ2 for the
composition of relations ρ1, ρ2 and =⇒ for the reflexive,
transitive closure of τ−→. Notation λ

=⇒ stands for =⇒ λ−→=⇒
(given λ 6= τ) and τ

=⇒ stands for =⇒. We recall basic facts
about reduction, structural congruence, and labeled transition:
closure of labeled transitions under structural congruence, and
coincidence of τ -labeled transition and reduction [8]: (1) if
P ≡ λ−→ Q then P λ−→≡ Q; (2) P → Q iff P τ−→≡ Q.

A. Session Fidelity, Global Progress, and Termination

a) Type Preservation: Following [6], our proof of type
preservation relies on a simulation between reductions in the
session-typed π-calculus and proof reductions from logic.
Crucially, there are a series of reduction lemmas that relate
process actions with parallel composition through the (cut)
rule. For instance, for the universal quantifier over worlds
introduced in the previous section, the lemma is given below.

Lemma 6.2 (Reduction Lemma - ∀): Assume
(a) Ω; Γ; ∆1 ` P :: x:∀α.A[w2] with P

x(w3)−−−−→ P ′ and
(b) Ω; Γ; ∆2, x:∀α.A[w2] ` Q :: z:C[w1] with Q xw3−−→ Q′.
Then: Ω; Γ; ∆1,∆2 ` (νx)(P ′ | Q′) :: z:C[w1]
By appealing to such reduction lemmas, we can then establish:

Theorem 6.3 (Type Preservation): If Ω; Γ; ∆ ` P :: z:A[w]
and P −→ Q then Ω; Γ; ∆ ` Q :: z:A[w].

b) Progress: The proof of global progress also follows
the lines of [6]: it relies on a series of inversion lemmas and
on a notion of a live process, which intuitively consists of a
process that has not yet fully carried out its ascribed session
behavior, and thus is a parallel composition of processes
where at least one is a non-replicated process, guarded by
some action. Formally, we define live(P) if and only if
P ≡ (νñ)(π.Q | R), for some process R, sequence of names
ñ and a non-replicated guarded process π.Q.

Theorem 6.4 (Global Progress): If Ω; ·; · ` P :: x:1[w] and
live(P) then ∃Q s.t. P −→ Q.
Note that the condition on the contexts and on the type
for name x in Theorem 6.4 is without loss of generality
since using the cut rules we can compose arbitrary well-typed
processes together and x need not occur in P due to rule (1R).

c) Termination: Termination is a relevant property for
interactive systems: while from a global perspective they are
meant to run forever, at a local level participants should always
react within a finite amount of time, and never engage into
infinite internal behavior. We say that a process P terminates,
noted P ⇓, if there is no infinite reduction path from P .

Theorem 6.5 (Termination): If Ω; Γ; ∆ ` P :: x:A[w] then
P ⇓.

Proof (Sketch): By adapting the linear logical relations
given in [12], [13]. For the system in § IV (without quantifiers),
the logical relations correspond to those in [12], extended to
carry over Ω. For the system with quantifiers given in §V, the
logical relations resemble more those proposed for polymor-
phic session types in [13], but with the crucial observation that
no impredicativity concerns are involved.

B. Domain Preservation

As a consequence of the hybrid nature of our system,
well-typed processes are guaranteed not only to faithfully
perform their prescribed behavior in a deadlock-free manner,
but they also do so without breaking the constraints put in
place on domain reachability given by our well-formedness
constraint on sequents. We make this observation precise with
the following theorem, showing that all the rules of our typing
system preserve well-formedness.

Theorem 6.6: Let E be a derivation of Ω; Γ; ∆ ` P ::
z:A[w]. If Ω; Γ; ∆ ` P :: z:A[w] is well-formed then every
sub-derivation in E well-formed.

Combining Theorems 6.3 and 6.6, we can show that pro-
cesses will only be connected, along linear session channels, to
processes located in reachable domains throughout their com-
putation. While persistent session channels with unreachable
domains may appear in the context Γ throughout the typing
derivation, such channels can never be used and thus can not

7

appear in a well-typed process due the restriction on the (copy)
rule.

VII. EXAMPLES

A. Revisiting the E-Commerce Example

We now revisit the motivating example of the Introduction
and make it precise by applying the techniques we have
developed. Recall the refined web store session type:

WStoresec , addCart(&{buy : @sec Payment, quit : 1}
Payment , ShipAddress(CCNumber(Receipt⊗ 1

The @w type constructor allows us to express a very pre-
cise form of coordinated domain migration. Consider the
WStoresec service interacting with a client process along
channel x, each in their own (reachable) domains, c and ws,
respectively. Our framework ensures that interactions between
the client and the web store enjoy session fidelity, progress,
and termination guarantees. Concerning domain-awareness, by
assuming the client chooses to buy his product selection, we
reach a state that is typed as follows:

c ≺ ws; ·;x:@secPayment[ws] ` Client :: z:@sec1[c]

At this point, it is impossible for a (typed) client to interact
with the behavior that is protected by the trusted domain sec,
since it is not the case that c ≺∗ sec. This ensures, e.g.,
that a client cannot exploit the payment platform of the web
store by accessing the trusted domain in unforeseen ways.
Formally, no typing derivation of c ≺ ws; ·;Payment[sec] `
Client :: z:@sec1[c] exists (Theorem 6.6). The client can only
communicate in the secure domain after the web store service
has migrated accordingly:

c ≺ ws, ws ≺ sec; ·;x′:Payment[sec] ` Client′ :: z′:1[sec]

where Client , x(x′@sec).z〈z′@sec〉.Client′

It is inconvenient (and potentially error-prone) for the payment
domain to be hardwired in the type. We can solve this issue
via existential quantification as shown in the introduction.

WStore∃ , addCart(&{buy : ∃α.@α Payment, quit : 1}

As long as accessibility is irreflexive and antisymmetric, the
server-provided payment domain w will not be able to interact
with the initial public domain of the interaction except as
specified in the Payment type.

Alternatively, the server can let the client choose a payment
domain by using universal quantification. Compliant server
code will only be able to communicate in the client-provided
payment domain since the process must be parametric in α.

WStore∀ , addCart(&{buy : ∀α.@α Payment, quit : 1}

B. Spatial Distribution as in λ5

Murphy et al. [7] have proposed a Curry-Howard inter-
pretation of the intuitionistic modal logic S5 [14] to model
distributed computation with worlds as explicit loci for com-
putation. Accessibility between worlds was assumed to be
reflexive, transitive, and symmetric because each host on a

network should be reachable from any other host. Murphy [15]
later generalized this to hybrid logic, an idea also present
in [16], so that propositions can explicitly refer to worlds.
Computation in this model was decidedly sequential, and a
concurrent extension was proposed as future work. Moreover,
the system presented some difficulties in the presence of
disjunction, requiring a so-called action at a distance without
an explicit communication visible in the elimination rule for
disjunction.

The present system not only generalizes λ5 to permit
concurrency through session-typed linearity, but also solves
the problem of action at a distance because all communication
is explicit in the processes. Due to this issue in the original
formulation of λ5, we will not attempt here to give a full,
computationally adequate interpretation of λ5 in HILL (which
would generalize [17]), but instead explain the spatially dis-
tributed computational interpretation of HILL directly.
• c : �A. Channel c offering A can be used in any domain.
• c : ♦A. Channel c is offering A in some (hidden) domain.
These are mapped into HILL (choosing a fresh α each time)
with

�A = ∀α.@αA
♦A = ∃α.@αA

A process P :: c:�A[w1] will therefore receive, along c, a
world w2 reachable from w1 and then move to w2, offering
A in domain w2. Conversely, a process P :: c:♦A[w1] will
send a world w2 along c and then move to w2, offering A in
domain w2. Processes using such channels will behave dually.

We can now understand the computational interpretation of
some of the characteristic axioms of S5, keeping in mind that
for this application accessibility is reflexive, transitive, and
symmetric (we make no distinction between direct reachability
or reachability requiring multiple hops).
• K♦ :: z:�(A(B)(♦A(♦B[w0].

Here, ♦A is offered along some c1 at some world w1

reachable from w0. Move the offer of �(A(B)[w0] to w1

as c2 and send it c1 to obtain c2 : B[w1]. We abstract this as
♦B[w0], which is possible since w0 ≺ w1. Intuitively, this
axiom captures the fact that a session transformer A(B
that can be used in any domain may be combined with a
session A offered in some domain in order to produce a
session behavior B, itself in some hidden domain.

K♦ , z(x).z(y).y(w1).y(c1@w1).x〈w1〉.x(c2@w1).
c2〈v〉.([c1 ↔ v] | z〈w1〉.z〈c3@w1〉.[c2 ↔ c3])

• B :: z:♦�A(�A[w0].
Given a session x that offers �A at some unknown domain
w1, itself a behavior A that may be used in any domain,
we offer �A at w0 by offering A along c3 at some w2

reachable from w0. By symmetry, w1 ≺ w0, and therefore
by transitivity w1 ≺ w2 for any w0 ≺ w2, which means we
can move the offer of A to any w2. Intuitively, this axiom
captures the fact that, when every domain is connected
to every other domain, session behavior that can be used
anywhere that is itself in a reachable but hidden domain
amounts to behavior that may be used anywhere outright.

8

B , z(x).x(w1).x(c1@w1).z(w2).c1〈w2〉.
c1(c2@w2).z〈c3@w2〉.[c2 ↔ c3]

Other axioms can be given similarly straightforward interpre-
tations and process realizations.

C. Information Flow with Declassification

For simplicity, we assume we have two domains H (for high
security computations) and L (for low security computation),
although this can easily be generalized to a lattice of security
levels. We postulate L ≺ H , but H 6≺ L.

By well-formedness of sequents, which is a precondition for
typability, we have that in Ω ; Γ ; ∆ ` P :: x : A[L], channels
in ∆ can be either high (y : B[H]) or low (y : B[L]). That is,
a low security process can be in touch with one or more high
security processes.

Conversely, if Ω ; Γ ; ∆ ` P :: x : A[H] then all channels
in ∆ must be high (y : B[H]). This means a high security
process cannot use a low security channel. It can therefore
not communicate any information to a low security channel
except through x itself (the client may be of low security, as
explained in the previous paragraph).

This means that the information leaked from a high security
offering process to a low security client is precisely specified
by the type A. For example,

A , Password(⊕{Auth : 1,NotAuth : 1}

means the high security process would receive a password and
return a bit (Auth or NotAuth) indicating if the password was
correct. A compliant process cannot leak the password, since
it cannot be connected to any other low security process at
all. In other words, the type indicates that the correctness of
the password is declassified, while the password itself remains
secure.

If the type of information communicated is the unit type,
then we have traditional noninterference. If the 1L rule is
silent (corresponds to no process action), then this guarantees
termination-sensitive noninterference: the client cannot even
tell if or when the high security process terminated. If the
1L rule is matched with a 1R action (as in [18]), then this
enforces termination-insensitive noninterference. This is, of
course, assuming we have recursive types that permit us to
write nonterminating processes.

VIII. RELATED WORK

We do not know of other typed process frameworks in which
issues of structured communications and domain-awareness
are jointly addressed, and in which migration relies on explicit
(and possibly dynamic) domain-related information.

Much previous research developed mobile process calculi
enriched with dedicated constructs meant to represent dis-
tributed behavior. A salient representative is the Ambient
calculus [19], in which processes may move across ambients—
abstractions of administrative domains. Such ambients have a
particular interpretation as named locations and appear at the
level of processes. In particular, by ambient nesting, processes

fully describe domain hierarchies. We find two major differ-
ences between Ambient-like calculi and our process model:
first, while domains in our model may be read as locations,
they also admit alternative readings (e.g., security levels, as
in our information flow example); second, processes in our
framework refer only to the domains that directly pertain their
actions. In particular, unlike in Ambients, processes in our
setting do not define full domain hierarchies; such a hierarchy
is meant to be defined/governed externally and so processes
may only have a partial view of it.

At the level of types, we find also substantial differences,
for Ambient-like calculi require sophisticated type systems to
control interferences in ambient movement. In type systems
such as, e.g., those in [20], [21], the explicit nested hierarchies
that define ambient mobility are partitioned into groups or
domains so as to statically specify communication and security
properties. This research, however, does not cover issues of
structured communications, which is central in our work. Gar-
ralda et al. [22] integrate binary session types into an Ambient
calculus variant. Rather than domain-awareness concerns, the
focus of the type system is on so-called session safety—
roughly, ensuring that intra-session communications are not
interrupted by ambient mobility steps. Another representative
typed process model is the distributed π-calculus (DPI) [23],
which extends the π-calculus with flat locations, local commu-
nication, and process migration. Typed analyses for DPI [23]
address access control to sites, but do not cover compliance
to structured interaction protocols.

Extensions of session types with access control and infor-
mation flow analyses have been proposed in [24], [25]. There
are high-level similarities between those frameworks and the
ideas illustrated in the example in §VII-C. However, the typed
analyses given in [24] are in the more general context of
multiparty sessions, while our framework is defined in the
binary setting. As synthesis of the underlying ideas is an
interesting item of future work.

About a decade ago, there was significant interest on how
modal logic could inform the design of sequential program-
ming languages for distributed computation [16], [7], [15], as
mentioned in § VII-B. The present work is in part inspired
by this line of research, but goes significantly beyond it by
adding concurrency (requiring linear logic) and generalizing
the accessibility relation rather than forcing mutual interacces-
sibility of worlds. The latter generalization supports additional
applications, such as information flow with declassification.

On the logical side, we owe much to Simpson’s seminal
work [14], which provides a general account of intuitionistic
modal logic by developing a labelled calculus, parametric with
respect to an accessibility relation. He does not explicitly im-
pose a relationship between the worlds on the left and the right,
permitting non-local rule applications that we avoid. Simpson
also does not consider hybrid connectives or linearity. Braüner
and de Paiva [5] develop an intuitionistic hybrid logic, not
using a labelled system, instead developing a Kripke semantics
in tandem with a natural deduction system. The checks present
in our left rules are similar to those in constructive provability

9

logic (CPL*) [26], which requires reachability via irreflexive
transitivity.

Related to the mix of linearity and hybrid logic in HILL

is work by Chaudhuri and Despeyroux [27]. Their logic is
designed to reason about stochastic systems via proof search
in a focused calculus (without a proof term assignment), with
applications in the modelling of biological phenomena, where
it is convenient to have accessibility be an equivalence relation.

IX. CONCLUDING REMARKS

We have proposed a Curry-Howard interpretation of hy-
bridized intuitionistic linear logic (HILL) as domain-aware
session types. Our development generalizes the interpretation
put forward in [6], leading to a session type discipline with
enhanced expressiveness and strong correctness properties for
well-typed processes. Even if processes typeable in the system
in [6] are also typeable in our domain-aware framework (by
localizing each judgment at the same world), it is worth
stressing that domain information in the system given here
effectively rules out certain processes—notably, it disallows
communication between unreachable worlds. Enforcing these
constraints by typing is beyond the reach of previous works.

Through a parametric accessibility relation, our framework
provides flexible reasoning about domain structures. By rely-
ing on an extension of HILL with quantifiers over worlds, we
have shown how our interpretation can account for challenging
scenarios in which domain information can be only determined
at runtime. The logical foundations of our framework allowed
us to improve on existing session type theories by introducing
a new dimension of reasoning over scenarios of structured
communications, based on distributed behavior defined pri-
marily by both processes and types.

In future work, we plan to incorporate the present system in
an ongoing implementation effort, combining functional and
concurrent computation [18]. One interesting point will be
dynamic enforcement of session types and domain boundaries
in the presence of untrusted processes. A potentially useful
extension of the framework in this regard is to map the
computational content of determining domain reachability to
some form of authentication. Another item of future work will
be to explicitly relate our system to various uses of labels
in information flow control (see Montagu et al. [28] for a
systematic account).

REFERENCES

[1] K. Honda, “Types for dynamic interaction,” in CONCUR, ser. LNCS,
vol. 715. Springer, 1993, pp. 509–523.

[2] K. Honda, V. T. Vasconcelos, and M. Kubo, “Language primitives and
type discipline for structured communication-based programming,” in
ESOP’98, ser. LNCS. Springer, 1998.

[3] M. Dezani-Ciancaglini and U. de’Liguoro, “Sessions and session types:
An overview,” in WS-FM 2009, ser. LNCS, vol. 6194. Springer, 2010,
pp. 1–28.

[4] R. Milner, J. Parrow, and D. Walker, “A Calculus of Mobile Processes,
part I/II,” Inf. Comput., vol. 100, no. 1, pp. 1–77, 1992.

[5] T. Braüner and V. de Paiva, “Intuitionistic hybrid logic,” J. of App. Log.,
vol. 4, pp. 231–255, 2006.

[6] L. Caires and F. Pfenning, “Session types as intuitionistic linear proposi-
tions,” in CONCUR, ser. LNCS, vol. 6269. Springer, 2010, pp. 222–236.

[7] T. Murphy, K. Crary, R. Harper, and F. Pfenning, “A symmetric modal
lambda calculus for distributed computing,” in LICS. IEEE Computer
Society, 2004, pp. 286–295.

[8] D. Sangiorgi and D. Walker, The π-calculus: A Theory of Mobile
Processes. New York, NY, USA: Cambridge University Press, 2001.

[9] D. Sangiorgi, “pi-calculus, internal mobility, and agent-passing calculi,”
Theor. Comput. Sci., vol. 167, no. 1&2, pp. 235–274, 1996.

[10] B.-Y. E. Chang, K. Chaudhuri, and F. Pfenning, “A Judgmental Analysis
of Linear Logic,” Carnegie Mellon University, Tech. Rep. CMU-CS-03-
131R, 2003.

[11] A. Barber and G. Plotkin, “Dual Intuitionistic Linear Logic,” Univ. of
Edinburgh, Tech. Rep. LFCS-96-347, 1997.

[12] J. A. Pérez, L. Caires, F. Pfenning, and B. Toninho, “Linear logical
relations for session-based concurrency,” in ESOP, ser. LNCS, vol. 7211.
Springer, 2012, pp. 539–558.

[13] L. Caires, J. A. Pérez, F. Pfenning, and B. Toninho, “Behavioral
polymorphism and parametricity in session-based communication,” in
ESOP, ser. LNCS, vol. 7792. Springer, 2013.

[14] A. Simpson, “The proof theory and semantics of intuitionistic modal
logic,” Ph.D. dissertation, University of Edinburgh, 1994.

[15] T. M. VII, “Modal types for mobile code,” Ph.D. dissertation, Carnegie
Mellon University, 2008.

[16] L. Jia and D. Walker, “Modal proofs as distributed programs (extended
abstract),” in ESOP, ser. LNCS, vol. 2986. Springer, 2004, pp. 219–233.

[17] B. Toninho, L. Caires, and F. Pfenning, “Functions as session-typed pro-
cesses,” in FoSSaCS, ser. LNCS, L. Birkedal, Ed., vol. 7213. Springer,
2012, pp. 346–360.

[18] ——, “Higher-order processes, functions, and sessions: A monadic
integration,” in ESOP, ser. LNCS, vol. 7792, 2013, pp. 350–369.

[19] L. Cardelli and A. D. Gordon, “Mobile ambients,” Theor. Comput. Sci.,
vol. 240, no. 1, pp. 177–213, 2000.

[20] L. Cardelli, G. Ghelli, and A. D. Gordon, “Types for the ambient
calculus,” Inf. Comput., vol. 177, no. 2, pp. 160–194, 2002.

[21] M. Bugliesi and G. Castagna, “Behavioural typing for safe ambients,”
Comput. Lang., vol. 28, no. 1, pp. 61–99, 2002.

[22] P. Garralda, A. B. Compagnoni, and M. Dezani-Ciancaglini, “Bass:
boxed ambients with safe sessions,” in PPDP, A. Bossi and M. J. Maher,
Eds. ACM, 2006, pp. 61–72.

[23] M. Hennessy and J. Riely, “Resource access control in systems of mobile
agents,” Inf. Comput., vol. 173, no. 1, pp. 82–120, 2002.

[24] S. Capecchi, I. Castellani, M. Dezani-Ciancaglini, and T. Rezk, “Session
types for access and information flow control,” in CONCUR, ser. LNCS,
vol. 6269. Springer, 2010, pp. 237–252.

[25] S. Capecchi, I. Castellani, and M. Dezani-Ciancaglini, “Information flow
safety in multiparty sessions,” in EXPRESS, ser. EPTCS, B. Luttik and
F. Valencia, Eds., vol. 64, 2011, pp. 16–30.

[26] R. J. Simmons and B. Toninho, “Constructive provability logic,” CoRR,
vol. abs/1205.6402, 2012.

[27] K. Chaudhuri and J. Despeyroux, “A Hybrid Linear Logic for
Constrained Transition Systems with Applications to Molecular
Biology,” INRIA, Research Report, Dec. 2010. [Online]. Available:
http://hal.inria.fr/inria-00402942

[28] B. Montagu, B. C. Pierce, and R. Pollack, “A theory of information-
flow labels,” in Proceedings of the 26th Computer Security Foundations
Symposium. IEEE, Jun. 2013, pp. 3–17.

10

http://hal.inria.fr/inria-00402942

APPENDIX

A. Additional Rules for HILL (Omitted from Fig. 2)

(&R)
Ω; Γ; ∆ ` P1 :: x:A[w] Ω; Γ; ∆ ` P2 :: x:B[w]

Ω; Γ; ∆ ` z.case(P1, P2) :: z:A&B[w]

(&L1)
Ω; Γ; ∆, x:A[w2] ` Q :: z:C[w1]

Ω; Γ; ∆, x:A&B[w2] ` x.inl;Q :: z:C[w1]

(&L2)
Ω; Γ; ∆, x:B[w2] ` Q :: z:C[w1]

Ω; Γ; ∆, x:A&B[w2] ` x.inr;Q :: z:C[w1]

(⊕R1)
Ω; Γ; ∆ ` P :: z:A[w]

Ω; Γ; ∆ ` z.inl;P :: z:A⊕B[w]

(⊕R2)
Ω; Γ; ∆ ` P :: z:B[w]

Ω; Γ; ∆ ` z.inr;P :: z:A⊕B[w]

(⊕L)

Ω; Γ; ∆, x:A[w2] ` Q1 :: z:C[w1]
Ω; Γ; ∆, x:B[w2] ` Q2 :: z:C[w1]

Ω; Γ; ∆, x:A⊕B[w2] ` x.case(Q1, Q2) :: z:C[w1]

(!L)
Ω; Γ, u:A[w2]; ∆ ` P :: z:C[w1]

Ω; Γ; ∆, x:!A[w2] ` x(u).P :: z:C[w1]

(!R)
Ω; Γ; · ` Q :: y:A[w]

Ω; Γ; · ` x〈u〉.!u(y).Q :: x:!A[w]

Fig. 5. Hybridized Intuitionistic Linear Logic HILL, with proof terms: Rules
for additives and exponential

11

	Introduction
	Process Model: Syntax and Semantics
	Hybridized Intuitionistic Linear Logic (HILL)
	HILL propositions as Domain-Aware Session Types
	Dynamic Domain Associations via Quantification over Worlds
	Technical Results
	Labeled Transition System
	Session Fidelity, Global Progress, and Termination
	Domain Preservation

	Examples
	Revisiting the E-Commerce Example
	Spatial Distribution as in 5
	Information Flow with Declassification

	Related Work
	Concluding Remarks
	References
	Appendix
	Additional Rules for HILL (Omitted from Fig. 2)

