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Abstract. The inverse method is a generalization of resolution that can be ap-
plied to non-classical logics. We have recently shown how Andreoli’s focusing
strategy can be adapted for the inverse method in linear logic. In this paper we
introduce the notion of focusing bias for atoms and show that it gives rise to
forward and backward chaining, generalizing both hyperresolution (forward) and
SLD resolution (backward) on the Horn fragment. A key feature of our charac-
terization is the structural, rather than purely operational, explanation for forward
and backward chaining. A search procedure like the inverse method is thus able
to perform both operations as appropriate, even simultaneously. We also present
experimental results and an evaluation of the practical benefits of biased atoms
for a number of examples from different problem domains.

1 Introduction

Designing and implementing an efficient theorem prover for a non-classical logic re-
quires deep knowledge about the structure and properties of proofs in this logic. Fortu-
nately, proof theory provides a useful guide, since it has isolated a number of important
concepts that are shared between many logics of interest. The most fundamental is
Gentzen’s cut-elimination property [13] which allows us to consider only subformulas
of a goal during proof search. Cut elimination gives rise to the inverse method [12]
for theorem proving which applies to many non-classical logics. A more recent devel-
opment is Andreoli’s focusing property [1, 2] which allows us to translate formulas
into derived rules of inference and then consider only the resulting big-step derived
rules without losing completeness. Even though Andreoli’s system was designed for
classical linear logic, similar focusing systems for many other logics have been discov-
ered [16, 14].

In prior work we have constructed a focusing system forintuitionistic linear logic
which is consonant with Andreoli’s classical version [8], and shown that restricting the
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inverse method to work only with big-step rules derived from focusing dramatically
improves its efficiency [7]. The key feature of focusing is that each logical connective
carries an intrinsic attribute called polarity that determines its behavior under focusing.
In the case of linear logic, polarities are uniquely determined for each connective. How-
ever, as Andreoli noted, polarities may be chosen freely for atomic propositions as long
as duality is consistently maintained. In this paper we prove that, despite the asymmet-
ric nature of intuitionistic logic, a similar observation can be made here. Furthermore,
we show that proof search on Horn propositions with the inverse method behaves either
like hyperresolution or SLD resolution, depending on the chosen polarity for atoms.
If different atoms are ascribed different polarities we can obtain combinations of these
strategies that remain complete. The focused inverse method therefore directly general-
izes these two classical proof search strategies. We also demonstrate through an imple-
mentation and experimental results that this choice can be important in practical proof
search situations and that the standard polarity assumed for atoms in intuitionistic [15]
or classical [22] logic programming is often the less efficient one.

The concept of viewing focused derivations as a means of constructing derived in-
ference rules is not new. Andreoli himself has made similar observations for backward
reasoning: see [2], for instance. Girard’sLudics [14] uses focusing as a foundational
concept and takes it as an explanation for logic; in Ludics, “bipoles” or derived infer-
ence rules are the only rules that are syntactically allowed. Focusing for intuitionistic
(including linear) logics was first investigated by Howe [16]; however, Howe did not
allow atoms of different polarities.

The interaction of focusing and cut-elimination has been studied by Danos, Joinet
and Schellinx [11, 10], though not in these precise terms. Although none of their trans-
lations explicitly use focusing, their calculi, particularly the constraints in theLKηp sys-
tem bear unmistakable similarities to focusing. A more recent work by Jagadesanet
al [17] is the systemλRCC, a logic programming language without focusing, but with
atoms of different polarities. InλRCC the observation that switching polarity gives
rise to forward- or backward-chaining is visible, though this observation is limited to
the Horn-fragment of intuitionistic logic. Finally, a more recent work by Liang and
Miller [19] uses biased focusing to give uniform interpretations of a number of linear
and non-linear calculi such as the well-known LJF and LJT sequent calculi.

Since focusing appears to be an almost universal phenomenon among non-classical
logics, we believe these observations have wide applicability in constructing theorem
provers. The fact that we obtain well-known standard strategies on the Horn fragment,
where classical, intuitionistic, and even linear logic coincide, provides further evidence.
We are particularly interested in intuitionistic linear logic and its extension by a monad,
since it provides the foundation for the logical framework CLF [4] which we can use
to specify stateful and concurrent systems. Theorem proving in CLF thereby provides
a means for analyzing properties of such systems.

The remainder of the paper is organized as follows. In Section 2 we present the
backward focusing calculus that incorporates a choice of polarity for atoms and de-
scribe the derived rules that are generated with atoms of different polarity. We then
sketch the focused inverse method in Section 3, noting the key differences between
sequents and rules in the forward direction from their analogues in the backward direc-
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Judgmental rules

Γ ; a =⇒ a
init

Γ,A ; ∆,A =⇒ C
Γ,A ; ∆ =⇒ C

copy

Multiplicative rules

Γ ; ∆ =⇒ A Γ ; ∆′ =⇒ B
Γ ; ∆, ∆′ =⇒ A⊗ B

⊗R
Γ ; ∆,A, B =⇒ C
Γ ; ∆,A⊗ B =⇒ C

⊗L

Γ ; · =⇒ 1 1R
Γ ; ∆ =⇒ C
Γ ; ∆,1 =⇒ C

1L

Γ ; ∆,A =⇒ B
Γ ; ∆ =⇒ A( B

(R
Γ ; ∆ =⇒ A Γ ; ∆′, B =⇒ C
Γ ; ∆, ∆′,A( B =⇒ C

(L

Additive rules

Γ ; ∆ =⇒ A Γ ; ∆ =⇒ B
Γ ; ∆ =⇒ A & B

&R
Γ ; ∆,Ai =⇒ C

Γ ; ∆,A1 & A2 =⇒ C
&Li

Γ ; ∆ =⇒ Ai

Γ ; ∆ =⇒ A1 ⊕ A2
⊕R1

Γ ; ∆,A =⇒ C Γ ; ∆, B =⇒ C
Γ ; ∆,A⊕ B =⇒ C

⊕L

Γ ; ∆ =⇒ > >R
Γ ; ∆,0 =⇒ C

0L

Exponentials

Γ ; · =⇒ A
Γ ; · =⇒ !A

! R
Γ,A ; ∆ =⇒ C
Γ ; ∆, !A =⇒ C

! L

Quantifiers

Γ ; ∆ =⇒ [u/x]A
Γ ; ∆ =⇒ ∀x.A

∀Ru
Γ ; ∆, [t/x]A =⇒ C
Γ ; ∆,∀x.A =⇒ C

∀L

Γ ; ∆ =⇒ [t/x]A
Γ ; ∆ =⇒ ∃x.A

∃R
Γ ; ∆, [u/x]A =⇒ C
Γ ; ∆,∃x.A =⇒ C

∃Lu

Fig. 1.The backward sequent calculus for first-order linear logic
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tion. In Section 4 we concentrate on the Horn fragment, where we show that the derived
rules generalize hyperresolution (for negative atoms) and SLD resolution (for positive
atoms). Finally, Section 5 summarizes our experimental results on an implementation
of the inverse method presented in Section 3.

2 Biased focusing

We consider intuitionistic linear logic including the following connectives: linear im-
plication ((), multiplicative conjunction (⊗, 1), additive conjunction (&,>), additive
disjunction (⊕, 0), the exponential (!), and the first-order quantifiers (∀, ∃). Quantifica-
tion is over a simple term language consisting of variables and uninterpreted function
symbols applied to a number of term arguments. Propositions are written using capital
letters (A, B, . . .), and atomic propositions with lowercase letters (a,b,n,m, p,q, . . .).

We start with a standard dyadic sequent calculus for this logic consisting of sequents
of the formΓ ; ∆ =⇒ C, whereΓ and∆ are contexts of hypotheses andC is the single
intuitionistic conclusion. The hypotheses in∆ are linear, i.e., each hypothesis must
be consumed exactly once in the proof; those inΓ areunrestricted, i.e., each may be
consumed as many times as necessary. The rules for this calculus are in Figure 1. This
calculus is known to have the usual nice properties: admissibility of cut, the identity
principle, and admissible weakening and contraction for unrestricted hypotheses [5, 6].

In classical linear logic the synchronous or asynchronous nature of a given con-
nective is identical to its polarity; the negative connectives (&,>, M, ⊥, ∀) are asyn-
chronous, and the positive connectives (⊗, 1, ⊕, 0, ∃) are synchronous. In intuitionistic
logic, where the left- and right-hand side of a sequent are asymmetric and no involutive
negation exists, we derive the properties of the connectives via the rules and phases of
search: an asynchronous connective is one for which decomposition is complete in the
active phase; a synchronous connective is one for which decomposition is complete in
the focused phase. This definition happens to coincide with polarities for classical lin-
ear logic, although we know of no intrinsic reason why this should be so. To maintain
unity with the literature we use the termspositiveandnegativeand call the positive
or negative nature of a proposition itspolarity. Note that because our backward linear
sequent calculus is two-sided, positive (negative) propositions will be synchronous on
the right (left) of the sequent arrow, and asynchronous on the left (right).

For an atomic proposition, we have a choice of polarities to assign to it; this choice
we call abias. A positive-biased atom behaves like a positive proposition in the sense
its principal rule, an initial rule, must treat it as synchronous on the right, i.e., as a
right focus. Dually, a negative-biased atom requires a left focus for its initial rule. Note
that every atomic proposition iseitherpositive-biasedor negative-biased for the entire
derivation. However, any arbitrary assignment of polarities to the atoms will guarantee
completeness. This observation was already well made by Andreoli [1] for classical
linear logic, but that it works just as well in the intuitionistic case is established in this
work.3

3 For recent developments along these lines since the conference version of this paper was pub-
lished in [9], see [19, 28].

4



To aid in clarity, we denote propositions of positive and negative polarities with
the suggestive meta-variablesP,Q, ... andN,M, ... respectively (lower-case used for the
atoms):

(positive) P,Q, ... ::= p | A⊗ B | 1 | A⊕ B | 0 | ! A | ∃x. A
(negative) N,M, ... ::= n | A & B | > | A( B | ∀x. A

We will also writeP− for a positive proposition or a negative-biased atom, andN+ for
a negative proposition or a positive-biased atom.

The contexts in the sequents of the focusing calculus will be of three different kinds.
We shall have the unrestricted contexts (Γ) as before. The linear context∆ will be re-
stricted to contain only positive-biased atoms or negative propositions, i.e., of the form
N+. A third activecontext, writtenΩ, will be added for active sequents; this context will
be ordered, indicated by a centered dot (·) instead of a comma. Each hypothesis in the
active context will also have to be consumed exactly once in the proof. The right-hand
side of active sequents will be split into two kinds: apassivekind, written · ; Q−, con-
taining a positive propositions or negative-biased atomQ−; and anactivekind, written
A ; ·, where active rules may be applicable toA. If the precise form of the right-hand
side does not matter, we shall write it asγ. The specific sequents in the focusing calculus
are as follows:

Γ ; ∆�A right-focalsequent withA under focus
Γ ; ∆ ; A�Q− left-focalsequent withA under focus

Γ ; ∆ ; Ω =⇒

· ; Q−

C ; ·︸     ︷︷     ︸
γ

activesequents

The full set of rules is in Figure 2.

Active phaseLeaving aside the exponential operator and unrestricted assumptions in
Γ for the moment, right active propositions are decomposed until they become atomic
or positive, i.e., a sequent of the formΓ ; ∆ ; Ω =⇒ Q− ; ·. The right hand side is then
changed into the form· ; Q−. Similarly, the propositions inΩ are decomposed except
when the proposition is atomic or negative, in which case it is transferred to∆. The two
key judgmental rules that transfer atoms and synchronous propositions out of the active
zones of the sequents are as follows:

Γ ; ∆ ; Ω =⇒ · ; Q−

Γ ; ∆ ; Ω =⇒ Q− ; ·
actR

Γ ; ∆,N+ ; Ω · Ω′ =⇒ γ
Γ ; ∆ ; Ω · N+ · Ω′ =⇒ γ

actL

In the remaining active rules, a principal connective in an active proposition is de-
composed using the corresponding rule in the backward sequent calculus. That is, mod-
ulo the distinction between∆ andΩ and the forms of the right-hand side, these rules are
isomorphic to those of the non-focusing calculus. The following are two characteristic
examples.

Γ ; ∆ ; Ω =⇒ A ; · Γ ; ∆ ; Ω =⇒ B ; ·
Γ ; ∆ ; Ω =⇒ A & B ; · &R

Γ ; ∆ ; Ω · A · B · Ω′ =⇒ γ
Γ ; ∆ ; Ω · A⊗ B · Ω′ =⇒ γ

⊗L
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Focal phaseEventually the active sequent is reduced to the formΓ ; ∆ ; · =⇒ · ; Q−,
which we call aneutral sequent. A focal phase is launched from such a neutral sequent
by selecting a suitable proposition and giving it the corresponding left- or right-focus.
This gives us the two focus rules

Γ ; ∆�Q
Γ ; ∆ ; · =⇒ · ; Q focus+

Γ ; ∆ ; N�Q−

Γ ; ∆,N ; · =⇒ · ; Q− focus−

Note the use of the syntactic classes in these rules: we never grant right focus to a
negative atom, or left focus to a positive atom.

Once a proposition obtains focus, it is decomposed under focus until it becomes
asynchronous or ends in an initial sequent. There are two forms of the initial sequent,
corresponding to the two focusing biases.

Γ ; · ; n�n init−
Γ ; p� p init+

A negative-biased atom thus has the interpretation from top-down (goal-directed) logic
programming. Here, initial sequents have aleft focus, and the right hand side is treated
like an atomic goal to be matched with the head of a clause. On the other hand, a
positive-biased atom has the interpretation from bottom-up logic programming. Here,
the right-hand side is a passive goal and the linear hypotheses, which exactly represent
a database, must evolve until they can match the right. This observation will be revisited
in more detail in Section 4.

If the focal proposition has the opposite polarity, then we blur the focus and return
to one of the active sequent forms.

Γ ; ∆ ; · =⇒ N ; ·
Γ ; ∆�N blur−

Γ ; ∆ ; P =⇒ · ; Q−

Γ ; ∆ ; P�Q− blur+

This returns us to an active phase. We shall use the termblur to refer to the phenomenon
of losing focus and transitioning to an active sequent.

We also have to account for the propositions in the unrestricted contextΓ, which
may be both synchronous and asynchronous. When we are in a neutral sequent, we
may copy a proposition out of the unrestricted context and immediately focus on it.

Γ,A ; ∆ ; A�Q−

Γ,A ; ∆ ; · =⇒ · ; Q− focus!

If this proposition is actually positive, then we immediately remove focus on it (using
blur+) and transition to an active phase.

Synchronous connectives are decomposed using non-invertible rules for that propo-
sition, and focus is maintained where possible on the operands of the connective. For
example, consider the &Li rules:

Γ ; ∆ ; A�Q−

Γ ; ∆ ; A & B�Q−
&L1

Γ ; ∆ ; B�Q−

Γ ; ∆ ; A & B�Q−
&L2
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Here we select (non-deterministically) an operand of the negative connective &, and
then maintain focus on that selected operand. The next applicable rulemustbe applied
to the selected operand, in this caseA.

Focus can be propagated to multiple branches of the proof. For example:

Γ ; ∆1�A Γ ; ∆2� B
Γ ; ∆1, ∆2�A⊗ B

⊗R

Here, both operands of⊗ retain focus in their separate branches of the proof. In each
branch, the rules are constrained to be applicable only to the respective operand.

There is only one subtlety in these focal rules regarding the exponential !. Although
it is positive, the !R rule cannot maintain focus on the operand using the following
(incorrect!) rule:

Γ ; ·�A
Γ ; ·� ! A ! R

This calculus with this !R rule is incomplete as there is no focused proof of the propo-
sition !(a⊕ b)( !(b⊕ a), for example. To see why, consider the resulting neutral se-
quenta⊕ b ; · ; · =⇒ · ; !(b⊕ a). Now we have two choices. If we focus ona⊕ b on
the left, then we eventually obtain the neutral sequentsa⊕ b ; a ; · =⇒ · ; !(b⊕ a) and
a⊕ b ; b ; · =⇒ · ; !(b⊕ a).

a⊕ b ; a ; · =⇒ · ; !(b⊕ a)
a⊕ b ; · ; a =⇒ · ; !(b⊕ a) actL

a⊕ b ; b ; · =⇒ · ; !(b⊕ a)
a⊕ b ; · ; b =⇒ · ; !(b⊕ a) actL

a⊕ b ; · ; a⊕ b =⇒ · ; !(b⊕ a)
⊕L

a⊕ b ; · ; a⊕ b� !(b⊕ a) actL

a⊕ b ; · ; · =⇒ · ; !(b⊕ a) focus!

In either case, focusing on the left yields nothing, and the !R rule cannot be applied after
a right focus because the linear context is not empty. The only remaining possibility is to
start with a right focus instead of the left, i.e., witha⊕ b ; ·� !(b⊕ a). If we decompose
this with !R, we geta⊕ b ; ·�b⊕ a. Becauseb⊕ a has focus, we are forced to use a
⊕R rule to choose eitherb or a to prove; however, neitherb nora is provable froma⊕ b.

The fix is to blur the right focus onb⊕ a in the !R rule, i.e., to use the following
version of the rule:

Γ ; · ; · =⇒ A ; ·
Γ ; ·� ! A ! R

We can then focus on the left and get two provable sequents in the premisses of⊕L.
One explanation for this focus-removing nature of ! in a judgmental framework [5] is
that there is a hidden transition from “(!A) true” to the categorical judgment “A valid”
which in turn reduces to “A true”. We may think of them as two rules, one decomposing
the proposition and one changing the judgment:

Γ =⇒ A valid
Γ ; · =⇒ (! A) true

Γ ; · =⇒ A true
Γ =⇒ A valid
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The first of these two rules is the internalisation of the categorical judgment and is syn-
chronous; the second is the definition of the categorical judgment and is asynchronous.
The exponential therefore has aspects of both synchronicity and asynchronicity: the
overall composition is synchronous, but there is a phase change when applying the rule.
Girard has made a similar observation that exponentials are composed of one micro-
connective to change polarity, and another to model a given behavior [14, Page 114];
this observation extends to other modal operators, such as why-not (?) of JILL [5] or
the lax modality of CLF [27].

Soundness of this calculus with respect to the non-focusing calculus in Figure 1
is a rather obvious property— forget the distinction between∆ andΩ, elide the phase
transition rules, and the original backward calculus appears.

Theorem 1 (Soundness).
1. If Γ ; ∆�A thenΓ ; ∆ =⇒ A.
2. If Γ ; ∆ ; A�Q− thenΓ ; ∆,A =⇒ Q−.
3. If Γ ; ∆ ; Ω =⇒ C ; · thenΓ ; ∆,Ω =⇒ C.
4. If Γ ; ∆ ; Ω =⇒ · ; Q− thenΓ ; ∆,Ω =⇒ Q−.

Proof. By structural induction on the given focused derivation. Note that all the logical
rules neatly fall into one of the above cases. To illustrate, consider the rule⊗R, i.e, the
derivation that ends with the following rule:

Γ ; ∆1�A Γ ; ∆2� B
Γ ; ∆1, ∆2�A⊗ B

Γ ; ∆1 =⇒ A andΓ ; ∆2 =⇒ B i.h.
Γ ; ∆1, ∆2 =⇒ A⊗ B ⊗R.

For phase transition rules (i.e., blur+, blur−, actL, actR, focus−, and focus+), the pre-
miss and the conclusion of the rule both denote the same sequent in the non-focusing
calculus. ut

To prove completeness, we take a more circuitous path, using admissibility of cut
in the focusing calculus to show the rules of the non-focusing calculus are admissible.
First let us look admissibility of cut. A principal cut is one where the cut proposition
is immediately decomposed in the two given derivations. All principal cuts will be
between a focal sequent and an active sequent, because polarities are dualised on the
two sides of the sequent arrow. For example, for the principal cut for⊗, we have to
consider the following pair of derivations.

D1
Γ ; ∆1�A1

D2
Γ ; ∆2�A2

Γ ; ∆1, ∆2�A1 ⊗ A2

E
Γ ; ∆′ ; Ω · A1 · A2 · Ω

′ =⇒ γ

Γ ; ∆′ ; Ω · A1 ⊗ A2 · Ω
′ =⇒ γ

The cut is distributed to the component derivationsD1,D2 andE, which also maintain
this form of cut for subformulas; for example, a cut betweenD1 andE uses the smaller
cut propositionA1. The result of these cuts will be active because the proposition under
focus is cut.
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Γ ; ∆�A right-focal

Γ ; p� p init+
Γ ; ·�1 1R

Γ ; ∆1�A Γ ; ∆2� B
Γ ; ∆1, ∆2�A⊗ B

⊗R

Γ ; ∆�Ai

Γ ; ∆�A1 ⊕ A2
⊕Ri

Γ ; ∆� [t/x]A
Γ ; ∆�∃x.A

∃R
Γ ; · ; · =⇒ A ; ·
Γ ; ·� ! A

! R

Γ ; ∆ ; A�Q− left-focal

Γ ; · ; n�n init−
Γ ; ∆ ; Ai�Q−

Γ ; ∆ ; A1 & A2�Q−
&Li

Γ ; ∆1 ; B�Q− Γ ; ∆2�A
Γ ; ∆1, ∆2 ; A( B�Q−

(L
Γ ; ∆ ; [t/x]A�Q−

Γ ; ∆ ; ∀x.A�Q−
∀L

focus

Γ ; ∆�Q
Γ ; ∆ ; · =⇒ · ; Q focus+

Γ ; ∆ ; N�Q−

Γ ; ∆,N ; · =⇒ · ; Q− focus−
Γ,A ; ∆ ; A�Q−

Γ,A ; ∆ =⇒ · ; Q− focus!

Γ ; ∆ ; Ω =⇒ A ; · right-active

Γ ; ∆ ; Ω =⇒ A ; · Γ ; ∆ ; Ω =⇒ B ; ·
Γ ; ∆ ; Ω =⇒ A & B ; · &R

Γ ; ∆ ; Ω =⇒ > ; · >R

Γ ; ∆ ; Ω · A =⇒ B ; ·
Γ ; ∆ ; Ω =⇒ A( B ; · (R

Γ ; ∆ ; Ω =⇒ [u/x]A ; ·
Γ ; ∆ ; Ω =⇒ ∀x. A ; · ∀R

u
Γ ; ∆ ; Ω =⇒ · ; Q−

Γ ; ∆ ; Ω =⇒ Q− ; ·
actR

Γ ; ∆ ; Ω · A · Ω′ =⇒ γ left-active

Γ ; ∆ ; Ω · A · B · Ω′ =⇒ γ
Γ ; ∆ ; Ω · A⊗ B · Ω′ =⇒ γ

⊗L
Γ ; ∆ ; Ω · Ω′ =⇒ γ
Γ ; ∆ ; Ω · 1 · Ω′ =⇒ γ 1L

Γ ; ∆ ; Ω · A · Ω′ =⇒ Q Γ ; ∆ ; Ω · B · Ω′ =⇒ γ
Γ ; ∆ ; Ω · A⊕ B · Ω′ =⇒ γ

⊕L
Γ ; ∆ ; Ω · 0 · Ω′ =⇒ γ 0L

Γ ; ∆ ; Ω · [u/x]A · Ω′ =⇒ γ
Γ ; ∆ ; Ω · ∃x.A · Ω′ =⇒ γ

∃Lu
Γ,A ; ∆ ; Ω · Ω′ =⇒ γ
Γ ; ∆ ; Ω · ! A · Ω′ =⇒ γ

! L
Γ ; ∆,N+ ; Ω · Ω′ =⇒ γ
Γ ; ∆ ; Ω · N+ · Ω′ =⇒ γ

actL

blur

Γ ; ∆ ; P =⇒ · ; Q−

Γ ; ∆ ; P�Q− blur+
Γ ; ∆ ; · =⇒ N ; ·
Γ ; ∆�N blur−

Fig. 2.Backward linear focusing calculus
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We also have to include a few more general cuts for the commutative cases in the
cut theorem. Primarily, we require cuts between two active sequents, the result of which
will be another active sequent. In the proof we also need to consider special cases where
the cut proposition is in a focal sequent but not itself under focus. For the induction in
the cut theorem to work, these specific cases will have to redo the focusing steps for the
proposition under focus. We call these kinds ofpreservative cutsas they preserve the
focus of one of the component derivations.

The proof of cut-elimination requires one key lemma: that permuting the ordered
context does not affect provability. This lemma thus allows cutting propositions from
anywhere inside the ordered context, and also to re-order the context when needed.

Lemma 2 (Permutation).If Γ ; ∆ ; Ω =⇒ γ, thenΓ ; ∆ ; Ω′ =⇒ γ for any permutation
Ω′ ofΩ.

Proof. By structural induction on the derivation ofΓ ; ∆ ; Ω =⇒ γ. We give a represen-
tative case for⊗L, whereΩ = Ω1 · A⊗ B · Ω2 and the last rule in the derivation was:

Γ ; ∆ ; Ω1 · A · B · Ω2 =⇒ γ

Γ ; ∆ ; Ω1 · A⊗ B · Ω2 =⇒ γ
⊗L

Let a permutationΩ′ of Ω1 · A⊗ B · Ω2 be given. It must have the formΩ′1 · A⊗ B · Ω′2
whereΩ′1 · Ω

′
2 is a permutation ofΩ1 · Ω2. ThereforeΩ′1 · A · B · Ω

′
2 is a permutation

of Ω1 · A · B · Ω2. Therefore, by the induction hypothesis,Γ ; ∆ ; Ω′1 · A · B · Ω
′
2 =⇒ γ.

Then use⊗L. ut

We also note (omitting its proof) a trivial corollary of this lemma; it will be useful
during some cases in the proof of cut admissibility.

Corollary 3 (Inversion). All the active rules in figure 2 are invertible. ut

One consequence of lemma 2 is that the order of the propositions in the active con-
texts does not matter. Therefore, we can always find a proof where the decompositions
in the active phase fix a canonical order of decomposition. The⊗L rule, for example,
could be restricted in an implementation to:

Γ ; ∆ ; Ω · A · B =⇒o · ; Q−

Γ ; ∆ ; Ω · A⊗ B =⇒o · ; Q−
⊗L

The ordered calculus operates on the right side of the sequent unless the right hand
side is a positive proposition. Only then is the proposition on the right hand side moved
into the passive zone and can propositions inΩ be decomposed. Any other fixed order-
ing would also work. Note that because the order of rules in the active context can be
fixed based on the order of the active context, and the active context may be permuted
arbitrarily by lemma 2, it follows that the order of the active rules may also be per-
muted arbitrarily. For the purposes of the cut-admissibility theorem, such permutative
variations are identified.

Definition 4 (Similar derivations). We define two derivationsD1 andD2 of the same
sequent to be similar, writtenD1 ≈D2, if they differ only in the order in which active
rules are applied in the active phases.
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Essentially, two derivations are similar if the only differences are in the inessential
non-deterministic choices in the active phase. For the cut theorem, similar derivations
are considered to be equal for the purposes of the lexicographic order. Note that no
matter what order the active rules are done, the derivation will have the same neutral
sequents, Furthermore, no copying of subformulas happens in the active rules, so the
height of any active phase is bounded. Therefore, equating similar derivations for the
purposes of the induction keeps the ordering well-founded.4

Theorem 5 (Cut). If
1. Γ ; ∆�A and:

(a) Γ ; ∆′ ; Ω · A · Ω′ =⇒ γ thenΓ ; ∆, ∆′ ; Ω · Ω′ =⇒ γ.
(b) Γ ; ∆′,A ; Ω =⇒ γ thenΓ ; ∆, ∆′ ; Ω =⇒ γ.

2. Γ ; ∆ ; Ω =⇒ A ; · or Γ ; ∆ ; Ω =⇒ · ; A and:

(a) Γ ; ∆′ ; A�Q− thenΓ ; ∆, ∆′ ; Ω =⇒ · ; Q−.
(b) Γ ; ∆′ ; Ω′ · A · Ω′′ =⇒ γ thenΓ ; ∆, ∆′ ; Ω′ · Ω · Ω′′ =⇒ γ.
(c) Γ ; ∆′,A ; Ω′ =⇒ γ thenΓ ; ∆, ∆′ ; Ω · Ω′ =⇒ γ.

3. Γ ; ·�A andΓ,A ; ∆ ; Ω =⇒ γ thenΓ ; ∆ ; Ω =⇒ γ.
4. Γ ; · ; · =⇒ A ; · or Γ ; · ; · =⇒ · ; A andΓ,A ; ∆ ; Ω =⇒ γ thenΓ ; ∆ ; Ω =⇒ γ.

Proof. By a nested induction as detailed below, after generalising the statement to in-
clude a number of additionalpreservativecuts. We name the three derivations in each
caseD, E andF , respectively, whereD andE are given andF is constructed. We shall
assume that the inductive hypothesis can be used whenever:

(a) the cut proposition is strictly smaller; or
(b) the cut proposition remains the same, but the inductive hypothesis is used for

higher numbered cuts to justify a lower numbered cut (that is, a type 3 for a type
2b cut, etc.); or

(c) a preservative cut (see Appendix A.6) is used to justify any of the above cuts; or
(d) the cut proposition andE remain the same, andD is similar to a strictly smaller

first derivation; or
(e) the cut proposition andD remain the same, andE is similar to a strictly smaller

second derivation.

The details of the proof are in Appendix A. ut

We shall use the cut theorem to show that all rules of the non-focusing calculus
are admissible in the focusing calculus by interpreting the non-focusing sequents as
active sequents. To achieve this, we first need the equivalent of the identity princi-
ple for the focusing calculus:Γ ; · ; A =⇒ A ; ·. In the focusing calculus this is not
a straightforward induction because of the occurrence restrictions on focal sequents.
To illustrate,∆ in Γ ; ∆�A cannot contain any positive propositions, so the proof of
Γ ; · ; A⊗ B =⇒ A⊗ B ; · is not simply a proof ofΓ ; A⊗ B�A⊗ B. We generalise the
induction by furnishing a proof in terms of anexpansionof these asynchronous propo-
sitions.

4 In fact, if one were to construct an alternative formulation of this calculus where the details of
the active rules were fully elided, then similar derivations would be syntactically equal.
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Definition 6 (Expansion).
1. Theleft-expansionof a proposition A, writtenlexp(A), is a set of two-zoned contexts

defined inductively by the following equations.

lexp(N+) = {(· ; N+)}

lexp(A⊗ B) = {(ΓA, ΓB ; ∆A, ∆B) : (ΓA ; ∆A) ∈ lexp(A) and(ΓB ; ∆B) ∈ lexp(B)}

lexp(1) = {(· ; ·)}

lexp(A⊕ B) = lexp(A) ∪ lexp(B)

lexp(0) = ∅

lexp(!A) = {A ; ·}

lexp(∃x.A) = lexp([u/x]A) for a fresh u

2. Theright-expansionof a proposition A, writtenrexp(A), is a set of elements of the
formΓ ; ∆ =⇒ Q defined inductively by the following equations.

rexp(Q−) = {(· ; · =⇒ Q−)}

rexp(A & B) = rexp(A) ∪ rexp(B)

rexp(>) = ∅

rexp(A( B) =

{
(ΓA, ΓB ; ∆A, ∆B =⇒ Q) :

(ΓA ; ∆A) ∈ lexp(A) and
(ΓB ; ∆B =⇒ Q) ∈ rexp(B)

}
rexp(∀x.A) = rexp([u/x]A) for a fresh u

This definition is associated with a keyexpansion lemma.

Lemma 7 (Expansion lemma).For any proposition A:

1. For anyΓ, ∆, Ω andγ,
if for every(Γ′ ; ∆′) ∈ lexp(A), Γ, Γ′ ; ∆, ∆′ ; Ω =⇒ γ is derivable,
thenΓ ; ∆ ; Ω · A =⇒ γ.

2. For anyΓ, ∆ andΩ,
if for every(Γ′ ; ∆′ =⇒ Q′−) ∈ rexp(A), Γ, Γ′ ; ∆, ∆′ ; Ω =⇒ · ; Q′− is derivable,
thenΓ ; ∆ ; Ω =⇒ A ; ·.

Proof. By induction on the structure ofA. We present here some of the key cases.

Case of Ais positive, sayB⊗C, and arguing for lexp(A). Let Γ, ∆, Ω andγ be given,
and assume that for every (Γ′ ; ∆′) ∈ lexp(B⊗C) it is the case that the sequent
Γ, Γ′ ; ∆, ∆′ ; Ω =⇒ γ is derivable. Choose such a (Γ′ ; ∆′) ∈ lexp(A⊗ B). By
definition 6, (Γ′ ; ∆′) has the form (Γ′B, Γ

′
C ; ∆′B, ∆

′
C) for which we know that

(Γ′B ; ∆′B) ∈ lexp(B) and (Γ′C ; ∆′C) ∈ lexp(C).
Γ, Γ′C ; ∆ ; Ω · B =⇒ γ i.h. for B, (Γ, Γ′C), ∆, andΩ
Γ ; ∆ ; Ω · B ·C =⇒ γ i.h. for C, Γ, ∆ and (Ω · B)
Γ ; ∆ ; Ω · B⊗C =⇒ γ ⊗L

Then we note that this conclusion is independent of the choice of (Γ′ ; ∆′).
Other cases of lexp(A) with A being positive have similar arguments.

Case of A= N+ and arguing for lexp(N+). In this case, any (Γ′ ; ∆′) ∈ lexp(A) has the
form (· ; N+).
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Γ ; ∆,N+ ; Ω =⇒ γ assumption
Γ ; ∆ ; Ω · N+ =⇒ γ lact

This completes the inventory of cases for lexp.
Case of A= B & C and arguing for rexp(A). LetΓ, ∆ andΩ be given and assume that

for every (Γ′ ; ∆′ =⇒ Q′) ∈ lexp(B & C), Γ, Γ′ ; ∆, ∆′ ; Ω =⇒ · ; Q′−. By def-
inition 6, lexp(B⊗C) = lexp(B) ∪ lexp(C) the outer quantification also holds
for each component of the union;i.e., for every (Γ′ ; ∆′ =⇒ Q′) ∈ lexp(B),
Γ, Γ′ ; ∆, ∆′ ; Ω =⇒ · ; Q′−, and similarly for lexp(C).
Γ ; ∆ ; Ω =⇒ B ; · i.h. onB, Γ, ∆ andΩ
Γ ; ∆ ; Ω =⇒ C ; · i.h. onC, Γ, ∆ andΩ
Γ ; ∆ ; Ω =⇒ B & C ; · &R

Other cases for rexp(A) with A being negative have similar arguments.
Case of A= Q− and arguing for rexp(A). In this case, all (Γ′ ; ∆′ =⇒ Q′′) ∈ rexp(A)

have the form (· ; · =⇒ Q′−).
Γ ; ∆ ; Ω =⇒ · ; Q− assumption
Γ ; ∆ ; Ω =⇒ Q− ; · ract

This completes the inventory of all cases for rexp(A). ut

We use the expansion lemma to establish the key theorem that will give us the
identity principle as a corollary.

Theorem 8. For any proposition A,

1. for every(Γ ; ∆) ∈ lexp(A), we can showΓ ; ∆�A; and
2. for every(Γ ; ∆ =⇒ Q−) ∈ rexp(A), we can showΓ ; ∆ ; A�Q−.

Proof. By structural induction onA and the definition of lexp and rexp (Definition 6).
In the inductive argument, the case for rexp(Q) whereQ is non-atomic can be used
in the argument for lexp(A) (and lexp(P) for rexp(A) similarly). This order is well-
founded because there are only finitely many phase changes between synchronous and
asynchronous subformulas in a given proposition. We show below some of the key cases
of the induction.

Case of lexp(A⊗ B): every (Γ ; ∆) ∈ lexp(A⊗ B) is of the form (ΓA, ΓB ; ∆A, ∆B) for
which (ΓA ; ∆A) ∈ lexp(A) and (ΓB ; ∆B) ∈ lexp(B).
ΓA ; ∆A�A i.h.
ΓA, ΓB ; ∆A�A weakening
ΓA, ΓB ; ∆B� B similarly
ΓA, ΓB ; ∆A, ∆B�A⊗ B ⊗R.

All inductive cases of lexp are similar.
Case of rexp(A & B): let (Γ ; ∆ =⇒ Q) ∈ rexp(A & B) be given. By defn 6, we have

(without loss of generality), (Γ ; ∆ =⇒ Q) ∈ rexp(A).
Γ ; ∆ ; A�Q− i.h.
Γ ; ∆ ; A & B�Q− &L1.

The other inductive cases of rexp are similar.
Case of lexp(N+): There are three sub-cases here.

Subcase N+ is a positive-biased atomp. By init−, · ; p� p.
Subcase N+ is a negative-biased atomn.
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· ; · ; n�n init−

· ; n ; · =⇒ · ; n focus−

· ; n�n blur−

Subcase N+ is non-atomic. Then, by the induction hypothesis (type 2), for ev-
ery (Γ ; ∆ =⇒ Q−) ∈ rexp(N+), the sequentΓ ; ∆ ; Q�Q− is deriv-
able, and so isΓ ; ∆,Q ; · =⇒ · ; Q− by focus−.
· ; Q− ; · =⇒ · ; Q− expansion lemma (7)
· ; Q− ; · =⇒ N+ ; · actR
· ; Q−�N+ blur−

The case of rexp(P−) is similar. ut

Corollary 9 (Identity principle). For any proposition A, the sequent· ; · ; A =⇒ A ; ·
is derivable.

Proof. SupposeA of the formQ−. There are three cases here.

Case Ais a negative-biased atomn.
· ; · ; n�n init−

· ; n ; · =⇒ · ; n focus−

· ; · ; n =⇒ n ; · actL and actR
Case Ais a positive-biased atomp.

· ; p� p init+

· ; p ; · =⇒ · ; p focus+

· ; · ; p =⇒ p ; · actL and actR
Case Ais a non-atomic.

For every (Γ ; ∆) ∈ lexp(A), Γ ; ∆�A theorem 8
For every (Γ ; ∆) ∈ lexp(A), Γ ; ∆ ; · =⇒ · ; A focus+

Note thatA is positive, so the above focus+ is valid.
· ; · ; A =⇒ · ; A the expansion lemma (7)
· ; · ; A =⇒ A ; · actR

The case ofA being negative has a similar argument. ut

This specific statement of the identity principle will not be used in the completeness
proof below; instead, we shall use a slightly variant formulation.

Lemma 10. The following are derivable (for arbitrary A and B and a):

1. · ; · ; A · B =⇒ A⊗ B ; ·
2. · ; · ; · =⇒ 1 ; ·
3. · ; · ; A =⇒ A⊕ B ; · and · ; · ; B =⇒ A⊕ B ; ·
4. A; · ; · =⇒ !A ; ·
5. · ; · ; [u/x]A =⇒ ∃x. A ; · where u is not free in∃x. A
6. · ; · ; A & B =⇒ A ; · and · ; · ; A & B =⇒ B ; ·
7. · ; · ; A · A( B =⇒ B ; ·
8. · ; · ; ∀x. A =⇒ [u/x]A ; · where u is not free in∀x. A

Proof. Each case is a simple consequence of the identity principle (Corollary 9). The
following is a representative case forA⊗ B.
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· ; · ; A⊗ B =⇒ A⊗ B ; · cor. 9.

There are two rules that can conclude this sequent: ract or⊗L. In the former case

· ; · ; A⊗ B =⇒ · ; A⊗ B assumption
· ; · ; A · B =⇒ · ; A⊗ B premiss of⊗L (only possible rule)
· ; · ; A · B =⇒ A⊗ B ; · ract

In the latter case, the premiss is already of the required form· ; · ; A · B =⇒ A⊗ B ; ·
The remaining cases use similar arguments. ut

Theorem 11 (Completeness).
If Γ ; ∆ =⇒ C andΩ is any serialisation of∆, thenΓ ; · ; Ω =⇒ C ; ·.

Proof. First we show that all ordinary rules are admissible in the focusing system using
cut. We then proceed by induction on derivationD :: Γ ; ∆ =⇒ C, splitting cases on
the last applied rule, using cut and lemmas 2 and 10 as required. The following is a
representative case for⊗R:

D =
D1 :: Γ ; ∆ =⇒ A D2 :: Γ ; ∆′ =⇒ B

Γ ; ∆, ∆′ =⇒ A⊗ B
⊗R

LetΩ andΩ′ be serialisations of∆ and∆′ respectively.

Γ ; · ; Ω =⇒ A ; · i.h. onD1

Γ ; · ; Ω′ =⇒ B ; · i.h. onD2

Γ ; · ; A · B =⇒ A⊗ B ; · Lemma 10 and weakening
Γ ; · ; Ω · Ω′ =⇒ A⊗ B ; · cut twice

Any serialisation of∆, ∆′ is a permutation ofΩ · Ω′. ut

As a remark, once we have the cut and the identity principle, the proof of complete-
ness is extremely straightforward. There are other proofs of completeness of focusing
calculi in the literature that do not use cut-elimination as a basis. Andreoli’s original
proof of completeness for a classical focusing calculus in [1] used a number of permuta-
tion arguments for rules. Howe’s extension of focusing to intuitionistic and linear logics
divided each case of Andreoli’s permutation argument into a number of lemmas [16].
Each of Howe’s lemma actually bears a strong resemblance to one of the commutative
cases of cut, though a precise correspondence is hard to state given the dissimilarities
of the two calculi. We believe that cut and identity—independent of their use in proving
completeness—are sufficiently interesting in and of themselves as they substantiate the
logical basis of focusing. Similar notions of cut and cut-admissibility also exist in Lu-
dics [14], though our calculus and Ludics are philosophically dissimilar enough that we
cannot simply import the cut-admissibility argument from Ludics. Rather, we view our
proof of cut-admissibility as belonging to a different tradition which sometimes goes
by the name “structural cut-elimination” [23].

The primary benefit of focusing is the ability to generate derived “big step” infer-
ence rules: the intermediate results of a focusing or active phase are not important.
Andreoli called these rules “bipoles” because they combine two phases with principal
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propositions of opposite polarities. Each derived rule starts (at the bottom) with a neutral
sequent from which a synchronous proposition is selected for focus. This is followed by
a sequence of focusing steps until the proposition under focus becomes asynchronous.
Then, the active rules are applied, and we eventually obtain a collection of neutral se-
quents as the leaves of this fragment of the focused derivation. These neutral sequents
are then treated as the premisses of the derived rule that produces the neutral sequent
with which we started.

We omit a formal presentation of the derived rule calculus; instead, we motivate it
with an example. Consider the propositionq ⊗ n( d ⊗ d ⊗ d5 in the unrestricted con-
text Γ. We start with focus on this proposition, and construct the following derivation
tree.

Γ ; ∆1 ; · =⇒ · ; q
Γ ; ∆1 ; · =⇒ q ; ·
Γ ; ∆1� q

blur−

Γ ; ∆2 ; · =⇒ · ; n
Γ ; ∆2 ; · =⇒ n ; ·
Γ ; ∆2� n

blur−

Γ ; ∆1, ∆2� q ⊗ n
⊗R

Γ ; ∆3, d, d, d ; · =⇒ · ; Q−

Γ ; ∆3 ; d ⊗ d ⊗ d =⇒ · ; Q−
⊗L; lact

Γ ; ∆3 ; d ⊗ d ⊗ d�Q− blur+

Γ ; ∆1, ∆2, ∆3 ; q ⊗ n( d ⊗ d ⊗ d�Q−
(L

Γ ; ∆1, ∆2, ∆3 ; · =⇒ · ; Q− focus!

We assume here that all atoms are negative-biased, so none of the branches of the
derivation can be closed off with an init+. Thus, we obtain the following derived rule
(eliding the empty active zones):

Γ ; ∆1 =⇒ q Γ ; ∆2 =⇒ n Γ ; ∆3, d, d, d =⇒ Q−

Γ ; ∆1, ∆2, ∆3 =⇒ Q−
(D1)

The situation is considerably different if we assume that all atoms are positive-
biased. In this case, we get the following derivation:

Γ ; q� q init+
Γ ; n� n init+

Γ ; q, n� q ⊗ n ⊗R

Γ ; ∆, d, d, d ; · =⇒ · ; Q−

Γ ; ∆ ; d ⊗ d ⊗ d =⇒ · ; Q−
⊗L; lact

Γ ; ∆ ; d ⊗ d ⊗ d�Q− blur+

Γ ; q, n, ∆ ; q ⊗ n( d ⊗ d ⊗ d�Q−
(L

Γ ; q, n, ∆ =⇒ Q focus!

In this positive-biased case, we can terminate the left branch of the derivation with a
pair of “init” rules. This rule forces the linear context in this branch of the proof to
contain just the atomsq andn. The derived rule we obtain is, therefore,

Γ ; ∆, d, d, d =⇒ Q
Γ ; ∆, q, n =⇒ Q

(D2)

There are two key differences to observe between the derived rules (D1) and (D2).
The first is that simply altering the bias of the atoms has a big impact on the kinds of
rules that are generated; even if we completely ignore the semantic aspect, the rule (D2)
is preferable to (D1) because it is much easier to use single premiss rules.

5 Standing roughly for “quarter and nickel goes to three dimes”.
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The second — and more important — observation is that the rule that was generated
for the positive-biased atoms has a stronger and more obvious similarity to the propo-
sitionq ⊗ n( d ⊗ d ⊗ d that was under focus. If we view the linear zone as the “state”
of a system, then the rule (D2) corresponds to transforming a portion of the state by
replacingq andn by threeds (reading the rule from bottom to top). If, as is common
for linear logic, the unrestricted contextΓ contains state transition rules for some en-
coding of a stateful system, then the derived rules generated by left-biasing allows us to
directly observe the evolution of the state of the system by looking at the composition
of the linear context.

3 The focused inverse method

In this section we briefly sketch the inverse method using the focusing calculus of the
previous section. The construction of the inverse method for linear logic is described
in more detail in [7]. To distinguish forward from backward sequents, we shall use a
single arrow (−→), but keep the names of the rules the same. In the forward direction,
the primary context management issue concerns rules where the conclusion cannot be
simply assembled from the premisses. The backward>R rule has an arbitrary linear
context∆, and the unrestricted contextΓ is also unknown in several rules such as init and
>R. For the unrestricted zone, this problem is solved in the usual (non-linear) inverse
method by collecting only the needed unrestricted assumptions and remembering that
they can be weakened if needed [12]. We adapt the solution to the linear zone, which
may either be precisely determined (as in the case for initial sequents) or subject to
weakening (as in the case for>R). We therefore differentiate sequents whose linear
context can be weakened and those whose can not.

Definition 12 (forward sequents).A forward sequentis of the formΓ ; [∆]w −→ γ,
with w a Boolean (0 or 1) called theweak-flag, andγ being either empty (·) or a single-
ton. The sequentΓ ; [∆]w −→ γ corresponds to the backward sequentΓ′ ; ∆′ =⇒ C if
Γ ⊆ Γ′, γ ⊆ C; and∆ = ∆′ if w = 0 and∆ ⊆ ∆′ if w = 1. Sequents with w= 1 are called
weakly linearor simplyweak, and those with w= 0 arestrongly linearor strong.

Initial sequents are always strong, since their linear context cannot be weakened. On
the other hand,>R always produces a weak sequent. For binary rules, the unrestricted
zones are simply juxtaposed. We can achieve the effect of taking their union by applying
the explicit contraction rule (which is absent, but admissible in the backward calculus).
For the linear zone we have to distinguish cases based on whether the sequent is weak
or not. We write the rules using two operators on the linear context – multiplicative
composition (×) and additive composition (+).

Γ ; [∆]w −→ A Γ′ ; [∆′]w′ −→ B
Γ, Γ′ ; [∆]w × [∆′]w′ −→ A⊗ B

⊗R
Γ ; [∆]w −→

w A Γ′ ; [∆′]w′ −→ B
Γ, Γ′ ; [∆]w + [∆′]w′ −→ A & B

&R

These compositions are defined as follows: For multiplicative rules, it is enough for one
premiss to be weak for the conclusion to be weak; the weak flags are therefore joined
with a disjunction (∨). Dually, for additive rules, both premisses must be weak for the
conclusion to be weak; in this case the weak flags are joined with a conjunction (∧).
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Definition 13 (context composition).The partial operators× and+ on forward linear
contexts are defined as follows:[∆]w × [∆′]w′ =def [∆, ∆′]w∨w′ , and

[∆]w + [∆′]w′ =def


[∆]0 if w = 0 and either w′ = 0 and∆ = ∆′,

or w′ = 1 and∆′ ⊆ ∆

[∆′]0 if w′ = 0, w = 1 and∆ ⊆ ∆′

[∆ t ∆′]1 if w = w′ = 1

Here∆ t ∆′ is the multiset union of∆ and∆′.

In the lifted version of this calculus with free variables, there is no longer a single
context represented by∆ t ∆′ because two propositions might be equalized by substi-
tution. The approach taken in [7] was to define an additional “context simplification”
procedure that iteratively calculates a set of candidates that includes every possible con-
text represented by∆ t ∆′ by means of contraction. Many of these candidates are then
immediately rejected by subsumption arguments. We refer to [7] for the full set of rules,
the completeness theorem, and the lifted version of this forward calculus.

3.1 Focused forward search

The sketched calculus in the previous section mentioned only single-step rules. We are
interested in doing forward search with derived inference rules generated by means of
focusing. We therefore have to slightly generalize the context composition operators
into a language of context expressions. In the simplest case, we merely have to add a
given proposition to the linear context, irrespective of the weak flag. This happens, for
instance, in the “focus−” rule where the focused proposition is transferred to the linear
context. We write this adjunction as usual using a comma. In the more general case,
however, we have to combine two context expressions additively or multiplicatively
depending on the kind of rule they were involved in; for these uses, we appropriate the
same syntax we used for the single step compositions in the previous section.

(context expressions) D F [∆]w | D,A | D1 +D2 | D1 ×D2

Context expressions can besimplifiedinto forward contexts in a bottom-up procedure.
We writeD ↪→ [∆]w to denote thatD simplifies into [∆]w; it has the following rules.

[∆]w ↪→ [∆]w

D ↪→ [∆]w

D,A ↪→ [∆,A]w

D1 ↪→ [∆1]w1 D2 ↪→ [∆2]w2

D1 +D2 ↪→ [∆1]w1 + [∆2]w2

D1 ↪→ [∆1]w1 D2 ↪→ [∆2]w2

D1 ×D2 ↪→ [∆1]w1 × [∆2]w2

The forward version of backward derived rules can be written with these context
expressions in a natural way by allowing unsimplified context expressions in the place
of linear contexts in forward sequents. As an example, the negative unrestricted propo-
sitionq ⊗ n( d ⊗ d ⊗ d has the following derived rule with negative-biased atoms

Γ1 ; [∆1]w1 −→ q Γ2 ; [∆2]w2 −→ n Γ3 ; [∆3]w3, d, d, d −→ Q

Γ1, Γ2, Γ3 ; [∆1]w1 × [∆2]w2 × [∆3]w3 −→ Q
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After constructing the neutral sequent with a context expression we then simplify it.
Note that context simplification is a partial operation, so we may not obtain any conclu-
sions, for example, if the premisses to an additive rule are strong sequents but the linear
contexts do not match.

3.2 Focusing in the inverse method

The details of the focused inverse method are given in [8]; here we briefly summarize
the major differences that arise as a result of focusing bias, that is, allowing both positive
and negative atoms. The key calculation as laid out in [8] is of thefrontier literalsof the
goal sequent, i.e., those subformulas that are available in neutral sequents to be focused
on. For all but the atoms the calculation is the same as before, and for the atoms we
make the following modifications.

1. A positive-biased atom is in the frontier if it lies in the boundary of a phase transi-
tion from active to focus.

2. A negative-biased atom is in the frontier if it lies in the boundary of a phase transi-
tion from active to focus.

We then specialize the inference rules to these frontier literals by computing the derived
rules that correspond to giving focus to these literals.

Although the addition of bias gives us different rules for focusing, the use of the
rules in the search engine is no different from before. The details of the implementation
of the main loop can be found in [7]. The main innovation in our formulation of the
inverse method in comparison with other descriptions in the literature is the use of a
lazy variant of the OTTER loop that both simplifies the design of the rules and performs
well in practice.

3.3 Globalization

When proposing a sequentΓg ; ∆g =⇒ γg as the overall goal to prove, the final unre-
stricted zoneΓg is shared in all branches of a proof if it were constructed by backward
search. One thus can think ofΓg as part of the ambient state of the prover, instead of
representing it explicitly as part of the current goal. Hence, there is never any need
to explicitly recordΓg or portions of it in the sequents themselves. This gives us the
following global and local versions of the focus! rule in the forward direction.

Γ ; [∆]w ; A�Q− A ∈ Γg

Γ ; [∆]w −→ Q−
delete

Γ ; [∆]w ; A�Q− A < Γg

Γ,A ; [∆]w −→ Q− focus!

Globalization thus corresponds to a choice of whether to add the constructed principal
proposition of a derived rule into the unrestricted zone or not, depending on whether or
not it is part of the unrestricted zone in the goal sequent.

4 The Horn fragment

In complex specifications that employ linearity, there are often significant sub-specifi-
cations that lie in the Horn fragment. Unfortunately, the straightforward inverse method
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is quite inefficient on Horn propositions, something already noticed by Tammet [25].
His prover switches between hyperresolution for Horn and near-Horn propositions and
the inverse method for other propositions.

With focusing, thisad hocstrategy selection becomes entirely unnecessary. The
focused inverse method for intuitionistic linear logic, when applied to a classical, non-
linear Horn proposition, will exactly behave as classical hyperresolution or SLD res-
olution depending on the focusing bias of the atomic propositions. This remarkable
property provides further evidence for the power of focusing as a technique for forward
reasoning. In the next two sections we shall describe this correspondence in more detail.

A Horn clause has the form¬a1, . . . ,¬an,a where theai anda are atomic predicates
over their free variables. This can easily be generalized to include conjunction and truth,
but we restrict our attention to this simple clausal form, as theories with conjunction and
truth can be simplified into this form. A Horn theoryΨ is just a set of Horn clauses,
and a Horn query is of the formΨ ` g whereg is a ground atomic “goal” proposi-
tion6. In the following section we use a simple translation (−)o of these Horn clauses
into linear logic where¬a1, . . . ,¬an,a containing the free variables~x is translated into
∀~x .a1( · · ·( an( a, and the queryΨ ` g is translated as (Ψ )o ; [·]0 −→ g.

4.1 Hyperresolution

The hyperresolution strategy for the Horn queryΨ ` g is just forward reasoning with
the following rule (forn ≥ 1):

a′1 · · · a′n
θa

{
where¬a1, . . . ,¬an,a ∈ Ψ ; ρ1, . . . , ρn are renaming substitutions;
andθ = mgu(〈ρ1a′1, . . . , ρna′n〉, 〈a1, . . . ,an〉)

The procedure begins with the collection of unit clauses inΨ and¬g as the initial set of
facts, and succeeds if the empty fact (contradiction) is generated. Because every clause
in the theory has a positive literal, the only way an empty fact can be generated is if
it proves the factg itself (note thatg is ground). Because this proof starts from the
unit clauses and derives newer facts by interpreting the Horn clauses forwards, it is a
“bottom-up” variant of the usual Prolog-style logic programming.

Consider the goal sequent in the translation (Ψ )o ; [·]0 −→ g where the atoms are all
negative-biased. The frontier is every clause∀~x . p1( · · ·( pn( p ∈ (Ψ )o. Focusing
on one such clause gives the following abstract derivation in the forward direction:

Γ1 ; [∆1]w1 −→ · ; a1

Γ1 ; [∆1]w1 ; · −→ a1 ; ·
Γ1 ; [∆1]w1�a1 · · ·

Γn ; [∆n]wn −→ · ; an

Γn ; [∆n]wn ; · −→ an ; ·
Γn ; [∆n]wn�an Γ ; [·]0 ; a�a init−

Γ1, . . . , Γn ; [∆1]w1 × · · · × [∆n]wn ; a1( · · ·( an( a�a (L

Γ1, . . . , Γn ; [∆1]w1 × · · · × [∆n]wn ; ∀~x . a1( · · ·( an( a�a
∀L

Γ1, . . . , Γn ; [∆1]w1 × · · · × [∆n]wn −→ · ; a delete

6 Queries with more general goals can be compiled to this form by adding an extra clause to the
theory.
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If we use the shorthandΓ ; [∆]w −→ Q− for the neutral sequentΓ ; [∆]w ; · −→ · ; Q−,
the above derived rule is, therefore:

Γ1 ; ∆1 −→ a1 · · · Γn ; [∆n]wn −→ an

Γ1, . . . , Γn ; [∆1]w1 × · · · × [∆n]wn −→ a

In the case wheren = 0, i.e., the clause in the Horn theory was a unit clausea, we
obtain an initial sequent of the form· ; [·]0 −→ a. As this clause has an empty left hand
side, and none of the derived rules add elements to the left, we can make an immediate
observation (Lemma 14) that gives us an isomorphism of rules (Theorem 15).

Lemma 14. Every sequent generated in the proof of the goal(Ψ )o ; [·]0 −→ g has an
empty left hand side. ut

Theorem 15 (Isomorphism of rules).For every clause¬a1, ...,¬an,a ∈ Ψ there is a
derived rule

Γ1 ; [∆1]w1 −→ a1 · · · Γn ; [∆n]wn −→ an

Γ1, . . . , Γn ; [∆1]w1 × · · · × [∆n]wn −→ a

generated for the proof of the goal sequent(Ψ )0 ; [·]0 −→ g for a fresh goal literal g
and only negative-biased atoms.

Proof (sketch).Note that only the translations of the Horn clauses are on the frontier.
The result follows by a straightforward induction over the structure of a Horn clause
and the rules of the forward focusing calculus. We omit the details of this rather easy
proof that has already been illustrated above.

These facts let us establish an isomorphism between hyperresolution and negative-
biased focused derivations.

Theorem 16. Every hyperresolution derivation for the Horn queryΨ ` g has an iso-
morphic focused derivation for the goal sequent(Ψ )o ; [·]0 −→ g with negative-biased
atoms.

Proof (sketch).For every facta′ generated by the hyperresolution strategy, we have a
corresponding fact· ; [·]0 −→ a′ in the focused derivation (up to a renaming of the free
variables). When matching these sequents for consideration as input for a derived rule
corresponding to the Horn clause¬a1, . . . ,¬an,a, we calculate the simultaneous mgu
of all theai anda′i for a Horn clause, which is precisely the operation also performed in
the hyperresolution rule. The required isomorphism then follows from Theorem 15.

4.2 SLD Resolution

SLD Resolution [18] is a variant of linear resolution that is complete for Horn theories
and is the basic reasoning mechanism in Prolog-like logic programming languages.
It is sometimes called “top-down” or “goal-directed” logic programming because it
starts from the goal literal and reasons backwards to the unit clauses. The procedure is
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as follows: for the Horn queryΨ ` g, we start with just the initial clauseg, and then
perform forward search using the following rule (usingΞ to stand for clauses).

Ξ,b
θ(Ξ, ρa1, ρa2, . . . , ρan)

{
where¬a1, . . . ,¬an,a ∈ Ψ ; ρ is a renaming subst.;
andθ = mgu(ρa,b)

Whenn = 0, i.e., for unit clauses in the Horn theory, this rule corresponds to simply
deleting the member of the input clause that was unifiable with the unit clause (and
applying the resulting substitution to the rest of the clauses). The search procedure
succeeds when it is able to derive the empty clause.

To show how SLD resolution is modeled by our focusing system, we reuse the trans-
lation from before, but this time all atoms are given a positive polarity. The derivation
that corresponds to focusing on the translation of the Horn clause¬a1, . . . ,¬an,a is:

· ; a1�a1
init+

· · · · ; an�an
init+

Γ ; [∆]w,a −→ Q
Γ ; [∆]w ; a −→ · ; Q−

Γ ; [∆]w ; a�· ; Q−

Γ ; [∆]w,a1, . . . ,an ; a1( · · · an( a�· ; Q−
(L

Γ ; [∆]w,a1, . . . ,an −→ Q delete

In other words, the derived rule is:

Γ ; [∆,a]w −→ Q
Γ ; [∆,a1, . . . ,an]w −→ Q

The frontier of the goal (Ψ )0 ; [·]0 −→ g in the positive-biased setting contains every
member of (Ψ )0, so we obtain one such derived rule for each clause in the Horn the-
ory. The frontier contains, in addition, the positive atomg; assuming there is a nega-
tive instance ofg somewhere in the theory, we thus generate a single initial sequent,
· ; [g]0 −→ g. We immediately observe that:

Lemma 17. Every sequent generated in the focused derivation of(Ψ )0 ; [·]0 −→ g is of
the form· ; [∆]0 −→ g. ut

Theorem 18 (Isomorphism of rules).For every clause¬a1, ...,¬an,a ∈ Ψ , there is a
derived rule

Γ ; [∆,a]w −→ Q
Γ ; [∆,a1, . . . ,an]w −→ Q

created for the goal sequent(Ψ )0 ; [·]0 −→ g for some goal literal g and only positive-
biased atoms.

Proof (sketch).Note that only the translations of the clauses and the goal literalg itself
are in the frontier. Forg, we get just a single initial sequent· ; [g]0 −→ g. For the trans-
lation of the clauses, we use a simple induction on the structure of the clauses and the
rules of the forward focusing calculus. Again, we omit the rather easy proof that has
been illustrated above.
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Theorem 19. Every SLD resolution derivation for the Horn queryΨ ` g has an iso-
morphic focused derivation for the goal sequent(Ψ )o ; [·]0 −→ g with positive-biased
atoms.

Proof (sketch).Very similar argument as in theorem. 16, except we note that in the
matching conditions in the derived rules we rename the input sequents, whereas in the
SLD resolution case we rename the Horn clause itself. However, this renaming is merely
an artifact of the procedure and doesn’t itself alter the derivation.

Although the derivations are isomorphic, the focused derivations may not be as
efficient as the SLD resolution in practice because of the need to rename (i.e., copy)
the premisses as part of the matching conditions of a derived rule—premisses might
contain many more components than the Horn clause itself.

To summarize, given set biases on the atomic propositions, we are able to model
either hyperresolution (forward-chaining) or a SLD-resolution (backward-chaining) in
forward search in the inverse method. If we look at backward search—starting from the
goal sequent and using the rules of Figure 2—then again it is clear that using negative-
biased atoms gives us SLD-resolution.7 One interesting case is backward search with
positive-biased atoms. For the purely propositional case, it is very easy to see that the
resulting search strategy would be hyperresolution. In the first-order case, we conjecture
we can recover hyperresolution by introducing parametric assumptions, but an analysis
of this beyond the scope of this paper. With this small caveat, one obtains the follow-
ing diagram, where forward search refers to the focused inverse method and backward
search to focused goal-directed search.

forward search backward search
negative-biasedhyperresolution SLD-resolution
positive-biased SLD-resolution hyperresolution

5 Experiments

5.1 Propositional linear logic

The first class of experiments we performed were on propositional linear logic. We im-
plemented several minor variants of an inverse method prover for propositional linear
logic.8 The propositional fragment is the only fragment where we can compare with
external provers, as we are not aware of any first order linear logic provers besides
our own. The external prover we compared against is Tammet’s Gandalf “nonclassical”
distribution (version 0.2), compiled using a packaged version of the Hobbit Scheme
compiler. This classical linear logic prover comes in two flavors: resolution (Gr ) and
tableau (Gt). Neither version incorporates focusing or globalization, and we did not
attempt to bound the search for either prover. Other provers such as LinTAP [21] and
llprover [26] fail to prove all but the simplest problems, so we did not do any serious

7 In fact, negative-biased backward focusing can be taken as a definition of top-down logic
programming.

8 Available fromhttp://www.cs.cmu.edu/˜kaustuv/research.html
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comparisons against them. Our experiments were all run on a 3.4GHz Pentium 4 ma-
chine with 1MB L1 cache and 1GB main memory; our provers were compiled using
MLTon version 20060213 using the default optimization flags; all times indicated are
wall-clock times in seconds and includes the GC time;] denotes unprovability within
a time limit of 1 hour. In the following tables, iters refers to number of iterations of
the lazy OTTER loop, gen the number of generated sequents, and subs the number of
subsumed sequents.

Stateful system encodingsIn these examples, we encoded the state transition rules for
stateful systems such as a change machine, a Blocks World problem with a fixed number
of blocks, a few sample Petri nets. For the Blocks World example, we also compared a
version that uses the CLF monad [4] and one without.

negative-biased positive-biased Gt Gr
name iters gensubs time iters gen subs time time time
blocks 20 43 18 0.001 12 84 61 0.001 ] ]
blocks-clf 27 65 26 0.002 5 24 7 <0.001 N/A N/A
change 16 22 7 0.001 11 20 6 0.001 0.63 0.31
petri-1 23 38 23 0.001 284 1099 921 0.062 ] 7.08
petri-2 57 133 105 0.003 393 16541433 0.068 ] 7.13

Graph exploration algorithmsIn these examples we encode algorithms for calculating
Euler or Hamiltonian tours on graphs as linear theorem proving problems. The problems
have an equal balance of proofs (i.e., a tour exists) and refutations (i.e., no tour exists).

negative-biased positive-biased
name iters gen subs time iters gen subs time
euler-1 6291 11853 5565 9.010 6291 11853 5565 8.570
euler-2 15640 34329 18689 152.12 15640 34329 18689 145.9
euler-3 64360159194948343043.3564360159194948342938.55
hamilton 708 911 185 0.11 165 178 0 <0.001

The Euler tour computation uses a symmetric algorithm, so both backward and for-
ward chaining generate the same facts, though, interestingly, a positive-biased search
performs slightly better than the negative-biased system. For the Hamiltonian tour ex-
amples, the positive-biased search is vastly superior.

Affine logic encodingLinearity is often too stringent a requirement for situations where
we simply needaffine logic, i.e., where every hypothesis is consumedat mostonce.
Affine logic can be embedded into linear logic by translating every affine arrowA→ B
as eitherA( B⊗ > or A & 1( B. Of course, one might select complex encodings; for
example choosingA & !( 0( X)( B (for some arbitrary fresh propositionX) instead
of A & 1( B. Even though the two translations are equivalent, the prover performs
poorly on the former. The Gandalf proversGt andGr fail on these examples.
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negative-biased positive-biased
encoding iters gen subs time iters gensubs time
A( B⊗ > 38 108 73 0.003 34 107 73 0.002
A & 1( B 252 1103 828 0.098 62 229 126 0.019
A & !( 0( X)( B 264 709967932.028 235 841 578 0.042

Quantified Boolean formulasIn these examples we used two variants of the algorithm
from [20] for encoding QBFs in linear logic. The first variant uses exponentials to en-
code reusable “copy” rules; this variant performs very well in practice, so the table be-
low collates the results of all the example QBFs in one entry. The second variant maps
to the multiplicative-additive fragment of linear logic without exponentials. This vari-
ant produces problems that are considerably harder, so we have divided the problems in
three sets in increasing order of complexity.

negative-biased positive-biased
encodings iters gen subs time iters gen subs time
qbf-exp 1508 1722 140 0.13 7948 17610 9590 2.69
qbf-nonexp-1 1457 5590 4067 0.54 1581 4352 2612 0.58
qbf-nonexp-2 15267517551502174 368.92 9469 49777 37716 29.55
qbf-nonexp-3 285569901969614942807.642123389542115917308.24

For these examples, when the number of iterations is low (i.e., the problems are
simple), the negative-biased search appears to perform better than the positive-biased
system. However, as the problems get harder, the positive-biased system becomes dom-
inant.

5.2 First-order linear logic

We have also implemented a first-order prover for linear logic. Experiments with an
early version of the first-order were documented in [7]. Since then we have made several
improvements to the prover, including a complete re-implementation of the focused rule
generation engine, and also increased our collection of sample problems.

First-order stateful systemsThe first experiments were with first-order encodings of
various stateful systems. We selected a first-order Blocks World encoding (both with
and without the CLF monad), Dijkstra’s Urn Game, and an AI planning problem for
a certain board game. The positive-biased system performs consistently better than the
negative-biased system for these problems.

negative-biased positive-biased
problem iters gen subs time iters gen subs time
blocks 45 424 317 0.12 26 387 337 0.04
blocks-clf 64 697 412 0.264 15 81 69 0.006
urn 29 72 27 0.24 13 58 55 0.11
board 349 70213138 3.26 166 52961752 0.88
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Purely intuitionistic problemsUnfortunately, we are unable to compare our implemen-
tation with any other linear provers; to the best of our knowledge, our prover is the
only first-order linear prover in existence. We therefore ran our prover on some prob-
lems drawn from the SICS benchmark [24]. These intuitionistic problems were trans-
lated into linear logic in two different ways– the first uses Girard’s original encoding
of classical logic in classical linear logic where every subformula is affixed with the
exponential, and the second is a focus-preserving encoding as described in [8]. We also
compared our prover withSandstorm, a focusing inverse method theorem prover for in-
tuitionistic logic implemented by students at CMU. The focus-preserving translation is
always better than the Girard-translation; however, the complexity of linear logic, par-
ticularly the significant complexity of linear contraction, makes it uncompetitive with
the intuitionistic prover.

negative-biased positive-biased SS
problem iters gen subs time iters gen subs time time
SICS1-gir 360 1948 1394 1.312 368 2897 2181 0.6

0.04
SICS1-foc 56 365 313 0.056 64 496 415 0.04
SICS2-gir 3035 16391 11732 11.04 3460 27192 20389 5.856

0.06
SICS2-foc 489 3133 2688 0.472 616 4672 3902 0.376
SICS3-gir 209581131823810085762.312129241015552761517218.712

1.12
SICS3-foc 3377 21659 18646 33.096 2300 17464 14969 23.296
SICS4-gir ] ] ] ] ] ] ] ]

3.89
SICS4-foc 8896 57056 49047 87.184 6144 46818 39993 62.24

Horn examples from TPTPFor our last example, we selected 20 non-trivial Horn prob-
lems from the TPTP version 3.1.1. The selection of problems was not systematic, but
we did not constrain our selection to any particular section of the TPTP. We used the
translation described in Section 4. We omit the list of selected problems.

negative-biased positive-biased
iters gen subs time iters gen subs time
4911314640287004462.8596289704482526207638.818

For Horn problems, the negative-biased system, which models hyperresolution, per-
forms better than the positive-biased system, which models SLD resolution. This ob-
servation is not unprecedented— the Gandalf system switches to a Hyperresolution
strategy for Horn theories [25]. The likely reason is that in the positive-biased system,
unlike in SLD resolution system, the derived rule renames the input sequent rather than
the rule itself.

6 Conclusion

We have presented an improvement of the focusing inverse method that exploits the
flexibility in assigning polarity to atoms, which we callbias. This strictly generalizes

26



both hyperresolution and SLD resolution on (classical) Horn clauses to all of intuition-
istic linear logic. This strategy shows significant improvement on a number of example
problems.

One important avenue of future work pertains to the nature of polarity assignments
to the atomic propositions. Andreoli’s initial observation in [1] was that the synchronous
or asynchronous nature of the atoms may be assessed differently in disjoint multiplica-
tive branches of a proof. This is more general than the fixed global assignment of polari-
ties in our system, so it is worthwhile to consider an extension with variable assignment
in our calculus.

The main open question raised by section 4 is whether the observation that focusing
generalises hyperresolution and SLD resolution on the Horn fragment can be extended
to a fuller logic. This question is naturally meaningless for intuitionistic logic because
hyperresolution is a classical strategy. Focusing for purely classical proof search is in-
teresting, but because all propositional connectives can be treated both synchronously
and asynchronously, the interest comes from dual interpretations of classical proofs. In
essence, classical logic is too permissive, and it is only when interpreted in more refined
logics that interesting properties emerge. For classical linear logic, which does not have
this unbridled permissiveness, the connection between biased focusing and resolution
is currently open. We conjecture that a suitable adaptation of the focusing calculus for
classical linear logic will turn out to give an explanation for hyperresolution for the full
classical linear logic.

Another important item of future work would be a detailed analysis of connections
with a bottom-up logic programming interpreter for the LO fragment of classical linear
logic [3]. This fragment, which is in fact affine, has the property that the unrestricted
context remains constant throughout a derivation, and incorporates focusing at least
partially via a back-chaining rule. It seems plausible that our prover might simulate
their interpreter when LO specifications are appropriately translated into intuitionistic
linear logic, similar to the translation of classical Horn clauses.
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A Cut-admissibility proof

We now present the details of the proof of the cut-admissibility theorem (Theorem 5).
Recall that we have two input derivationsD andE that we perform an induction over,
and the inductive hypothesis can be used whenever

(a) the cut proposition is strictly smaller; or
(b) the cut proposition remains the same, but the inductive hypothesis is used for

higher numbered cuts to justify a lower numbered cut (that is, a type 3 for a type
2b cut, etc.); or

(c) a preservative cut (see Appendix A.6) is used to justify any of the above cuts; or
(d) the cut proposition andE remain the same, andD is similar to a strictly smaller

first derivation; or
(e) the cut proposition andD remain the same, andE is similar to a strictly smaller

second derivation.

We now distinguish various kinds of situations which arise in the course of the
proof. For each type, proof cases turn out to be very similar so we usually show only a
representative case or two.

A.1 Principal cuts

The same proposition is introduced in the final rule of bothD andE.

Case⊗:

D =
D1 :: Γ ; ∆1�A D2 :: Γ ; ∆2� B

Γ ; ∆1, ∆2�A⊗ B
⊗R

E =
E′ :: Γ ; ∆′ ; Ω · A · B · Ω′ =⇒ γ
Γ ; ∆′ ; Ω · A⊗ B · Ω′ =⇒ γ

⊗L

Γ ; ∆2, ∆
′ ; Ω · A · Ω′ =⇒ γ cut onD2 andE′

Γ ; ∆1, ∆2, ∆
′ ; Ω · Ω′ =⇒ γ cut onD1 and above

Case 1:

D =
Γ ; · ; ·�1 1R E =

E′ :: Γ ; ∆′ ; Ω · Ω′ =⇒ γ
Γ ; ∆′ ; Ω · 1 · Ω′ =⇒ γ 1L

HereF = E′.

Case⊕:

D =
D′ :: Γ ; ∆�A
Γ ; ∆�A⊕ B

⊕R1

E =
E1 :: Γ ; ∆′ ; Ω · A · Ω′ =⇒ γ E2 :: Γ ; ∆′ ; Ω · B · Ω′ =⇒ γ

Γ ; ∆′ ; Ω · A⊕ B · Ω′ =⇒ γ
⊕L

Γ ; ∆, ∆′ ; Ω =⇒ γ cut onD′ andE1

The case of⊕R2 is similar.
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Case 0: there are no principal cuts for0.

Case !:

D =
D′ :: Γ ; · ; · =⇒ A ; ·

Γ ; ·� ! A
! R E =

E′ :: Γ,A ; ∆′ ; Ω · Ω′ =⇒ γ
Γ ; ∆′ ; Ω · ! A · Ω′ =⇒ γ

! L

Γ ; ∆′ ; Ω · Ω′ =⇒ γ cut onD′ andE′

Case∃:

D =
D′ :: Γ ; ∆� [t/x]A
Γ ; ∆�∃x.A

∃R E =
E′ :: Γ ; ∆′ ; Ω · [u/x]A · Ω′ =⇒ γ
Γ ; ∆′ ; Ω · ∃x.A · Ω′ =⇒ γ

∃Lu

Γ ; ∆, ∆′ ; Ω · Ω′ =⇒ γ cut onD′ and [t/u]E′

Case(:

D =
D′ :: Γ ; ∆ ; Ω · A =⇒ B ; ·
Γ ; ∆ ; Ω =⇒ A( B ; · (R E =

E1 :: Γ ; ∆′1 ; B�Q− E2 :: Γ ; ∆′2�A

Γ ; ∆′1, ∆
′
2 ; A( B�Q−

(L

Γ ; ∆′2, ∆ ; Ω =⇒ B ; · cut onE2 andD′

Γ ; ∆′1, ∆
′
2, ∆ ; Ω =⇒ · ; Q− cut on above andE1

Case &:

D =
D1 :: Γ ; ∆ ; Ω =⇒ A ; · D2 :: Γ ; ∆ ; Ω =⇒ B ; ·

Γ ; ∆ ; Ω =⇒ A & B ; · &R

E =
E′ :: Γ ; ∆′ ; A�Q−

Γ ; ∆′ ; A & B�Q−
&L1

Γ ; ∆, ∆′ ; Ω =⇒ · ; Q− cut onD1 andE′

The case for &L2 is similar.

Case>: there are no principal cuts for>.

Case∀:

D =
D′ :: Γ ; ∆ ; Ω =⇒ [u/x]A ; ·
Γ ; ∆ ; Ω =⇒ ∀x.A ; · ∀Ru E =

E′ :: Γ ; ∆′ ; [t/x]A�Q−

Γ ; ∆′ ; ∀x.A�Q−
∀L

Γ ; ∆, ∆′ ; Ω =⇒ · ; Q− cut on [t/u]D′ andE′.

A.2 Focus cuts

Here, the last rule inD or E gives focus to the cut proposition.

CaseE ends in focus−. Therefore, the cut proposition is negative,N.

SubcaseThe cut proposition is active inD.

D :: Γ ; ∆ ; Ω =⇒ N ; · E =
E′ :: Γ ; ∆′ ; N�Q−

Γ ; ∆′,N ; · =⇒ · ; Q− focus−
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Γ ; ∆, ∆′ ; Ω =⇒ · ; Q− cut onD andE′

SubcaseThe cut proposition is passive inD. By the occurrence restriction, it has
to be a negative-biased atom.

D :: Γ ; ∆ ; Ω =⇒ · ; n E =
E′ :: Γ ; · ; n�n
Γ ; n ; · =⇒ · ; n focus−

HereF = E.

CaseD ends in focus+. Therefore, the cut proposition is positive,P.

SubcaseThe cut proposition is active inE.

D =
D′ :: Γ ; ∆�P
Γ ; ∆ ; · =⇒ · ; P focus+ E :: Γ ; ∆′ ; Ω · P · Ω′ =⇒ γ

Γ ; ∆, ∆′ ; Ω · Ω′ =⇒ γ cut onD′ andE

SubcaseThe cut proposition is passive inE. By the occurrence restriction, it has
to be a positive-biased atom.

D =
D′ :: Γ ; p� p
Γ ; p ; · =⇒ · ; p focus+ E :: Γ ; ∆′, p ; Ω =⇒ γ

HereF = E.

SubcaseThe cut proposition cannot be in the unrestricted context inE because
the linear context inD is not empty.

CaseE ends in focus! .

D :: Γ ; · ; · =⇒

· ; A

A ; ·
E =
E′ :: Γ,A ; ∆ ; A�Q−

Γ,A ; ∆ ; · =⇒ · ; Q− focus!

Γ,A ; · ; · =⇒

· ; A

A ; ·
weakening

That is, all sequents inD are weakened, but the structure ofD itself is unchanged.
Γ,A ; ∆, ∆′ ; · =⇒ · ; Q− cut on above andE′

Γ ; ∆, ∆′ ; · =⇒ · ; Q− cut onD and above.

A.3 Blur cuts

Here the last rule inD or E blurs focus from the cut proposition.

CaseE ends in blur+. Therefore, the cut proposition is positive,P.

D :: Γ ; ∆ ; Ω =⇒

· ; P

P ; ·
E =
E′ :: Γ ; ∆′ ; P =⇒ · ; Q−

Γ ; ∆′ ; P�Q− blur+
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Γ ; ∆, ∆′ ; Ω =⇒ · ; Q− cut onD andE′

CaseD ends in blur−, so the cut proposition is negative,N. For example:

D =
D′ :: Γ ; ∆ ; · =⇒ N ; ·

Γ ; ∆�N blur− E :: Γ ; ∆′ ; Ω · N · Ω′ =⇒ γ

Γ ; ∆, ∆′ ; Ω · Ω′ =⇒ γ cut onD′ andE

Similar arguments hold for for other forms ofE such asE :: Γ ; ∆′,N ; Ω =⇒ γ,
and also forE :: Γ,N ; ∆′ ; Ω =⇒ γ (in which case∆ = ·).

A.4 Critical pairs

These cuts of the specific form

D :: Γ ; ∆ ; · =⇒ · ; A and E :: Γ ; ∆′,A ; · =⇒ · ; Q−

Clearly, by the occurrence restrictions on active sequents,A has to be atomic. These
cuts are important because the induction switches sides depending on the bias of the
atom.

1. A is a negative-biased atomn. Here we proceed by induction onE.

(i) E = Γ ; · ; n�n init−

Γ ; n ; · =⇒ · ; n focus−

In this case,F = D :: Γ ; ∆ ; · =⇒ · ; n.

(ii) E =
E′ :: Γ ; ∆′,n�Q
Γ ; ∆′,n ; · =⇒ · ; Q focus+

Γ ; ∆, ∆′�Q preservative cut 3 onD andE′

Γ ; ∆, ∆′ ; · =⇒ · ; Q focus+

(iii) E =
E′ :: Γ ; ∆′,n ; N�Q−

Γ ; ∆′,N,n ; · =⇒ · ; Q− focus−

Γ ; ∆, ∆′,n ; N�Q− preservative cut 3 onD andE′

Γ ; ∆, ∆′,n,N ; · =⇒ · ; Q− focus−

(iv) E ends in focus! . This is similar to the previous case.

2. p is a positive-biased atom. Here we proceed by induction onD.

(i) D = Γ ; p� p init+

Γ ; p ; · =⇒ · ; p focus+

HereF = E :: Γ ; ∆′, p ; · =⇒ · ; Q−.

(ii) D =
D′ :: Γ ; ∆ ; N� p
Γ ; ∆,N ; · =⇒ · ; p focus−

Γ ; ∆, ∆′ ; N�Q− preservative cut 6 onD′ andE
Γ ; ∆, ∆′,N ; · =⇒ · ; Q− focus−

(iii) D ends in focus! . This is similar to the previous case.
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A.5 Commutative cuts

The next kind of cuts are cuts that do not have any focused proposition in the conclusion,
and the induction proceeds by commuting the cut in the derivationD orE. In these cuts,
therefore, the cut-proposition has to be a side-proposition in one of the derivationsD or
E. We shall lay out the cases by enumerating the possibilities forD before those ofE.

1. D :: Γ ; ∆�A

(a) E :: Γ ; ∆′ ; Ω · A · Ω′ =⇒ γ.

(i) E ends in a right-active rule, such as

E =
E′ :: Γ ; ∆′ ; Ω · A · Ω′ · D =⇒ E ; ·
Γ ; ∆′ ; Ω · A · Ω′ =⇒ D( E ; · (R

Γ ; ∆, ∆′ ; Ω · Ω′ · D =⇒ E ; · cut onD andE′

Γ ; ∆, ∆′ ; Ω · Ω′ =⇒ D( E ; · (R

(ii) E ends in a left-active rule whereA is not principal, such as:

E =
E′ :: Γ ; ∆′ ; Ω1 · D · E · Ω2 · A · Ω′ =⇒ γ
Γ ; ∆′ ; Ω1 · D ⊗ E · Ω2 · A · Ω′ =⇒ γ

⊗L

Γ ; ∆, ∆′ ; Ω1 · D · E · Ω2 · Ω
′ =⇒ γ cut onD andE′

Γ ; ∆, ∆′ ; Ω1 · D ⊗ E · Ω2 · Ω
′ =⇒ γ ⊗L

For the remainder of the cases,E ends in a left-active rule whereA is
principal.

(iii) A = N+ andE =
E′ :: Γ ; ∆′,N+ ; Ω · Ω′ =⇒ γ
Γ ; ∆′ ; Ω · N+ · Ω′ =⇒ γ

actL

Γ ; ∆, ∆′ ; Ω · Ω′ · D =⇒ γ cut onD andE′

(iv) A = P is the principal in the last rule ofE :: Γ ; ∆′ ; Ω · P · Ω′ =⇒ γ. In
this case we have a principal cutP is also principal inD.

(b) E :: Γ ; ∆′,A ; Ω =⇒ γ.

(i) E ends in a right-active rule, such as:

E =
E′ :: Γ ; ∆′,A ; Ω · D =⇒ E ; ·
Γ ; ∆′,A ; Ω =⇒ D( E ; · (R

Γ ; ∆, ∆′ ; Ω · D =⇒ E ; · cut onD andE′

Γ ; ∆, ∆′ ; Ω =⇒ D( E ; · (R

(ii) E ends in a left-active rule, such as:

E =
E′ :: Γ ; ∆′,A ; Ω · D · E · Ω′ =⇒ γ
Γ ; ∆′,A ; Ω · D ⊗ E · Ω′ =⇒ γ

⊗L

Γ ; ∆, ∆′ ; Ω · D · E · Ω′ =⇒ γ cut onD andE′

Γ ; ∆, ∆′ ; Ω · D ⊗ E · Ω′ =⇒ γ ⊗L
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(iii) The previous two cases take care of the active rules. We now have to
account for the neutral caseE :: Γ ; ∆′,A ; · =⇒ · ; Q−.

CaseE =
E′ :: Γ ; ∆′,A�Q
Γ ; ∆′,A ; · =⇒ · ; Q focus+

Γ ; ∆, ∆′�Q preservative cut 1 onD andE′

Γ ; ∆, ∆′ ; · =⇒ · ; Q focus+

CaseE ends with left-focus onA. By the occurrence restriction,A is
either negative or a positive-biased atom. The latter case (A = p) is
ruled out because focus− only grants focus to negative propositions.
In the former case, i.e., forA = N, we have:

E =
E′ :: Γ ; ∆′ ; N�Q−

Γ ; ∆′,N ; · =⇒ · ; Q− focus−

Γ ; ∆ ; · =⇒ N ; · only possible premiss ofD (using blur+)
Γ ; ∆, ∆′ ; · =⇒ · ; Q− cut on above andE′ (principal cut)

CaseE =
E′ :: Γ ; ∆′,A ; N�Q−

Γ ; ∆′,N,A ; · =⇒ · ; Q− focus−

Γ ; ∆, ∆′ ; N�Q− preservative cut 1 onD andE′

Γ ; ∆, ∆′,N ; · =⇒ · ; Q− focus−

CaseE =
E′ :: Γ,C ; ∆′,A ; C�Q−

Γ,C ; ∆′,A ; · =⇒ · ; Q− focus!

Γ,C ; ∆�A weakeningD
Γ,C ; ∆, ∆′ ; C�Q− preservative cut 1 on above andE′

Γ,C ; ∆, ∆′ ; · =⇒ · ; Q− focus!

(c) E :: Γ,A ; ∆′ ; Ω =⇒ γ. In this case∆ = ·, i.e.,D :: Γ ; ·�A.

(i) E ends in a right-active rule, such as:

E =
E′ :: Γ,A ; ∆′ ; Ω · D =⇒ E ; ·
Γ,A ; ∆′ ; Ω =⇒ D( E ; · (R

Γ ; ∆′ ; Ω · D =⇒ E ; · cut onD andE′

Γ ; ∆′ ; Ω =⇒ D( E ; · ⊗L

(ii) E ends in a left-active rule, such as:

E =
E′ :: Γ,A ; ∆′ ; Ω · D · E · Ω′ =⇒ γ
Γ,A ; ∆′ ; Ω · D ⊗ E · Ω′ =⇒ γ

⊗L

Γ ; ∆′ ; Ω · D · E · Ω′ =⇒ γ cut onD andE′

Γ ; ∆′ ; Ω · D ⊗ E · Ω′ =⇒ γ ⊗L

(iii) This leaves just the neutral casesE :: Γ,A ; ∆′ ; · =⇒ · ; Q−.

CaseE =
E′ :: Γ,A ; ∆′�Q
Γ,A ; ∆′ ; · =⇒ · ; Q focus+
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Γ ; ∆′�Q preservative cut 2 onD andE′

Γ ; ∆′ ; · =⇒ · ; Q focus+

CaseE =
E′ :: Γ,A ; ∆′ ; N�Q−

Γ,A ; ∆′,N ; · =⇒ · ; Q− focus−

Γ ; ∆′ ; N�Q− preservative cut 2 onD andE′

Γ ; ∆′,N ; · =⇒ · ; Q− focus−

CaseE =
E′ :: Γ,C,A ; ∆′ ; C�Q−

Γ,C,A ; ∆′ ; · =⇒ · ; Q− focus!

Γ,C ; ∆�A weakeningD
Γ,C ; ∆′ ; C�Q− preservative cut 2 on above andE′

Γ,C ; ∆′ ; · =⇒ · ; Q− focus!

CaseE =
E′ :: Γ,A ; ∆′ ; A�Q−

Γ,A ; ∆′ ; · =⇒ · ; Q− focus!

BecauseA is focused on the left tinE′ and the right inD, one of the
two must break focus. First consider the latter case, i.e., forA = N

D =
D′ :: Γ ; · ; · =⇒ N ; ·

Γ ; ·�N blur+

In this case we are in a smaller cut of type 3 (see case 2 below)
after weakeningD′ :: Γ,N ; · ; · =⇒ N ; ·. In the other case, i.e., for
A = P,

E′ =
E′′ :: Γ,P ; ∆ ; P =⇒ · ; Q−

Γ,P ; ∆ ; P�Q− blur−

P is principal in bothE′′ andD, so we treat it as a principal cut.

2. D :: Γ ; ∆ ; Ω =⇒ A ; ·.
(a) E :: Γ ; ∆′ ; A�Q−

(i) A = P andE =
E′ :: Γ ; ∆′ ; P =⇒ · ; Q−

Γ ; ∆′ ; P�Q− blur+

Γ ; ∆, ∆′ ; Ω =⇒ · ; Q− cut onD andE′

(ii) A = n andE =
Γ ; · ; n�n init−

Γ ; ∆ ; Ω =⇒ · ; n inversion onD

(iii) A is non-atomic and negative. Then, there is a similar derivationD′ ≈D

for which the last rule inD′ hasA as a principal proposition. ThenA is
principal in bothD′ andE, so we have a principal cut.

(b) E :: Γ ; ∆′ ; Ω′ · A · Ω′′ =⇒ γ.
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(i) E ends in a right-active rule such as:

E =
E′ :: Γ ; ∆′ ; Ω′ · A · Ω′′ · D =⇒ E ; ·
Γ ; ∆′ ; Ω′ · A · Ω′′ =⇒ D( E ; · (R

Γ ; ∆, ∆′ ; Ω′ · Ω · Ω′′ · D =⇒ E ; · cut onD andE′

Γ ; ∆, ∆′ ; Ω′ · Ω · Ω′′ =⇒ D( E ; · (R

(ii) E ends in a left-active rule such as:

E =
E′ :: Γ ; ∆′ ; Ω′1 · D · E · Ω

′
2 · A · Ω

′′ =⇒ γ

Γ ; ∆′ ; Ω′1 · D ⊗ E · Ω′2 · A · Ω
′′ =⇒ γ

⊗L

Γ ; ∆, ∆′ ; Ω′1 · D · E · Ω
′
2 · Ω · Ω

′′ =⇒ γ cut onD andE′

Γ ; ∆, ∆′ ; Ω′1 · D ⊗ E · Ω′2 · Ω · Ω
′′ =⇒ γ ⊗L

We are left with the cases for which the last rule inE was onA.

(iii) A = N+ andE =
E′ :: Γ ; ∆′,N+ ; Ω′ · Ω′′ =⇒ γ
Γ ; ∆′ ; Ω′ · N+ · Ω′′ =⇒ γ

actL

Γ ; ∆, ∆′ ; Ω′ · Ω′′ · Ω =⇒ γ cut onD andE′

(iv) A is a non-atomic positive propositionP, and principal in the last rule of
E :: Γ ; ∆′ ; Ω · P · Ω′ =⇒ γ. In this case we find a similarE′ ≈ E where
the rule forP is delayed as long as possible, then proceed by induction
onE′. All cases will be inductive steps of the forms 2(b)i or 2(b)ii above
except for the case of the formE′ :: Γ ; ∆′ ; P =⇒ · ; Q−. Now we induct
onD.

CaseD ends in a left-active rule such as

D =
D′ :: Γ ; ∆ ; Ω · D · E · Ω′ =⇒ P ; ·
Γ ; ∆ ; Ω · D ⊗ E · Ω′ =⇒ P ; ·

⊗L

Γ ; ∆, ∆′ ; Ω · D · E · Ω′ =⇒ · ; Q− cut onD′ andE′

Γ ; ∆, ∆′ ; Ω · D ⊗ E · Ω′ =⇒ · ; Q− ⊗L

CaseD =
D′ :: Γ ; ∆ ; Ω =⇒ · ; P
Γ ; ∆ ; Ω =⇒ P ; · actR

Here we have several possibilities:

SubcaseD′ ends in a left-active rule, such as:

D′ =
D′′ :: Γ ; ∆ ; Ω1 · D · E · Ω2 =⇒ · ; P
Γ ; ∆ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; P

⊗L

Γ ; ∆, ∆′ ; Ω1 · D · E · Ω2 =⇒ · ; Q− cut onD′′ andE′

Γ ; ∆, ∆′ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; Q− ⊗L

This takes care of all left-active rules inD′, so we just have to
account for the focus rules.
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SubcaseD′ =
D′′ :: Γ ; ∆�P
Γ ; ∆ ; · =⇒ · ; P focus+

P is principal in bothD′′ andE′, which is a principal cut.

SubcaseD′ =
D′′ :: Γ ; ∆ ; N�P
Γ ; ∆,N ; · =⇒ · ; P focus−

Γ ; ∆, ∆′ ; Ns�Q− preservative cut 6 onD′′ andE′

Γ ; ∆, ∆′,Ns ; · =⇒ · ; Q− focus−

SubcaseD′ =
D′′ :: Γ,C ; ∆ ; C�P
Γ,C ; ∆ ; · =⇒ · ; P focus!

Γ,C ; ∆′ ; P =⇒ · ; Q− weakeningE′

Γ,C ; ∆, ∆′ ; C�Q− preservative cut 6 onD′′ and above
Γ,C ; ∆, ∆′ ; · =⇒ · ; Q− focus!

(c) E :: Γ ; ∆′,A ; Ω′ =⇒ γ.

(i) E ends in a right-active rule such as:

E =
E′ :: Γ ; ∆′,A ; Ω′ · D =⇒ E ; ·
Γ ; ∆′,A ; Ω′ =⇒ D( E ; · (R

Γ ; ∆, ∆′ ; Ω · Ω′ · D =⇒ E ; · cut onD andE′

Γ ; ∆, ∆′ ; Ω · Ω′ =⇒ D( E ; · (R

(ii) E ends in a left-active rule such as:

E =
E′ :: Γ ; ∆′,A ; Ω′1 · D · E · Ω

′
2 =⇒ γ

Γ ; ∆′,A ; Ω′1 · D ⊗ E · Ω′2 =⇒ γ
⊗L

Γ ; ∆, ∆′ ; Ω · Ω′1 · D · E · Ω
′
2 =⇒ γ cut onD andE′

Γ ; ∆, ∆′ ; Ω · Ω′1 · D ⊗ E · Ω′2 =⇒ γ ⊗L

(iii) The above two cases take care of all the active rules thatE ends with. This
leaves the neutral caseE :: Γ ; ∆′,A ; · =⇒ · ; Q−.

Case A = N andE =
E′ :: Γ ; ∆′ ; N�Q
Γ ; ∆′,N ; · =⇒ · ; Q focus−

Here we commute intoD. If D ends with a left-active rule:

D =
D′ :: Γ ; ∆ ; Ω1 · D · E · Ω2 =⇒ N ; ·
Γ ; ∆ ; Ω1 · D ⊗ E · Ω′ =⇒ N ; ·

⊗L

Γ ; ∆, ∆′ ; Ω1 · D · E · Ω2 =⇒ · ; Q− cut onD′ andE
Γ ; ∆, ∆′ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; Q− ⊗L

Otherwise,D ends with a right-active rule onN. Then,N is princi-
pal in bothD andE′, so we have a principal cut.

CaseE =
E′ :: Γ ; ∆′,A ; N�Q−

Γ ; ∆′,N,A ; · =⇒ · ; Q− focus−

We find a similarD′ ≈D where the rules onA are delayed as far
as possible, then proceed by induction on the structure ofD′.
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If D′ ends in a left-active rule, such as:

D′ =
D′′ :: Γ ; ∆ ; Ω1 · D · E · Ω2 =⇒ A ; ·
Γ ; ∆ ; Ω1 · D ⊗ E · Ω2 =⇒ A ; · ⊗L

Γ ; ∆, ∆′ ; Ω1 · D · E · Ω2 =⇒ · ; Q− cut onD′′ andE
Γ ; ∆, ∆′ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; Q− ⊗L.

This only leavesD′ :: Γ ; ∆ ; · =⇒ A ; ·. If A is positive, then the
only possible premiss ofD′ isΓ ; ∆ ; · =⇒ · ; A, so together withE
we have a critical pair.

Otherwise, we may assume thatA is a negative propositionM,
thereby gaining access to preservative cut 3.

Γ ; ∆, ∆′ ; N�Q− preservative cut onD′ andE′

Γ ; ∆, ∆′,N ; · =⇒ · ; Q− focus−

CaseE =
E′ :: Γ,C ; ∆′,A ; C�Q−

Γ,C ; ∆′,A ; · =⇒ · ; Q− focus!

This is similar to the previous case, except we have to weaken the
derivationD first.

CaseE =
E′ :: Γ ; ∆′,A�Q
Γ ; ∆′,A ; · =⇒ · ; Q focus+

We find a similarD′ ≈D where the rules onA are delayed as far
as possible, then proceed by induction on the structure ofD′.

If D′ ends in a left-active rule such as

D′ =
D′′ :: Γ ; ∆ ; Ω1 · D · E · Ω2 =⇒ A ; ·
Γ ; ∆ ; Ω1 · D ⊗ E · Ω2 =⇒ A ; · ⊗L

Γ ; ∆, ∆′ ; Ω1 · D · E · Ω2 =⇒ · ; Q− cut onD′′ andE
Γ ; ∆, ∆′ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; Q− ⊗L.

This leavesD′ :: Γ ; ∆ ; · =⇒ A ; ·. If A is positive, then the only
possible premiss ofD′ is Γ ; ∆′ ; · =⇒ · ; A, which together withE
is a critical pair.

Otherwise, whenA is negative, we can use a preservative cut 3.

Γ ; ∆, ∆′�Q preservative cut onD andE′

Γ ; ∆, ∆′ ; · =⇒ · ; Q− focus+ or focus+’

3. A = P− andD :: Γ ; ∆ ; Ω =⇒ · ; P−.

(a) E :: Γ ; ∆′ ; P−�Q−

(i) P− = n andE =
Γ ; · ; n�n init−

HereF = D.

(ii) P− is non-atomic, i.e.,E =
E′ :: Γ ; ∆′ ; P =⇒ · ; Q−

Γ ; ∆′ ; P�Q− blur+
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Γ ; ∆, ∆′ ; Ω =⇒ · ; Q− cut onD andE′

(b) E :: Γ ; ∆′ ; Ω′ · P− · Ω′′ =⇒ γ.
(i) E ends in a right-active rule such as:

E =
E′ :: Γ ; ∆′ ; Ω′ · P− · Ω′′ · D =⇒ E ; ·
Γ ; ∆′ ; Ω′ · P− · Ω′′ =⇒ D( E ; ·

(R

Γ ; ∆, ∆′ ; Ω′ · Ω · Ω′′ · D =⇒ E ; · cut onD andE′

Γ ; ∆, ∆′ ; Ω′ · Ω · Ω′′ =⇒ D( E ; · (R

(ii) E ends in a left-active rule such as:

E =
E′ :: Γ ; ∆′ ; Ω′1 · D · E · Ω

′
2 · P

− · Ω′′ =⇒ γ

Γ ; ∆′ ; Ω′1 · D ⊗ E · Ω′2 · P
− · Ω′′ =⇒ γ

⊗L

Γ ; ∆, ∆′ ; Ω′1 · D · E · Ω
′
2 · Ω · Ω

′′ =⇒ γ cut onD andE′

Γ ; ∆, ∆′ ; Ω′1 · D ⊗ E · Ω′2 · Ω · Ω
′′ =⇒ γ ⊗L

(iii) P− = n andE =
E′ :: Γ ; ∆′,n ; Ω′ · Ω′′ =⇒ γ
Γ ; ∆′ ; Ω′ · n · Ω′′ =⇒ γ actL

Γ ; ∆, ∆′ ; Ω′ · Ω′′ · Ω =⇒ γ cut onD andE′

(iv) P is non-atomic and principal inE :: Γ ; ∆′ ; Ω · P · Ω′ =⇒ γ. In this
case we find a similarE′ ≈ E where the rule forP is delayed as long
as possible, then proceed by induction onE′. All cases will be inductive
steps of the forms 3(b)i or 3(b)ii above except for the case of the form
E′ :: Γ ; ∆′ ; P =⇒ · ; Q−. Now we induct onD.

CaseD ends in a left-active rule, such as:

D =
D′ :: Γ ; ∆ ; Ω1 · D · E · Ω2 =⇒ · ; P
Γ ; ∆ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; P

⊗L

Γ ; ∆, ∆′ ; Ω1 · D · E · Ω2 =⇒ · ; Q− cut onD′ andE′

Γ ; ∆, ∆′ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; Q− ⊗L

This takes care of everything inΩ, so we just need to consider the
cases whereD :: Γ ; ∆ ; · =⇒ · ; P.

CaseD ends in focus+. Then,P is principal in bothD andE′, so we
have a principal cut.

CaseD =
D′ :: Γ ; ∆ ; N�P
Γ ; ∆,N ; · =⇒ · ; P focus−

Γ ; ∆, ∆′ ; N�Q− preservative cut 6 onD′ andE′

Γ ; ∆, ∆′,N ; · =⇒ · ; Q− focus−

CaseD =
D′ :: Γ,C ; ∆ ; C�P
Γ,C ; ∆ ; · =⇒ · ; P focus!

Γ,C ; ∆′ ; P =⇒ · ; Q− weakeningE′

Γ,C ; ∆, ∆′ ; C�Q− preservative cut 6 onD′ and above
Γ,C ; ∆, ∆′ ; · =⇒ · ; Q− focus!

40



(c) E :: Γ ; ∆′,P− ; Ω′ =⇒ γ. By the occurrence restriction,P− is of the formn.

(i) E ends in a right-active rule such as:

E =
E′ :: Γ ; ∆′,n ; Ω′ · D =⇒ E ; ·
Γ ; ∆′,n ; Ω′ =⇒ D( E ; · (R

Γ ; ∆, ∆′ ; Ω′ · D =⇒ E ; · cut onD andE′

Γ ; ∆, ∆′ ; Ω′ =⇒ D( E ; · (R

(ii) E ends in a left-active rule such as:

E =
E′ :: Γ ; ∆′,n ; Ω′1 · D · E · Ω

′
2 =⇒ γ

Γ ; ∆′,n ; Ω′1 · D ⊗ E · Ω′2 =⇒ γ
⊗L

Γ ; ∆, ∆′ ; Ω′1 · D · E · Ω
′
2 · Ω =⇒ γ cut onD andE′

Γ ; ∆, ∆′ ; Ω′1 · D ⊗ E · Ω′2 · Ω =⇒ γ ⊗L

(iii) E :: Γ ; ∆′,n ; · =⇒ · ; Q−. Here we induct onD.

(i) D ends in a left-active rule such as:

D =
D′ :: Γ ; ∆ ; Ω1 · D · E · Ω2 =⇒ · ; n
Γ ; ∆ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; n

⊗L

Γ ; ∆, ∆′ ; Ω1 · D · E · Ω2 =⇒ · ; Q− cut onD′ andE
Γ ; ∆, ∆′ ; Ω1 · D ⊗ E · Ω2 =⇒ · ; Q− ⊗L

(ii) The above case takes care of all the active rules at the end ofD. We
are left with just the neutralD :: Γ ; ∆ ; · =⇒ · ; n. This is a critical
pair.

A.6 Preservative cuts

The only remaining kinds of cuts are those that preserve focus. Each kind of preservative
cut will be shown to reduce to other strictly smaller cuts.

1. If D :: Γ ; ∆�A and

(a) E :: Γ ; ∆′,A ; C�Q−, thenΓ ; ∆, ∆′ ; C�Q−.
(b) E :: Γ ; ∆′,A�C, thenΓ ; ∆, ∆′�C.

2. If D :: Γ ; ·�A and

(a) E :: Γ,A ; ∆ ; C�Q−, thenΓ ; ∆ ; C�Q−.
(b) E :: Γ,A ; ∆�C, thenΓ ; ∆�C.

3. If D :: Γ ; ∆ ; · =⇒

· ; N

N ; ·
and

(a) E :: Γ ; ∆′,N ; C�Q−, thenΓ ; ∆, ∆′ ; C�Q−.
(b) E :: Γ ; ∆′,N�C, thenΓ ; ∆, ∆′�C.

4. If D :: Γ ; · ; · =⇒

· ; A

A ; ·
and
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(a) E :: Γ,A ; ∆ ; C�Q−, thenΓ ; ∆ ; C�Q−.
(b) E :: Γ,A ; ∆�C, thenΓ ; ∆�C.

For these four types of preservative cuts, we proceed by induction onE.

(i) Focus is blurred in the last rule inE. The following is a representative case.

D :: Γ ; ∆�A E =
E′ :: Γ ; ∆′,A ; · =⇒ N ; ·

Γ ; ∆′,A�N blur−

Γ ; ∆, ∆′ ; · =⇒ N ; · cut onD andE′

Γ ; ∆, ∆′�N blur−

(ii) Focus is maintained in the last rule inE. The following is a representative case.

D :: Γ ; ∆�A E =
E′ :: Γ ; ∆′,A�D
Γ ; ∆′,A�D ⊕ E

⊕R1

Γ ; ∆, ∆′�D preservative cut 1 onD andE′

Γ ; ∆, ∆′�D ⊕ E ⊕R1

This leaves just the init+ and init− rules.

(iii) The cut propositionA = p andE =
Γ ; p� p init+ . The latter two cases 3 and

4 do not apply. Case 2 also does not apply because we needp in the linear zone.
The only case is 1, for which∆ = p. The required conclusion is thusΓ ; p� p,
which is obvious from init+.

(iv) E =
Γ,A ; p� p init+ . In this case∆must be·, which limits us to cases 2 and 4.

In either case, the conclusionΓ ; p� p is true by init+.

(v) E =
Γ,A ; n�n init− . The argument is nearly identical to the previous case.

This is the only possible case in whichE can end in init−, as the cut proposition
cannot be in focus inE.

We also have a few symmetric cases for the preservative cuts.

5. If D :: Γ ; ∆ ; C�A andE :: Γ ; ∆′ ; A�Q− thenΓ ; ∆, ∆′ ; C�Q−.

6. If D :: Γ ; ∆ ; C�P andE ::
Γ ; ∆′ ; P
Γ ; ∆′,P ; ·

}
=⇒ · ; Q− thenΓ ; ∆, ∆′ ; C�Q−.

Here, we proceed by induction onD.

(i) Focus is blurred in the last rule inD. The following is a representative case.

D =
D′ :: Γ ; ∆ ; P =⇒ · ; A

Γ ; ∆ ; P�A blur+ E = Γ ; ∆′ ; A�Q−

Γ ; ∆, ∆′ ; P =⇒ ·Q cut onD′ andE
Γ ; ∆, ∆′ ; P�Q− blur+

(ii) Focus is maintained in the last rule inD. The following is a representative case.

D =
D′ :: Γ ; ∆ ; D�A
Γ ; ∆ ; D & E�A

&Li E = Γ ; ∆′ ; A�Q−
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Γ ; ∆, ∆′ ; D�Q− preservative cut 5 onD′ andE
Γ ; ∆, ∆′ ; D & E�Q− &L1

(iii) D =
Γ ; n�n init− . Then, case 6 is not applicable, and in case 5,∆ = ∆′ = · and

A = C = Q = n. The required conclusion,Γ ; · ; n�n thus follows from init−.
ut
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