
Relating Message Passing and Shared Memory,
Proof-Theoretically⋆

Frank Pfenning1 and Klaas Pruiksma2

1 Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
fp@cs.cmu.edu

2 University of Stuttgart, Stuttgart, Germany
klaas.pruiksma@sec.uni-stuttgart.de

Abstract. We exhibit a strong bisimulation between asynchronous mes-
sage passing concurrency with session types and shared memory concur-
rency with futures. A key observation is that both arise from closely
related interpretations of the semi-axiomatic sequent calculus with re-
cursive definitions, which provides a unifying framework. As a further
result we show that the bisimulation applies to both linear and nonlin-
ear versions of the two languages.

Keywords: Session types · futures · bisimulation.

1 Introduction

At first sight, message passing concurrency is quite different from shared memory
concurrency. Then we remember the well-known encoding of shared memory cells
in the π-calculus [25] and also implementations of message passing abstractions
using shared memory [20]. Such mutual encodings are significant, but far from
straightforward and difficult to reason about rigorously.

This paper is an attempt to reduce the relationship to its essence in the
typed setting. On one side we have a language for asynchronous message passing
using session types [14]. On the other side we have typed futures [13, 23]. The
key conceptual tools in understanding their relationship are the semi-axiomatic
sequent calculus [10] (SAX) and the polarities of the connectives [1, 18]. We
introduce the relevant aspects of these tools one by one. At the end, we arrive at
two strong bisimulations between the two sides, one each for linear and nonlinear
versions of message passing and shared memory. This is the closest connection
we could reasonably hope for.

2 Proof Reduction as Communication

The so-called Curry-Howard correspondence [8, 16] is often summarized as saying
that propositions are types and proofs are programs. This neglects an even deeper
⋆ Notes to an invited talk by the first author

2 F. Pfenning and K. Pruiksma

aspect of the relationship between logic and computation: proof reduction is
computation. In natural deduction, the fundamental engine of proof reduction
is substitution; in Hilbert-style calculi it is combinatory reduction. What about
sequent calculus? At the logical level, we write a sequent as

A1, . . . , An ⊢ C

where propositions Ai are the antecedents and C is the succedent. In our inves-
tigation, the succedent will always be a singleton since we restrict ourselves to
intuitionistic logic.

We examine the computational interpretation first in the context of a purely
linear calculus, that is, we take exchange between antecedents for granted, but
we allow neither weakening nor contraction. We write

P
a1 : A1, . . . , an : An ⊢ c : C

where the ai and c stand for means of communication for the proof (= process)
P . Under a message passing interpretation names ai and c stand for channels;
under a shared memory interpretation, they stand for addresses. We use Γ and
∆ to stand for a collection of antecedents, always presupposing that all names
ai and c are distinct.

For the moment, we stick with the message passing interpretation. Then cut
represents two processes P and Q that are connected via a private communica-
tion channel x.

P (x)

Γ1 ⊢ x : A

Q(x)

Γ2, x : A ⊢ c : C

Γ1, Γ2 ⊢ c : C
cut

It is a private communication channel because by our general presupposition x
must be different from c and must not already occur in Γ1 or Γ2.

The propositions A are interpreted as session types that govern the particular
kinds of messages that are exchanged along a private channel x : A. As an
example we consider A⊕B, which is the linear rendering of disjunction A ∨B.
Here is a principal cut reduction for this proposition/type.

P ′(x′)

Γ1 ⊢ x′ : A

Γ1 ⊢ x : A⊕B
⊕R1

Q1(x
′)

Γ2, x
′ : A ⊢ c : C

Q2(x
′)

Γ2, x
′ : B ⊢ c : C

Γ2, x : A⊕B ⊢ c : C
⊕L

Γ1, Γ2 ⊢ c : C
cut

−→

P ′(x′)

Γ1 ⊢ x′ : A

Q1(x
′)

Γ2, x
′ : A ⊢ c : C

Γ1, Γ2 ⊢ c : C
cut

Relating Message Passing and Shared Memory 3

We see that the first premise of the cut (rule ⊕R1) has a single premise, while the
second premise of the cut (rule ⊕L) has two branches (Q1 and Q2). In essence,
the proof of the first premise (either ⊕R1 or ⊕R2) selects one of the two branches
of the second premise. So the information flows along the channel x from left
to right. The message itself therefore should be one bit to indicate whether the
first or second branch was chosen.

In this example, the communication between processes P and Q (the two
premises of the cut) is synchronous because P evolves to P ′ and Q evolves to
Q1. Other connectives of linear logic follow the same pattern and we conclude [4,
5]:

Principal cut reduction in the linear sequent calculus corresponds to syn-
chronous message passing communication.

3 Asynchronous Communication

In order to model asynchronous communication proof-theoretically we should
have a proof that corresponds to a message. The salient aspects of a message are
that (a) it carries relevant information, and (b) it does not have a continuation.
We can achieve both if we represent messages as axioms.

Continuing the example from the previous section, we have two axioms for
disjunction, where we write X for axiom instead of R for right rule.

a : A ⊢ c : A⊕B
⊕X1

b : B ⊢ c : A⊕B
⊕X2

The principal case of cut then becomes

a : A ⊢ x : A⊕B
⊕X1

Q1(x
′)

Γ2, x
′ : A ⊢ c : C

Q2(x
′)

Γ2, x
′ : B ⊢ c : C

Γ2, x : A⊕B ⊢ c : C
⊕L

Γ2, a : A ⊢ c : C
cut

−→
Q1(a)

Γ2, a : A ⊢ c : C

We see that the reduction corresponds to the message represented by the first
premise being received by the second premise (process Q that ends in ⊕L). The
message “disappears” and process Q continues as [a/x′]Q1(x

′) which we write
just as Q1(a). And while we have changed the two conventional ⊕R rules into
axioms, the ⊕L rules remains the same.

We also observe that the message contains not only the bit to choose the
first or second branch, it also contains a continuation channel a. This would be
either of type A or B, depending on whether it is an instance of ⊕X1 or ⊕X2.

We can continue this pattern. For each connective of (purely) linear logic,
either the right or left rule is invertible and the other one is noninvertible. Intu-
itively, the invertible rule carries no specific information (after all, the premise(s)

4 F. Pfenning and K. Pruiksma

are derivable iff the conclusion is) while the noninvertible rule makes a choice.
Therefore, we turn all noninvertible rules into axioms and keep the invertible
rules as they are. The result is the linear semi-axiomatic sequent calculus [10, 9]
(Semi-axiomatic since half the usual rules are now axioms.) We conclude:

Principal cut reduction in the semi-axiomatic sequent calculus corre-
sponds to asynchronous message passing communication.

The reader might wonder how we send a message, now that, for example,
the ⊕R1 and ⊕R2 processes are no longer available. The solution is actually
the same as in the asynchronous π-calculus: we use cut (= parallel composition)
itself. For example,

P (x)

Γ1 ⊢ x : A x : A ⊢ c : A⊕B
⊕X1

Γ1 ⊢ c : A⊕B
cut

sends the message “choose the first branch and continue with channel x” along
the channel c. We retain our connection to the receiving process via the new
continuation channel x. This technique is made explicit by Kobayashi et al. [17]
and can also be identified in other examples for the π-calculus [19, 25].

4 A Language for Asynchronous Communication

Following the motifs in the previous section, we now present a complete language
for asynchronous message passing communication. We also specify the typing
rules and how processes behave dynamically. For the purpose of more readable
examples, we generalize binary sums to ⊕ℓ∈L(ℓ : Aℓ) for a finite set L of labels
and, correspondingly, binary additive conjunction to Nℓ∈L(ℓ : Aℓ).

Types A,B,C ::= A⊗B | 1 | ⊕ℓ∈L(ℓ : Aℓ) (positive)
| A ⊸ B | Nℓ∈L(ℓ : Aℓ) (negative)
| t (type names)

Contexts Γ ::= · | Γ, x : A | Γ, a : A

Type names represent equirecursive types whose definitions are collected in a
global signature Σ. Correspondingly, we allow mutually recursive process defi-
nitions, collected in the same signature. We use a, b, and c for channels (which
are runtime objects) and x, y, and z for variables occurring in a process that
stand for channels. Strictly speaking, we should introduce a category of symbol
which may either be a variable or a channel, but since the rules do not need to
distinguish between them we just follow the convention that we use x, y, and z
for variables that are bound in a process expression and a, b, and c for channels
or variables that are free. At runtime, a process will have only free channels and
internally bound variables.

Relating Message Passing and Shared Memory 5

Processes are typed with

a1 : A1, . . . , an : An︸ ︷︷ ︸
use

⊢ P :: (c : C)︸ ︷︷ ︸
provide

where we say process P provides channel c and uses channels ai. We also refer
to P as a client of ai and a provider of c.

Channels carry messages with small values V , which are either pairs of chan-
nels ⟨a, b⟩, a unit message ⟨ ⟩, or tagged channels k(a) for labels k. The direction
of the message depends on the polarity of the types. For a channel of positive
type C the provider will send a message and the client will receive it. For a
negative type the client will send a message and the provider will receive it.

4.1 The Dynamics of Process Configurations

We describe the state of the computation by a multiset of semantic objects we call
a configuration. The possible state transitions are defined by multiset rewriting
rules [7]. The left-hand side of a rule is matched against some objects in the
configuration which are then replaced by the right-hand side. Later, we will
refine this point of view slightly to allow persistent objects that always remain
in a configuration.

As a first example, consider the construct x← P (x) ; Q(x). A process of this
form will allocate a new private channel a that is provided by P (a) and used by
Q(a). Logically, it is a cut.

Γ1 ⊢ A Γ2, A ⊢ C

Γ1, Γ2 ⊢ C
cut

Γ1 ⊢ P (x) :: (x : A) Γ2, x : A ⊢ Q(x) :: (c : C)

Γ1, Γ2 ⊢ (x← P (x) ; Q(x)) :: (c : C)
cut

Our first semantic object is proc P that represents a running process P . In the
dynamics, a cut process evolves into two.

proc (x← P (x) ; Q(x)) 7→ proc P (a), proc Q(a) (a a fresh channel)

We now dive into the meaning of each of the logical connectives, extracting their
computational meaning.

4.2 Positive Connectives

Internal choice ⊕ℓ∈L(ℓ : Aℓ). As motivated in the preceding section, the
right rules for sums are replaced by axioms. At the same time, we generalize
from binary disjunction to finite sums, indexed by a label set L. This is a strict
generalization under the definition A⊕B ≜ (inl : A)⊕ (inr : B)

A ⊢ A⊕B
⊕X1

B ⊢ A⊕B
⊕X2

(k ∈ L)

b : Ak ⊢ send+ a k(b) :: (a : ⊕ℓ∈L(ℓ : Aℓ))
⊕X

6 F. Pfenning and K. Pruiksma

The intent is for the process send+ a k(b) to send the tagged channel k(b) along
channel a. The polarity annotation of the send construct is not syntactically
necessary, but the redundant information will be helpful later in formulating
the connection between message passing and futures. In order to express the
dynamics, we use a second kind of semantic object msg a V , representing the
value V as a message on channel a. Computationally, a sending process “becomes”
a message.

proc (send+ a k(b)) 7→ msg+ a k(b)

The left rule for sums branches on the label received.
Γ,A ⊢ C Γ,B ⊢ C

Γ,A⊕B ⊢ C
⊕L

Γ, x : Aℓ ⊢ Pℓ(x) :: (d : C) (∀ℓ ∈ L)

Γ, c : ⊕ℓ∈L(ℓ : Aℓ) ⊢ recv+ c (ℓ(x)⇒ Pℓ(x))ℓ∈L :: (d : C)
⊕L

A receiving process blocks until a message arrives. In the dynamics we represent
a process blocked on channel a as a continuation object cont a K. Here K is the
continuation to invoke once a message has arrived. In the case of sums, this is
the branching construct.

proc (recv+ a (ℓ(x)⇒ Pℓ(x))ℓ∈L) 7→ cont+ a (ℓ(x)⇒ Pℓ(x))ℓ∈L

Messages always interact with continuations. Here, the message selects one of
the branches and also carries the continuation channel for subsequent commu-
nication.

msg+ a k(b), cont+ a (ℓ(x)⇒ Pℓ(x))ℓ∈L 7→ proc Pk(b)

Pairs A⊗B. Because A⊗B is a positive type, we turn the usual right rule of
the sequent calculus into an axiom.

A,B ⊢ A⊗B
⊗X

a : A, b : B ⊢ send+ c ⟨a, b⟩ :: (c : A⊗B)
⊗X

As for sums, a sending process simply becomes a message.

proc (send+ a ⟨b, c⟩) 7→ msg+ a ⟨b, c⟩

The left rule of the sequent calculus corresponds to the receipt of a message.

Γ,A,B ⊢ C

Γ,A⊗B ⊢ C
⊗L

Γ, x : A, y : B ⊢ P (x, y) :: (d : C)

Γ, c : A⊗B ⊢ recv+ c (⟨x, y⟩ ⇒ P (x, y)) :; (d : C)
⊗L

Again, just as for sums, a process receiving along a channel c will block until the
message arrives. This is modeled by turning it into a continuation, which can
then interact with a message.

proc (recv+ c (⟨x, y⟩ ⇒ P (x, y))) 7→ cont+ c (⟨x, y⟩ ⇒ P (x, y))

msg+ c ⟨a, b⟩, cont+ c (⟨x, y⟩ ⇒ P (x, y)) 7→ proc P (a, b)

Relating Message Passing and Shared Memory 7

Unit 1. The (multiplicative) unit type 1 is also positive. Instead of a pair of
channels, messages of unit type are just ⟨ ⟩ and carry no information, except that
there is a message. The rules are the nullary versions of the rules for A⊗B.

· ⊢ 1
1X

· ⊢ send+ c ⟨ ⟩ :: (c : 1)
⊗X

Γ ⊢ C

Γ, 1 ⊢ C
1L

Γ ⊢ P :: (d : C)

Γ, c : 1 ⊢ recv+ c (⟨ ⟩ ⇒ P) :: (d : C)
1L

proc (send+ c ⟨ ⟩) 7→ msg+ c ⟨ ⟩
proc (recv+ c (⟨ ⟩ ⇒ P)) 7→ cont+ c (⟨ ⟩ ⇒ P)
msg+ c ⟨ ⟩, cont+ c (⟨ ⟩ ⇒ P) 7→ proc P

4.3 Refactoring the Rules of Computation

At this point we reflect on the dynamic rules and we see that we can refactor
them, since both sending and receiving processes always turn into messages or
continuations, respectively.

proc (x← P (x) ; Q(x)) 7→ proc P (a), proc Q(a) (a fresh)
proc (send+ c V) 7→ msg+ c V
proc (recv+ c K) 7→ cont+ c K
msg+ c V, cont+ c K 7→ proc (V ▷K)

Passing a value to a continuation is handled as a separate operation.

k(a) ▷ (ℓ(x)⇒ Pℓ(x))ℓ∈L = Pk(a) (⊕)
⟨a, b⟩ ▷ (⟨x, y⟩ ⇒ P (x, y)) = P (a, b) (⊗)
⟨ ⟩ ▷ (⟨ ⟩ ⇒ P) = P (1)

4.4 Process Definitions

Recall that all process definitions are collected in a global signature. At a call
site we just check that the types of the channel used and provided match those
described in the type declaration for a process.

(x1 : A1, . . . , xn : An ⊢ f :: (z : C)) ∈ Σ

a1 : A1, . . . , an : An ⊢ f c [a1, . . . , an] :: (c : C)
call

In the first position after f is always the channel provided by the definition
followed by a the list of channels used.

proc (call f c [a1, . . . , an]) 7→ proc P (c, a1, . . . , an)

for (f z [x1, . . . , xn] = P (z, x1, . . . , xn)) ∈ Σ

8 F. Pfenning and K. Pruiksma

4.5 Some Examples

Even though our language is quite incomplete, we can already give some small
examples. First, a process that flips a bit. We do not give an an explicit type
declaration of the process flip, but show the type of the channel it provides
(always first, here y) and the types of the channels it uses (here just x) in the
left-hand side of the definition. We use sans serif for type names, fixed width

for labels, bold for language keywords, and italics for process names.

bit = (b0 : 1)⊕ (b1 : 1)
flip (y : bit) [x : bit] =
recv x (b0(u)⇒ send y b1(u)

| b1(u)⇒ send y b0(u))

Slightly more interesting is a recursive type that models an infinite stream of
bits, and a process that flips them in turn.

bits = (b0 : bits)⊕ (b1 : bits)
flips (ys : bits) [xs : bits] =
recv xs (b0(xs′)⇒ ys′ ← call flips ys′ [xs′] ;

send ys b1(ys′)
| b1(xs′)⇒ ys′ ← call flips ys′ [xs′] ;

send ys b0(ys′))

Next, a simple pipeline of two bit-flipping processes which should be the identity,
with some delay between incoming and outgoing messages.

bits = (b0 : bits)⊕ (b1 : bits)
flip2 (zs : bits) [xs : bits] =
ys← call flips ys [xs] ;
call flips zs [ys]

A very similar type is that of a binary number, where zero is represented by
the label e followed by the unit. We start programming processes representing
zero and computing the successor of a given stream (assuming the least signifi-
cant bit arrives first).

bin = (b0 : bits)⊕ (b1 : bits)⊕ (e : 1)

zero (y : bin) [] =
u← send u ⟨ ⟩ ;
send y e(u)

succ (y : bin) [x : bin] =
recv x (b0(x′)⇒ send y b1(x′)

| b1(x′)⇒ y′ ← call succ y′ [x′] ;
send y b0(y′)

| e(u)⇒ y′ ← send y′ e(u) ;
send y b1(y′))

Relating Message Passing and Shared Memory 9

4.6 Negative Connectives

The negative connectives communicate in the opposite direction: the provider
receives while the client sends. This is often the initial state of a provider/client
system. In our language there are two such connectives: external choice A N B
and linear implication A ⊸ B. There could also be ⊥ (dual to 1), but it would
require an empty succedent, representing a process without a client. We choose
to avoid this syntactic complication.

External choice A N B. The right rule of additive conjunction or external
choice of linear logic has two premises, and these remain the same in SAX since
it is a negative connective. For programming convenience, we generalize from
the binary to a finitary choice, where A N B ≜ (fst : A) N (snd : B).

Γ ⊢ A Γ ⊢ B

Γ ⊢ A N B
NR

Γ ⊢ Pℓ(x) :: (x : Aℓ) (∀ℓ ∈ L)

Γ ⊢ recv− c (ℓ(x)⇒ Pℓ(x))ℓ∈L :: (c : Nℓ∈L(ℓ : Aℓ))
NR

Symmetrically to the internal choice, the client now picks among the alternatives
by sending a suitable message. In this way, a process providing an external
choice represents an object, where each alternative is a method. This view of
communication was already present in the original work on session types [15,
14].

A N B ⊢ A
NX1

A N B ⊢ B
NX2

c : Nℓ∈L(ℓ : Aℓ) ⊢ send− c k(a) :: (a : Ak)
NX

It turns out that dynamically there is nothing new: the receiving process sus-
pends, and the sending process becomes a message. We repeat the relevant prior
rules only to note the different polarities.

proc (recv− c K) 7→ cont− c K
proc (send− c V) 7→ msg− c V
cont− c K,msg− c V 7→ proc (V ▷K)

k(a) ▷ (ℓ(x)⇒ Pℓ(x))ℓ∈L = Pk(a) (N)

The constructs exhibit a remarkable symmetry in SAX, usually associated with
classical linear logic [11]. While it is possible to give a message passing interpre-
tation for classical linear logic [28, 5], we stick with the intuitionistic version be-
cause of its conceptual and syntactic proximity to functional programming [12].
In particular, it helps to elucidate the connection to futures which have their
origin in functional languages.

As an example of negative types, consider a binary counter that can receive a
message to increment its value (inc) and to return its value (val). It maintains
local state through a channel x that holds the current value as a binary number.
In the case of a value request, we would like to “return” just that number. The

10 F. Pfenning and K. Pruiksma

way we can accomplish that is a forwarding construct fwd c a that forwards
messages from a to c. It turns out to be a process assignment for the identity
rule of the sequent calculus, which we explain in Section 4.7.

ctr = (inc : ctr) N (val : bin)

counter (c : ctr) [x : bin] =
recv c (inc(c′)⇒ y ← call succ y [x] ;

call counter c′ [y]
| val(x′)⇒ fwd x′ x

init (c : ctr) [] =
z ← call zero z [] ;
call counter c [z])

two (x : bin) [] =
c0 ← call init c0 [] ;
c1 ← send c0 inc(c1) ;
c2 ← send c1 inc(c2) ;
send c2 val(x)

Linear Implication A ⊸ B. Linear implication A ⊸ B is the type of a
process that receives a channel of type A together with a continuation channel
of type B.

Γ,A ⊢ B

Γ ⊢ A ⊸ B
⊸R

Γ, x : A ⊢ P :: (y : B)

Γ ⊢ recv− c (⟨x, y⟩ ⇒ P (x, y)) :: (c : A ⊸ B)
⊸R

Sending, as for all other constructs, is asynchronous.

A,A ⊸ B ⊢ B
⊸X

a : A, c : A ⊸ B ⊢ send− c ⟨a, b⟩ :: (b : B)
⊸X

The dynamics once again does not change. We just recall

⟨a, b⟩▷ (⟨x, y⟩ ⇒ P (x, y)) = P (a, b)

As an example, consider a stack with push and pop methods. When the stack is
empty, the response to pop will be none after which the stack process terminates.
We don’t treat first-class polymorphism here, so we think of stackA as a family
of types indexed by A.

stackA = (push : A ⊸ stackA)
N (pop : (some : A⊗ stackA)⊕ (none : 1))

empty (s : stackA) [] =
recv s (push(s′)⇒ recv s′ (⟨x, s′′⟩ ⇒

t← call empty t [] ;

Relating Message Passing and Shared Memory 11

call elem s′′ [x, t])
| pop(s′)⇒ u← send u ⟨ ⟩ ;

send s′ none(u))

elem (s : stackA) [x : A, t : stackA] =
recv s (push(s′)⇒ recv s′ (⟨y, s′′⟩ ⇒

t′ ← call elem t′ [x, t] ;
call elem s′′ [y, t′])

| pop(s′)⇒ p← send p ⟨x, t⟩ ;
send s′ some(p))

stack10 (s10 : stackbin) [] =
n0 ← call zero [] ;
s0 ← call empty [] ;
s′0 ← send s0 push(s

′
0) ;

s1 ← send s′0 ⟨n0, s1⟩ ;
n0 ← call zero [] ; % necssary for linearity
n1 ← call succ [n0] ;
s′1 ← send s1 push(s

′
1) ;

send s′1 ⟨n1, s10⟩

4.7 Identity as Forwarding

The sequent calculus rule of identity essentially equates two channels. The way
we define this in our dynamics is for the identity to become a form of continua-
tion, waiting to forward a message on one channel to the other.

A ⊢ A
id

a : A ⊢ fwd± c a :: (c : A)
id

The direction of the messages is prescribed by the polarity of the type, so we
split the dynamics into two rules, forwarding message on one channel to another.

proc (fwd+ c a) 7→ cont+ a c
msg+ a V, cont+ a c 7→ msg+ c V

proc (fwd− c a) 7→ msg− a c
cont− a K,msg− a c 7→ cont− c K

This means a channel is another form of extended value or continuation. We
write V̂ and K̂ when we need to include channels as values or continuations,
respectively.

5 Preservation and Progress

The recursion-free fragment of SAX satisfies a variant of the cut elimination
theorem that guarantees a subformula property [10]. In the presence of recur-
sion, we are more interested in preservation and progress. These are properties

12 F. Pfenning and K. Pruiksma

of configurations, so we need to provide typing rules for configurations. Even
though configurations are unordered collection of semantic objects, the typing
rules impose a partial order where the provider of a channel always precedes its
client. We treat the join as an associative operation, with the empty configura-
tion as its unit. Globally, in a configuration, each channel must be provided and
used at most once.

It is convenient for the typing of messages and continuations objects to refer
to a corresponding process for its typing to avoid a proliferation of typing rules.

∆ ⊢ (·) :: ∆
empty

∆1 ⊢ C1 :: ∆2 ∆2 ⊢ C2 :: ∆3

∆1 ⊢ C1, C2 :: ∆3

join

Γ ⊢ P :: (a : A)

∆,Γ ⊢ proc P :: (∆, a : A)
proc

Γ ⊢ send+ a V :: (a : A)

∆,Γ ⊢ msg+ a V :: (∆, a : A)
msg+

Γ ⊢ recv+ a K :: (c : C)

∆,Γ ⊢ cont+ a K :: (∆, c : C)
cont+

Γ ⊢ send− a V :: (c : C)

∆,Γ ⊢ msg− a V :: (∆, c : C)
msg−

Γ ⊢ recv− a K :: (a : A)

∆,Γ ⊢ cont− a K :: (∆, a : A)
cont−

∆, a : A ⊢ cont+ a c :: (∆, c : A)
fwd+

∆, a : A ⊢ msg− a c :: (∆, c : A)
fwd−

With this bit of bureaucracy settled, we can now state the preservation theorem.
Even though internally new channels might be created or closed, externally the
interface to a configuration remains constant. For reference, the language and
its operational semantics can be found in Fig. 1, the typing rules are collected
in Fig. 2.

Theorem 1 (Preservation for Linear Message Passing). If ∆1 ⊢ C :: ∆2

and C 7→ D then ∆1 ⊢ D :: ∆2.

Proof. By induction on the typing of a configuration, using inversion on the
typing of the semantic objects to observe that the endpoints of each channel
perform complementary actions and that the continuation channels once again
have matching types.

For the progress theorem, it is convenient to assume that we are executing
a closed configuration, providing a finite collection ∆ of channels. Such a con-
figuration is terminal if all semantic objects are positive messages or negative
continuations.

Theorem 2 (Progress for Linear Message Passing). If · ⊢ C :: ∆ then
either C 7→ D for some D, or C is terminal.

Proof. We proceed by right-to-left induction over the typing derivation of a
configuration, analyzing the rightmost semantic object. We observe that C =

Relating Message Passing and Shared Memory 13

(C1, ϕ) for a semantic object ϕ can make a transition if C1 can. So we may
assume C1 is terminal. We distinguish cases based on the shape of ϕ.

(i) proc P can always make a transition.
(ii) msg+ a V is terminal, and therefore C is.
(iii) cont− a K is terminal, and therefore C is.
(iv) For msg− a V̂ there must be a continuation cont− a K in C1. By inversion

on typing, the two can interact.
(v) For cont+ a K̂ there must be a message msg+ a V in C1. By inversion on

typing, the two can interact.

Summary. A summary of the asynchronous linear message passing language
using session types can be found in Figs. 1 and 2. Here is a summary of the salient
aspects of the language. We show the actions from the provider’s perspective;
the client will take the matching opposite reaction.

cut Channel allocation and process spawn
id Message forwarding
call Invoking defined process

⊕ℓ∈L(ℓ : Aℓ) sending a label with continuation channel
A⊗B sending a pair of channels
1 sending unit

Nℓ∈L(ℓ : Aℓ) receiving and branching on a label with continuation channel
A ⊸ B receiving a pair of channels

6 Linear Futures

We stay with the SAX system of logical inference, giving a new interpretation
to sequents and proofs. Instead of channels, variables now stand for addresses of
memory cells. A sequent is read as follows:

a1 : A1, . . . , an : An︸ ︷︷ ︸
read from

⊢ P :: (c : C)︸ ︷︷ ︸
write to

Cut allocates a new memory cell a and spawns a process to write to a. As for
futures [13], every cell has exactly one writer. Because futures are linear for
now, every cell also has exactly one reader, a discipline sketched by Blelloch and
Reid-Miller [3].

6.1 Statics and Dynamics of Futures

In our message passing interpretation, the type of a channel specifies a commu-
nication protocol. Here, the type of a cell specifies the shape of its contents. This

14 F. Pfenning and K. Pruiksma

Language

Types A,B,C ::= A⊗B | 1 | ⊕ℓ∈L(ℓ : Aℓ) (positive)
| A ⊸ B | Nℓ∈L(ℓ : Aℓ) (negative)
| t (type names)

Contexts Γ ::= · | Γ, x : A | Γ, a : A

Processes P,Q ::= x← P (x) ; Q(x) (spawn P (a), continue as Q(a), a fresh)
| fwd± a b (forward between a and b)
| send± c V (send value V on c)
| recv± c K (receive a value on c and pass it to K)
| call f c [a1, . . . , an] (call f to provide c, using a1, . . . , an)

Values V ::= ⟨a, b⟩ (⊗,⊸)
| ⟨ ⟩ (1)
| k(a) (⊕,N)

Continuations K ::= ⟨x, y⟩ ⇒ P (x, y) (⊗,⊸)
| ⟨ ⟩ ⇒ P (1)
| (ℓ(x)⇒ P (x))ℓ∈L (⊕,N)

Signature Σ ::= ·
| Σ, t = A (type definition)
| Σ, (Γ ⊢ f :: (z : C)) (process declaration)
| Σ, f z [x1, . . . , xn] = P (process definition)

Dynamics

proc (x← P (x) ; Q(x)) 7→ proc P (a), proc Q(a) (a fresh)
proc (send± c V) 7→ msg± c V
proc (recv± c K) 7→ cont± c K
msg± c V, cont± c K 7→ proc (V ▷K)

proc (call f c [a1, . . . , an]) 7→ proc (P (c, a1, . . . , an))

for (f z [x1, . . . , xn] = P (z, x1, . . . , xn)) ∈ Σ

proc (fwd+ c a) 7→ cont+ a c
msg+ a V, cont+ a c 7→ msg+ c V

proc (fwd− c a) 7→ msg− a c
cont− a K,msg− a c 7→ cont− c K

Passing a value to a continuation

k(a) ▷ (ℓ(x)⇒ Pℓ(x))ℓ∈L = Pk(a) (⊕,N)
⟨a, b⟩ ▷ (⟨x, y⟩ ⇒ P (x, y)) = P (a, b) (⊗,⊸)
⟨ ⟩ ▷ (⟨ ⟩ ⇒ P) = P (1)

Fig. 1. Language for asynchronous message passing

Relating Message Passing and Shared Memory 15

approach leads to the following correspondences. We refer to antecedents in a
sequent as “left” and succedents as “right”.

Logic Message Passing Shared Memory
Positive/Right Axiom send value V write value V

Positive/Left Rule receive value V read value V

Negative/Right Rule receive value V write continuation K

Negative/Left Axiom send value V read continuation K

The language of types and values does not change, and continuations only change
to the extent that the embedded processes now have a different syntax.

Storable S ::= V | K

Processes P,Q ::= x← P (x) ; Q(x) (spawn P (a), continue as Q(a), a fresh)
| move± c a (move storable from a to c)
| write± c S (write storable S to c)
| read± c S (read storable from c and pass to S)
| call f c [a1, . . . , an] (call f with dest. c, reading a1, . . . , an)

Note that defined processes f are always called with a destination [27]. Remark-
ably, we do not need any new typing rules! Instead we define

move± c a ≜ fwd± c a

write+ c V ≜ send+ c V

read+ c K ≜ recv+ c K

write− c K ≜ recv− c K

read− c V ≜ send− c V

and the previous set of rules apply!
The dynamics can be similarly derived. Instead of messages and continuations

we have memory cells cell± c S and suspensions susp± c S. A suspension may
block because the corresponding cell may not have been written yet. These can
be defined from the message passing dynamics.

cell+ c V ≜ msg+ c V

susp+ c K̂ ≜ cont+ c K̂

cell− c K ≜ cont− c K

susp− c V̂ ≜ msg− c V̂

Under the shared memory semantics, forwarding becomes a move from one cell
to another—simpler than in the message passing semantics. The correspondences
continue to hold if we generalize suspensions to allow the form susp± a c where
a is a channel to read a storable S from, and c is the destination write S to. The

16 F. Pfenning and K. Pruiksma

table below visualizes the correspondences.

Shared Memory Message Passing

proc (move+ c a) 7→ susp+ a c proc (fwd+ c a) 7→ cont+ a c

proc (move− c a) 7→ susp− a c proc (fwd− c a) 7→ msg− a c

cell+ a V, susp+ a c 7→ cell+ c V msg+ a V, cont+ a c 7→ msg+ c V

cell− a K, susp− a c 7→ cell− c K cont− a K,msg− a c 7→ cont− c K

Theorem 3 (Bisimulation). There is a strong bisimulation between the shared
memory and the message passing semantics on well-typed processes.

Proof. Under the correspondences shown above, the steps of the two operational
semantics rules correspond exactly, by definition.

Corollaries of this bisimulation are analogues of preservation, terminal con-
figurations, and progress. We say a configuration is final if it consists only of
objects cell± a S.

Corollary 1 (Preservation and Progress for Linear Futures).

1. If ∆1 ⊢ C :: ∆2 and C 7→ D then ∆1 ⊢ D :: ∆2.
2. If · ⊢ C :: ∆ then either C 7→ D for some D, or C is final.

Proof. By the correspondence with the message passing semantics and Theo-
rems 1 and 2.

6.2 Shared Memory Examples

We can transliterate the earlier examples. Here is just one.

bin = (b0 : bin)⊕ (b1 : bin)⊕ (e : 1)

zero (y : bin) [] =
u← write u ⟨ ⟩ ;
write y e(u)

succ (y : bin) [x : bin] =
read x (b0(x′)⇒ write y b1(x′)

| b1(x′)⇒ y′ ← call succ y′ [x′] ;
write y b0(y′)

| e(u)⇒ y′ ← write y′ e(u) ;
write y b1(y′))

As an example that uses two negative types (external choice and linear im-
plication), we revisit the stack data structure. The empty and elem processes, for
example, write a continuation to memory and thereby terminate immediately.

Relating Message Passing and Shared Memory 17

A client reads this continuation and passes it either a push or pop label together
with a destination for the results. In general, all functions and objects are writ-
ten in destination-passing style [27]. Processes never return a value; instead they
are given a destination where to write the result.

stackA = (push : A ⊸ stackA)
N (pop : (some : A⊗ stackA)⊕ (none : 1))

empty (s : stackA) [] =
write s (push(s′)⇒ write s′ (⟨x, s′′⟩ ⇒

t← call empty t [] ;
call elem s′′ [x, t])

| pop(s′)⇒ u← write u ⟨ ⟩ ;
write s′ none(u))

elem (s : stackA) [x : A, t : stackA] =
write s (push(s′)⇒ write s′ (⟨y, s′′⟩ ⇒

t′ ← call elem t′ [x, t] ;
call elem s′′ [y, t′])

| pop(s′)⇒ p← write p ⟨x, t⟩ ;
write s′ some(p))

stack10 (s10 : stackbin) [] =
n0 ← call zero [] ;
s0 ← call empty [] ;
s′0 ← read s0 push(s

′
0) ;

s1 ← read s′0 ⟨n0, s1⟩ ;
n0 ← call zero [] ;
n1 ← call succ [n0] ;
s′1 ← read s1 push(s

′
1) ;

read s′1 ⟨n1, s10⟩

This program highlights that there is a rather immediate sequential inter-
pretation of parallel composition x← P (x) ; Q(x). As usual, we allocate a fresh
memory cell a for x, but rather than executing P (a) and Q(a) in parallel, we first
complete the execution of P (a) (which will write to cell a), and then proceed
with Q(a). This corresponds to an eager (by-value) strategy. We can also pursue
a lazy (by-need) strategy: postpone computation of P (a) and start with Q(a).
When Q(a) attempts to read from a, P (a) is awakened and will run to comple-
tion (writing to a), after which Q(a) continues by reading from a. This embodies
call-by-need and not call-by-name because other readers of a now directly access
the value stored in the cell.

Such simple sequential interpretations of computations are not immediately
available in the message passing setting, but are quite clear here. In particular,
in our language all memory allocation is for futures. In a more realistic language
we would have both parallel composition, and maybe two forms of sequential
composition: one eager and one lazy.

18 F. Pfenning and K. Pruiksma

7 From Linear to Nonlinear Futures

So far all constructs, whether message passing or shared memory, have been
strictly linear. It is easy to imagine how we can take the shared memoryx inter-
pretation and make it nonlinear. We add two rules, one for weakening and one
for contraction.

Γ ⊢ P :: (c : C)

Γ, a : A ⊢ P :: (c : C)
weaken

Γ, a : A, a : A ⊢ P :: (c : C)

Γ, a : A ⊢ P :: (c : C)
contract

At this point an object cell a S may have multiple readers. This means when
it is read, it cannot be immediately deallocated but has to be left for eventual
garbage collection. Therefore memory cells in the operational semantics are now
persistent. In multiset rewriting we indicate this by prefixing a semantic object
with an exclamation mark “!” (the exponential of linear logic). Such objects,
when matched on the left of a rule are carried over implicitly and remain in the
configuration. We call the others ephemeral.

In our semantics, now formulated using the syntax of shared memory, cells
are persistent and processes as well as suspensions remain linear. That must
be the case so that they can change state. A “persistent process” !proc P could
transition over and over again and, for example, allocate an unbounded amount
of memory without ever making progress. Parallel composition (cut) and call
(definitions) remain unchanged.

proc (write± c S) 7→ !cell± c S
proc (read± c S) 7→ susp± c S

!cell+ a V, susp+ a K 7→ proc (V ▷K)
!cell− a K, susp− a V 7→ proc (V ▷K)

proc (move± c a) 7→ susp± a c
!cell± a S, susp± a c 7→ !cell± c S

The move process now copies from one cell to another. We postpone the metathe-
ory of the nonlinear version of future to Cor. 2.

Now we consider a binary trie as a data structure for maintaining sets of bi-
nary numbers (and other data that can be interpreted in this form). We take the
liberty of writing an underscore (_) for an anonymous variable and combining
consecutive pattern matches and consecutive writes. The interface to this data
structure would construct empty and singleton tries, as well as union, intersec-
tion and difference. We show only empty, singleton, and difference.

First, the straightforward setup of the booleans with the operation of b∧¬c.
If we were to show the definitions of union and intersection we would also need
conjunction and disjunction.

bool = (true : 1)⊕ (false : 1)

true (b : bool) [] = u← write u ⟨ ⟩ ; write b true(u)
false (b : bool) [] = u← write u ⟨ ⟩ ; write b false(u)

Relating Message Passing and Shared Memory 19

andnot (d : bool) [b : bool, c : bool] =
read b (true(_)⇒ read c (true(_)⇒ call false d []

| false(_)⇒ call true d [])
| false(_)⇒ call false d [])

We reuse the binary numbers and define tries as being either a leaf or a node
containing three addresses: the left subtrie selected for the bit 0, the boolean b
which is true if the sequence of bits which led to this node is in the trie, and the
right subtrie selected for the bit 1.

The process empty constructs a leaf (the empty trie), while singleton traverses
a binary number, constructing a trie with exactly one node marked true.

trie = (leaf : 1)⊕ (node : trie⊗ bool⊗ trie)

empty (r : trie) [] =
u← write u ⟨ ⟩ ; write r leaf(u)

singleton (r : trie) [x : bin] =
read x (b0(x′)⇒ r0 ← call singleton r0 [x′] ;

b← call false [] ;
r1 ← call empty [] ;
write r node⟨r0, b, r1⟩

| b1(x′)⇒ r0 ← call empty [] ;
b← call false [] ;
r1 ← call singleton r1 [x′] ;
write r node⟨r0, b, r1⟩

| e(_)⇒ r′ ← call empty r′ [] ;
b← call true b [] ;
write r node⟨r′, b, r′⟩)

Finally, the diff process traverses the two tries in parallel, short-circuiting if
one is a leaf. If not, it applies the andnot operation to decide if the resulting
node should be true. While singleton can easily be made linear, this would take
significant effort here. For example, when s is empty, t is ignored entirely. The
remove process just computes the difference with a singleton.

diff (r : trie) [s : trie, t : trie] =
read s (leaf⟨ ⟩ ⇒ call empty r []

| node⟨s0, b, s1⟩ ⇒
read t (leaf⟨ ⟩ ⇒move r s

| node⟨t0, c, t1⟩ ⇒
r0 ← call diff r0 [s0, t0] ;
d← call andnot d [b, c] ;
r1 ← call diff r1 [s1, t1] ;
write r node⟨r0, d, r1⟩))

remove (r : trie) [s : trie, x : bin] =
t← call singleton t [x] ;
call diff r [s, t]

20 F. Pfenning and K. Pruiksma

8 Backporting Persistence to Message Passing

Persistent cells are quite easy to understand from the shared memory perspec-
tive. Now we can use our correspondences in the opposite direction to obtain a
bisimilar version of message passing in which certain messages and suspensions
are persistent! The language of programs itself does not change, but as defined
above the client can use weakening and contraction on channels it uses.

A positive message, flowing from the provider to the client, may then have
multiple recipients. We therefore make such messages persistent in the dynamic
rules. The recipient of such a message only reacts once, so it will not be persistent.
Conversely, a negative suspension may be waiting for messages from multiple
clients and therefore should be persistent, but each such message should be
processed only once.

!cell+ c V ≜ !msg+ c V

susp+ c K ≜ cont+ c K

!cell− c K ≜ !cont− c K

susp− c V ≜ msg− c V

susp+ a c ≜ cont+ c a

susp− a c ≜ msg− c a

8.1 Examples

As example we start with nor which takes two bits x and y and produces the
negation of the disjunction of x and y on the output channel z.

bit = (b0 : 1)⊕ (b1 : 1)

nor (z : bit) [x : bit, y : bit] =
recv x (b0(_)⇒ recv y (b0(u)⇒ send z b1(u)

| b1(u)⇒ send z b0(u))
| b1(_)⇒ recv y (b0(u)⇒ send z b0(u)

| b1(u)⇒ send z b0(u)))

We now use this in the construction of a latch which uses a feedback loop
and recursion.

In the code below the stream of pairs of signals R and S is represented by channel
in : bits2 and the pair of signals Q and Q is represented by out : bits2. The initial
(and in later calls, previous) value of Q and Q is provided on the channels q and
q. We have combined two consecutive receives and sends for readability.

Relating Message Passing and Shared Memory 21

bits2 = (bit⊗ bit)⊗ bits2

latch (out : bits2) [q : bit, q : bit, in : bits2] =
recv in (⟨⟨r, s⟩, in′⟩ ⇒
q′ ← call nor q′ [r, q] ;
q′ ← call nor q′ [s, q] ;
out′ ← call latch out′ [q′, q′, in′] ;
send out ⟨⟨q′, q′⟩, out′⟩)

8.2 Metatheory

The metatheory for nonlinear message passing changes systematically from the
linear case, reflecting persistence of positive messages and negative suspensions.
Instead of splitting the context to check the processes, messages, and continua-
tions embedded in them, we pass all channels in all configuration typing rules.

∆ ⊢ (·) :: ∆
empty

∆1 ⊢ C1 :: ∆2 ∆2 ⊢ C2 :: ∆3

∆1 ⊢ C1, C2 :: ∆3

join

∆ ⊢ P :: (a : A)

∆ ⊢ proc P :: (∆, a : A)
proc

∆ ⊢ send+ a V :: (a : A)

∆ ⊢ msg+ a V :: (∆, a : A)
msg+

∆ ⊢ recv+ a K :: (c : C)

∆ ⊢ cont+ a K :: (∆, c : C)
cont+

∆ ⊢ send− a V :: (c : C)

∆ ⊢ msg− a V :: (∆, c : C)
msg−

∆ ⊢ recv− a K :: (a : A)

∆ ⊢ cont− a K :: (∆, a : A)
cont−

a : A ∈ ∆

∆ ⊢ cont+ a c :: (∆, c : A)
fwd+

a : A ∈ ∆

∆ ⊢ msg− a c :: (∆, c : A)
fwd−

In the statement of preservation we now have to account for a freshly allocated
channel to become visible at the external interface to the configuration.

Theorem 4 (Preservation for Nonlinear Message Passing).
If ∆1 ⊢ C :: ∆2 and C 7→ D then ∆1 ⊢ D :: ∆′

2 for some ∆′
2 ⊇ ∆2.

Proof. By induction on the typing of a configuration as before. In the case the
step is a spawn which allocates a fresh channel a : A, we have ∆′

2 = (∆2, a : A).

Recall that a configuration was defined to be terminal if all semantics ob-
jects are positive messages or negative continuations. These objects are precisely
those that become persistent, so terminal configurations now consist entirely of
persistent objects.

Theorem 5 (Progress for Nonlinear Message Passing). If · ⊢ C :: ∆ then
either C 7→ D for some D, or C is terminal.

22 F. Pfenning and K. Pruiksma

Proof. As before, by right-to-left induction over the typing derivation of the
given configuration.

Now we can transport this result to nonlinear futures as before.

Corollary 2 (Preservation and Progress for Nonlinear Futures).

1. If ∆1 ⊢ C :: ∆2 and C 7→ D then ∆1 ⊢ D :: ∆′
2 for some ∆′

2 ⊇ ∆2.
2. If · ⊢ C :: ∆ then either C 7→ D for some D, or C is final.

Proof. By the correspondence with the message passing semantics and Theo-
rems 4 and 5.

9 Conclusion

We have taken the journey from linear asynchronous message passing through
linear futures and nonlinear futures back to nonlinear asynchronous message
passing. In each layer, the operational semantics of message passing and futures
are (strongly) bisimilar. This tight relationship is possible because all formalisms
are based on the semi-axiomatic sequent calculus. The two kinds of interpreta-
tions have different characteristics: message passing exchanges only small mes-
sages (⟨ ⟩, ⟨a, b⟩, and k(a) for channels a, b, and labels k), while futures allow
two natural sequential interpretations (eager and lazy) in addition to the parallel
one.

We have not discussed type checking for the languages here, but standard
techniques, including input/output contexts [6] apply. We can also use standard
translations from natural deduction to sequent calculi to map a more familiar
functional syntax to either message passing or futures (see, for example, [26]).

An alternative operational semantics for the language with weakening and
contraction tracks multiple clients precisely, which can then be deallocated ea-
gerly, avoiding the need for a general garbage collector [22]. This dynamics is
significantly more complex than the model we have presented here, so we have
not yet attempted to relate message passing and futures when both use explicit
deallocation.

We can easily extend our bisimulation further by following the blueprint of
mixed linear/nonlinear logic [2] and its generalization in adjoint logic [24, 21]. In
brief, we can extend the type systems of this paper by introducing multiple modes
of types, potentially with different structural properties (e.g, linear/nonlinear, or
message passing/futures), and then combine them using adjoint pairs of modal-
ities. We have already investigated adjoint types separately for message pass-
ing [22] and futures [23]. These prior formulations are incompatible with each
other, and the present paper recasts them into a single unifying framework of
SAX.

Acknowledgments. We would like to thank Henry DeYoung, Luiz de Sa, and
Siva Somayyajula for helpful discussions regarding the subject of this paper and
comments on an earlier draft.

Relating Message Passing and Shared Memory 23

Judgmental Rules
Γ1 ⊢ P (x) :: (x : A) Γ2, x : A ⊢ Q(x) :: (c : C)

Γ1, Γ2 ⊢ (x← P (x) ; Q(x)) :: (c : C)
cut

a : A ⊢ fwd c a :: (c : A)
id

Positives
(k ∈ L)

b : Ak ⊢ send a k(b) :: (a : ⊕ℓ∈L(ℓ : Aℓ))
⊕X

Γ, x : Aℓ ⊢ Pℓ(x) :: (d : C) (∀ℓ ∈ L)

Γ, c : ⊕ℓ∈L(ℓ : Aℓ) ⊢ recv c (ℓ(x)⇒ Pℓ(x))ℓ∈L :: (d : C)
⊕L

a : A, b : B ⊢ send c ⟨a, b⟩ :: (c : A⊗B)
⊗X

Γ, x : A, y : B ⊢ P (x, y) :: (d : C)

Γ, c : A⊗B ⊢ recv c (⟨x, y⟩ ⇒ P (x, y)) :; (d : C)
⊗L

· ⊢ send c ⟨ ⟩ :: (c : 1)
⊗X

Γ ⊢ P :: (d : C)

Γ, c : 1 ⊢ recv c (⟨ ⟩ ⇒ P) :; (d : C)
1L

Negatives
Γ ⊢ Pℓ(x) :: (x : Aℓ) (∀ℓ ∈ L)

Γ ⊢ recv c (ℓ(x)⇒ Pℓ(x))ℓ∈L :: (c : Nℓ∈L(ℓ : Aℓ))
NR

c : Nℓ∈L(ℓ : Aℓ) ⊢ send c k(a) :: (a : Ak)
NX

Γ, x : A ⊢ P :: (y : B)

Γ ⊢ recv c (⟨x, y⟩ ⇒ P (x, y)) :: (c : A ⊸ B)
⊸R

a : A, c : A ⊸ B ⊢ send c ⟨a, b⟩ :: (b : B)
⊸X

Definitions
(x1 : A1, . . . , xn : An ⊢ f :: (z : C)) ∈ Σ

a1 : A1, . . . , an : An ⊢ f c [a1, . . . , an] :: (c : C)
call

Fig. 2. Typing for Message Passing

24 F. Pfenning and K. Pruiksma

References

1. Andreoli, J.M.: Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation 2(3), 197–347 (1992)

2. Benton, N.: A mixed linear and non-linear logic: Proofs, terms and models. In: Pa-
cholski, L., Tiuryn, J. (eds.) Selected Papers from the 8th International Workshop
on Computer Science Logic (CSL’94). pp. 121–135. Springer LNCS 933, Kazimierz,
Poland (Sep 1994), an extended version appears as Technical Report UCAM-CL-
TR-352, University of Cambridge

3. Blelloch, G.E., Reid-Miller, M.: Pipeling with futures. Theory of Computing Sys-
tems 32, 213–239 (1999)

4. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In: Pro-
ceedings of the 21st International Conference on Concurrency Theory (CONCUR
2010). pp. 222–236. Springer LNCS 6269, Paris, France (Aug 2010)

5. Caires, L., Pfenning, F., Toninho, B.: Linear logic propositions as session types.
Mathematical Structures in Computer Science 26(3), 367–423 (2016), special Issue
on Behavioural Types

6. Cervesato, I., Hodas, J.S., Pfenning, F.: Efficient resource management for linear
logic proof search. Theoretical Computer Science 232(1–2), 133–163 (Feb 2000),
special issue on Proof Search in Type-Theoretic Languages

7. Cervesato, I., Scedrov, A.: Relating state-based and process-based concurrency
through linear logic. Information and Computation 207(10), 1044–1077 (Oct 2009)

8. Curry, H.B.: Functionality in combinatory logic. Proceedings of the National
Academy of Sciences, U.S.A. 20, 584–590 (1934)

9. DeYoung, H., Pfenning, F.: Data layout from a type-theoretic perspective. In:
Proceedings of the 38th Conference on the Mathematical Foundations of Program-
ming Semantics (MFPS 2022). Electronic Notes in Theoretical Informatics and
Computer Science, vol. 1 (2022), https://arxiv.org/abs/2212.06321v6

10. DeYoung, H., Pfenning, F., Pruiksma, K.: Semi-axiomatic sequent calculus. In:
Ariola, Z. (ed.) 5th International Conference on Formal Structures for Computation
and Deduction (FSCD 2020). pp. 29:1–29:22. LIPIcs 167, Paris, France (Jun 2020)

11. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)
12. Girard, J.Y., Lafont, Y.: Linear logic and lazy computation. In: Ehrig, H., Kowalski,

R., Levi, G., Montanari, U. (eds.) Proceedings of the International Joint Conference
on Theory and Practice of Software Development. vol. 2, pp. 52–66. Springer-Verlag
LNCS 250, Pisa, Italy (Mar 1987)

13. Halstead, R.H.: Multilisp: A language for parallel symbolic computation. ACM
Transactions on Programming Languages and Systems 7(4), 501–539 (Oct 1985)

14. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) 4th International Con-
ference on Concurrency Theory (CONCUR 1993). pp. 509–523. Springer LNCS
715 (1993)

15. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:
America, P. (ed.) Proceedings of the European Conference on Object-Oriented Pro-
gramming (ECOOP’91). pp. 133–147. Springer-Verlag LNCS 512, Geneva, Switzer-
land (Jul 1991)

16. Howard, W.A.: The formulae-as-types notion of construction (1969), unpublished
note. An annotated version appeared in: To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, 479–490, Academic Press (1980)

17. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. In:
Boehm, H.J., Steele, G. (eds.) Proceedings of the 23rd Symposium on Principles

Relating Message Passing and Shared Memory 25

of Programming Languages (POPL’96). pp. 358–371. ACM, St. Petersburg Beach,
Florida, USA (Jan 1996)

18. Laurent, O.: Syntax vs. semantics: A polarized approach. Theoretical Computer
Science 343(1–2), 177–206 (2005)

19. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press (1999)

20. OpenMP, http://openmp.org
21. Pruiksma, K., Chargin, W., Pfenning, F., Reed, J.: Adjoint logic (Apr 2018),

http://www.cs.cmu.edu/˜fp/papers/adjoint18b.pdf, unpublished manuscript
22. Pruiksma, K., Pfenning, F.: A message-passing interpretation of adjoint logic. Jour-

nal of Logical and Algebraic Methods in Programming 120(100637) (2021)
23. Pruiksma, K., Pfenning, F.: Back to futures. Journal of Functional Programming

32, e6 (2022)
24. Reed, J.: A judgmental deconstruction of modal logic (May 2009),

http://www.cs.cmu.edu/˜jcreed/papers/jdml2.pdf, unpublished manuscript
25. Sangiorgi, D., Walker, D.: The π-Calculus: A Theory of Mobile Processes. Cam-

bridge University Press (2001)
26. Toninho, B., Caires, L., Pfenning, F.: Functions as session-typed processes. In:

Birkedal, L. (ed.) 15th International Conference on Foundations of Software Science
and Computation Structures. pp. 346–360. FoSSaCS’12, Springer LNCS, Tallinn,
Estonia (Mar 2012)

27. Wadler, P.: Listlessness is better than laziness: Lazy evaluation and garbage collec-
tion at compile-time. In: Conference on Lisp and Functional Programming (LFP
1984). pp. 45–52. ACM, Austin, Texas (Aug 1984)

28. Wadler, P.: Propositions as sessions. In: Proceedings of the 17th International
Conference on Functional Programming (ICFP 2012). pp. 273–286. ACM Press,
Copenhagen, Denmark (Sep 2012)

