
Manifestly Phased Communication via
Shared Session Types

Chuta Sano(B), Stephanie Balzer, and Frank Pfenning

Carnegie Mellon University, Pittsburgh, USA

Abstract. Session types denote message protocols between concurrent
processes, allowing a type-safe expression of inter-process communica-
tion. Although previous work demonstrate a well-defined notion of sub-
typing where processes have different perceptions of the protocol, these
formulations were limited to linear session types where each channel of
communication has a unique provider and client. In this paper, we extend
subtyping to shared session types where channels can now have multiple
clients instead of a single client. We demonstrate that this generalization
can statically capture protocol requirements that span multiple phases
of interactions of a client with a shared service provider, something not
possible in prior proposals. Moreover, the phases are manifest in the type
of the client.

1 Introduction

Session types prescribe bidirectional communication protocols between concur-
rent processes [15,16]. Variations of this type system were later given logical cor-
respondences with intuitionistic [4] and classical [22] linear logic where proofs
correspond to programs and cut reduction to communication. This correspon-
dence mainly provided an interpretation of linear session types, which denote
sessions with exactly one client and one provider. Shared session types, which
encode communication between multiple clients and one provider, were proposed
with a sharing semantics interpretation in a prior work [2]. Clients communicat-
ing along a shared channel follow an acquire-release discipline where they must
first acquire exclusive access to the provider, communicate linearly, and then
finally release the exclusive access, allowing other clients to acquire.

However, not all protocols that follow this acquire-release paradigm are safe;
if a client that successfully acquires some shared channel of type A releases it at
an unrelated type B, other clients that are blocked while trying to acquire will
still see the channel as type A while the provider will see the channel as type
B. To resolve this, we require an additional constraint that clients must release
at the same type at which it acquired. This was formally expressed in [2] as the
equi-synchronizing constraint, which statically verifies that session types encode
communication which does not release at the wrong type. Although shared ses-
sion types serve an important role in making session typed process calculi theory
c© IFIP International Federation for Information Processing 2021
Published by Springer Nature Switzerland AG 2021
F. Damiani and O. Dardha (Eds.): COORDINATION 2021, LNCS 12717, pp. 23–40, 2021.
https://doi.org/10.1007/978-3-030-78142-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78142-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-78142-2_2

24 C. Sano et al.

applicable to practical scenarios, we previously [19] showed that shared session
types cannot express phases, or protocols across successive acquire-release cycles,
due to the equi-synchronizing constraint being too restrictive (see Sect. 5).

We demonstrate that subtyping, first formalized in the session-typed process
calculi setting by Gay and Hole [11], and its behavior across the two linear and
shared modalities provide the groundwork for an elegant relaxation of the equi-
synchronizing constraint, allowing for phases to be manifest in the session type.
In message passing concurrency, subtyping allows a client and provider to safely
maintain their own local views on the session type (or protocol) associated with
a particular channel. Although previous papers [1,11] investigate subtyping in
the purely linear session type setting, we found that extending these results to
the linear and shared session type setting as in [2] yields very powerful results
with both practical and theoretical significance.

In this paper, we build upon past results on subtyping and propose a for-
mulation of subtyping compatible with shared session types. We in particular
introduce the subsynchronizing constraint, a relaxation of the equi-synchronizing
constraint.

The main contributions of this paper include:

– A full formalization of a subtyping relation for shared session types and their
meta theory.

– The introduction of the subsynchronizing constraint, a relaxation of the equi-
synchronizing constraint.

– Illustrations of practical examples in this richer type system, further bridg-
ing the gap between session-typed process calculi and practical programming
languages.

The rest of the paper will proceed as follows: Sect. 2 provides a brief introduc-
tion to linear and shared session-typed message-passing concurrency. Section 3
demonstrates the inability for prior systems to express phasing and motivates
our approach. Section 4 provides an introduction to linear subtyping along with
an attempt to extend the relation to the shared setting. Section 5 introduces
the notion of phasing and the subsynchronizing judgment. Section 6 presents a
message passing concurrent system using our typesystem and the corresponding
progress and preservation statements. Section 7 discusses related work. Section 8
concludes the paper with some points of discussion and future work.

An extended version of this paper is available as a technical report [20],
containing detailed proofs, a complete formalization of the system, and more
complex examples. This paper will focus on our advancements to the type system
and key ideas while treating the syntax of the language and the operational
interpretation informally.

Manifestly Phased Communication via Shared Session Types 25

2 Background

2.1 Linear Session Types

Based on the correspondence established between intuitionistic linear logic and
the session-typed π-calculus [4,21] we can interpret a intuitionistic linear sequent

A1, A2, . . . , An � B

as the typing judgment for a process P by annotating the linear propositions
with channel names:

a1 : A1, a2 : A2, . . . , an : An
︸ ︷︷ ︸

Δ

� P :: (b : B)

Interpreted as a typing judgment, we say that process P provides a session
of type B along channel b while using channels a1, . . . , an with session types
A1, . . . , An, respectively. Interpreted as a sequent, we say that P is a proof
of some proposition B with hypotheses A1, . . . , An. Following linear logic, the
context Δ is restricted and rejects contraction and weakening. Programatically,
this means that linear channels cannot be aliased nor freely deleted – they must
be fully consumed exactly once.

Since the session type associated with a channel denotes a bidirectional pro-
tocol, each connective has two operational interpretations – one from the per-
spective of the provider and one from the client. This operationally dual interpre-
tation results in a schema where for any connective, either the client or provider
will send while the other will receive as summarized in Table 1.

For example, a channel of type A ⊗ 1 requires that the provider sends a
channel of type A and proceeds as type 1 while the client receives a channel
of type A and proceeds as 1. The multiplicative unit 1 denotes the end of the
protocol – the provider must terminate and close its channel while a client must
wait for the channel to be closed. A channel of type ⊕{l : A} (n-nary internal
choice) requires the provider to choose and send a label i in l and proceed as
Ai while the client must receive and branch on some label i and proceed as Ai.
Similarly, a channel of type &{l : A} requires the client to choose and send a
label and the provider to receive and branch on a label. The continuation type
of some session type refers to the type after a message exchange; for example, B
would be the continuation type of A ⊗ B and similarly Ai of ⊕{l : A} for some
i in l. The unit 1 does not have a continuation type since it marks the end of
communication.

We consider a session type denoting the interaction with a provider of a
queue of integers, which we will develop throughout the paper:

queue = &{enqueue :int ⊃ queue,

dequeue : ⊕ {some : int ∧ queue,none : queue}}

26 C. Sano et al.

Table 1. A summary of the linear connectives and their operational interpretations

Type Interpretation from provider Interpretation from client Continuation

1 Close channel (terminate) Wait for channel to close -

A ⊗ B Send channel of type A Receive channel of type A B

A � B Receive channel of type A Send channel of type A B

⊕{l : A} Send a label i ∈ l Receive and branch on i ∈ l Ai

&{l : A} Receive and branch on i ∈ l Send a label i ∈ l Ai

where we informally adopt value input and output ⊃ and ∧ [21] as value ana-
logues to channel input and output � and ⊗, respectively, which are orthogonal
to the advancements in this work. Following this protocol, a client must send a
label enqueue or dequeue. If it chooses enqueue, it must send an int and then
recur, and on the other hand, if it chooses dequeue, it will receive either some int
as indicated by the some branch of the internal choice or nothing as indicated
by the none branch. In either case, we let the queue recur1. Dually, a server
must first receive a label enqueue or dequeue from the client. If it receives an
enqueue, it will receive an int and then recur. If it receives a dequeue instead, it
must either send a some label followed by the appropriate int and then recur or
send a none label and then recur.

We adopt an equi-recursive [8] interpretation which requires that recursive
session types be contractive [11], guaranteeing that there are no messages asso-
ciated with the unfolding of a recursive type. This in particular requires that we
reason about session types coinductively.

We now attempt to encode a protocol representing an auction based on [9].
An auction transitions between the bidding phase where clients are allowed to
place bids and the collecting phase where a winner is given the item while all
the losers are refunded their respective bids.

bidding = &{bid : ⊕ {ok : id ⊃ money ⊃ bidding,

collecting : collecting}}
collecting = &{collect : id ⊃ ⊕ {prize : item ∧ bidding,

refund : money ∧ bidding,

bidding : bidding}}

In this example, we make the bidding phase and collecting phase explicit by
separating the protocol into bidding and collecting. Beginning with bidding,
a client must send a bid label2. The provider will either respond with an ok ,
allowing the client to make a bid by sending its id, money, and then recursing
back to bidding, or a collecting , indicating that the auction is in the collecting
phase and thereby making the client transition to collecting.
1 We do not consider termination to more easily align with later examples.
2 The currently unnecessary unary choice will be useful later.

Manifestly Phased Communication via Shared Session Types 27

For collecting, the client must send a collect label. For ease of presentation,
we require the client to also send its id immediately, giving enough information
to the provider to know if the client should receive a prize or a refund , along
with bidding if the client is in the wrong phase. The prize branch covers the
case where the client won the previous bid, the refund branch covers the case
where the client lost the bid, and the bidding branch informs the client that the
auction is currently in the bidding phase.

Because linear channels have exactly one provider and one client, what we
have described so far only encodes a single participant auction. One can assert
that the provider is actually a broker to an auction of multiple participants, but
that does not solve the fundamental problem, that is, encoding shared commu-
nication with multiple clients.

2.2 Shared Session Types

Although linear session types and their corresponding process calculi give a
system with strong guarantees such as session fidelity (preservation) and dead-
lock freedom (progress), as we show in the previous section while attemping to
encode an auction, they are not expressive enough to model systems with shared
resources. Since multiple clients cannot simultaneously communicate to a single
provider in an unrestricted manner, we adopt an acquire-release paradigm. The
only action a client can perform on a shared channel is to send an acquire request,
which the provider must accept. After successfully acquiring, the client is guar-
anteed to have exclusive access to the provider and therefore can communicate
linearly until the client releases its exclusive access.

Instead of treating the acquire and release operations as mere operational
primitives, in prior work [2] we extend the type system such that the acquire
and release points are manifest in the type by stratifying session types into
shared and linear types. Unlike linear channels, shared channels are unrestricted
in that they can be freely aliased or deleted. In the remaining sections, we will
make the distinction between linear and shared explicit by marking channel
names and session type meta-variables with subscripts L and S respectively
where appropriate. For example, a linear channel is marked aL, while a shared
channel is marked bS.

Since shared channels represent unrestricted channels that must first be
acquired, we introduce the modal upshift operator ↑S

LAL for some AL which
requires clients to acquire and then proceed linearly as prescribed by AL. Simi-
larly, the modal downshift operator ↓S

LBS for some BS requires clients to release
and proceed as a shared type. Type theoretically, these modal shifts mark tran-
sitions between shared to linear and vice versa. In summary, we have:

(Shared Layer) AS ::= ↑S
LAL

(Linear Layer) AL, BL ::= ↓S
LAS | 1 | AL ⊗ BL | AL � BL | &{l:AL} | ⊕ {l:AL}

28 C. Sano et al.

where we emphasize that the previously defined (linear) type operators such as
⊗ remain only at the linear layer – a shared session type can only be constructed
by a modal upshift ↑S

L of some linear session type AL.
As initially introduced, clients of shared channels follow an acquire-release

pattern – they must first acquire exclusive access to the channel, proceed linearly,
and then finally release the exclusive access that they had, allowing other clients
of the same shared channel to potentially acquire exclusive access. The middle
linear section can also be viewed as a critical region since the client is guaranteed
unique access to a shared provider process. Therefore, this system naturally
supports atomic operations on shared resources.

Using shared channels, we can encode a shared queue, where there can be
multiple clients interacting with the same data:

shared queue = ↑S
L&{enqueue :int ⊃ ↓S

Lshared queue,

dequeue : ⊕ {some : int ∧ ↓S
Lshared queue,

none : ↓S
Lshared queue}}

A client of such a channel must first send an acquire message, being blocked
until the acquisition is successful. Upon acquisition, the client must then proceed
linearly as in the previously defined linear queue. The only difference is that
before recursing, the client must release its exclusive access, allowing other
blocked clients to successfully acquire.

3 Equi-Synchronizing Rules Out Phasing

We can also attempt to salvage the previous attempt of encoding (multi-
participant) auctions by “wrapping” the previous purely linear protocol between
↑S

L and ↓S
L.

bidding = ↑S
L&{bid : ⊕ {ok : id ⊃ money ⊃ ↓S

Lbidding,

collecting : ↓S
Lcollecting}}

collecting = ↑S
L&{collect : id ⊃ ⊕ {prize : item ∧ ↓S

Lbidding,

refund : money ∧ ↓S
Lbidding,

bidding : ↓S
Lbidding}}

A client to bidding must first acquire exclusive access as indicated by ↑S
L,

proceed linearly, and then eventually release at either bidding (in the ok branch)
or collecting (in the collecting branch). Similarly, a client to collecting must
first acquire exclusive access, proceed linearly, and then eventually release at
bidding since all branches lead to bidding.

Unfortunately, as formulated so far, this protocol is not sound. For example,
consider two auction participants P and Q that are both in the collecting phase

Manifestly Phased Communication via Shared Session Types 29

and blocked trying to acquire. Suppose P successfully acquires, in which case
it follows the protocol linearly and eventually releases at bidding. Then, if Q
successfully acquires, we have a situation where Q rightfully believes that it
acquired at collecting but since P previously released at type bidding, the
auctioneer believes that it currently accepted a connection from bidding. The
subsequent label sent by the client, collect is not an available option for the
provider; session fidelity has been violated.

Previous work [2] addresses this problem by introducing an additional
requirement that if a channel was acquired at some type AS, all possible future
releases (by looking at the continuation types) must release at AS. This is for-
mulated as the equi-synchronizing constraint, defined coinductively on the struc-
ture of session types. In particular, neither bidding nor collecting are equi-
synchronizing because they do not always release at the same type at which it
was acquired. For bidding, the collecting branch causes a release at a different
type, and for collecting, all branches lead to a release at a different type.

A solution to the auction scenario is to unify the two phases into one:

auction = ↑S
L&{bid : ⊕ {ok : id ⊃ money ⊃ ↓S

Lauction,

collecting : ↓S
Lauction},

collect : id ⊃ ⊕ {prize : item ∧ ↓S
Lauction,

refund : money ∧ ↓S
Lauction,

bidding : ↓S
Lauction}}

The type auction is indeed equi-synchronizing because all possible release
points are at auction.

This presentation of the auction however loses the explicit denotation of the
two phases; although the previous linear single participant version of the auction
protocol can make explicit the bidding and collecting phases in the session type,
the equi-synchronizing requirement forces the two phases to merge into one in the
case of shared session types. In general, the requirement that all release points
are equivalent prevents shared session types to encode protocols across multiple
acquire-release cycles since information is necessarily “lost” after a particular
acquire-release cycle.

4 Subtyping

So far, there is an implicit requirement that given a particular channel, both its
provider and clients agree on its protocol or type. A relaxation of this requirement
in the context of linear session types have been investigated by Gay and Hole [11],
and in this section, we present subtyping in the context of both linear session
types and shared session types.

If A ≤ B, then a provider viewing its offering channel as type A can safely
communicate with a client viewing the same channel as type B. This perspective

30 C. Sano et al.

reveals a notion of substitutability, where a process providing a channel of type
A can be replaced by a process providing A′ such that A′ ≤ A and dually, a
client to some channel of type B can be replaced by another process using the
same channel as some type B′ such that B ≤ B′. The following subtyping rules,
interpreted coinductively, formalize the subtyping relation between session types:

1 ≤ 1
≤1

AL ≤ A′
L BL ≤ B′

L

AL ⊗ BL ≤ A′
L ⊗ B′

L

≤⊗
A′

L ≤ AL BL ≤ B′
L

AL � BL ≤ A′
L � B′

L

≤�

∀i ∈ l AiL ≤ A′
iL

⊕{l:AL} ≤ ⊕{l:A′
L, m:BL}

≤⊕
∀i ∈ l AiL ≤ A′

iL

&{l:AL, m:BL} ≤ &{l:A′
L}

≤&

One of the notable consequences of adopting subtyping is that internal and
external choices allow one side to have more labels or branches. For internal
choice, since the provider sends some label, there is no harm in a client to be
prepared to handle additional labels that it will never receive and vice versa
for external choice. Another observation is that subtyping of session types is
covariant in their continuations; following this paradigm, we can immediately
define subtyping for the new type connectives ↑S

L and ↓S
L:

AL ≤ BL

↑S
LAL ≤ ↑S

LBL

≤↑S
L

AS ≤ BS

↓S
LAS ≤ ↓S

LBS

≤↓S
L

Remark 1. The subtyping relation ≤ is a partial order.

A key principle governing subtyping of session types is that ignorance is bliss;
neither the client nor the provider need to know the precise protocol that the
other party is following, as supported by our extended report [20] which proves
the same progress and preservation theorems in an implementation of session
typed process calculus with shared channels [2] in a system with subtyping.

Let us revisit the shared queue example:

shared queue = ↑S
L&{enqueue :int ⊃ ↓S

Lshared queue,

dequeue : ⊕ {some : int ∧ ↓S
Lshared queue,

none : ↓S
Lshared queue}}

Instead of allowing all clients to freely enqueue and dequeue, suppose we only
allow certain clients to enqueue and certain clients to dequeue. With subtyping,
we first fix the provider’s type to be shared queue. Next, we restrict writer
clients by removing the dequeue label and similarly restrict reader clients by
removing the enqueue label:

producer = ↑S
L&{enqueue : int ⊃ ↓S

Lproducer}
consumer = ↑S

L&{dequeue : ⊕{some : int ∧ ↓S
Lconsumer,none : ↓S

Lconsumer}}

Manifestly Phased Communication via Shared Session Types 31

where it is indeed the case that shared queue ≤ producer and
shared queue ≤ consumer, justifying both the writer and reader clients’ views
on the type of the channel.

We will defer the detailed discussion of the subtle interactions that occur
between the notion of equi-synchronizing constraint and subtyping to Sect. 5.1.
For this example however, the fact that all three types shared queue, pro-
ducer, and consumer are independently equi-synchronizing is a strong justifi-
cation of its soundness.

5 Phasing

One of the most common patterns when encoding data structures and protocols
via session types is to begin the linear type with an external choice. When
these types recur, we are met with another external choice. A notion of phasing
emerges from this pattern, where a single phase spans from the initial external
choice to the recursion.

We introduced an auction protocol, which in its linear form can make
explicit the two distinct phases, yet in its shared form cannot due to the equi-
synchronizing constraint. With subtyping however, this seems to no longer be a
problem; the auctioneer can view the protocol as auction whereas the clients can
independently view the protocol as bidding or collecting depending on their
current phase since auction ≤ bidding and auction ≤ collecting.

provider

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

auction = ↑S
L&{bid : ⊕ {ok : id ⊃ money ⊃ ↓S

Lauction,

collecting : ↓S
Lauction},

collect : id ⊃ ⊕ {prize : item ∧ ↓S
Lauction,

refund : money ∧ ↓S
Lauction,

bidding : ↓S
Lauction}}

clients

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bidding = ↑S
L&{bid : ⊕ {ok : id ⊃ money ⊃ ↓S

Lbidding,

collecting : ↓S
Lcollecting}}

collecting = ↑S
L&{collect : id ⊃ ⊕ {prize : item ∧ ↓S

Lbidding,

refund : money ∧ ↓S
Lbidding,

bidding : ↓S
Lbidding}}

Unfortunately, there is a critical issue with this solution. Since shared chan-
nels can be aliased, a client in the collecting phase can alias the channel, follow
the protocol, and then ignore the released type (bidding phase) – it can then
use the previously aliased channel to communicate as if in the collecting phase.
In general, the strategy of encoding phases in shared communication through
a shared supertype allows malicious clients to re-enter previously encountered
phases since they may internally store aliases. Thus, what we require is a subtyp-
ing relation across shared and linear modes since linear channels are restricted
and in particular cannot be aliased.

We first add two new linear connectives ↑L
L and ↓L

L that, like ↑S
L and ↓S

L, have
operationally an acquire-release semantics but enforce a linear treatment of the

32 C. Sano et al.

associated channels. Prior work [14] has already explored such intra-layer shifts,
albeit for the purpose of enforcing synchronization in an asynchronous message-
passing system. Thus for example, the protocol denoted by ↑L

LAL requires the
client to “acquire” as in the shared case. If the provider happens to provide a
linear channel ↑L

LAL, then this merely adds a synchronization point in the com-
munication. The more interesting case is when the provider is actually providing
a shared channel, some ↑S

LAL; a client should be able to view the session type
as ↑L

LAL without any trouble. We formalize this idea to the following additional
subtyping relations:

AL ≤ BL

↑SLAL ≤ ↑LLBL

≤↑S
L

↑L
L

AS ≤ BL

↓SLAS ≤ ↓LLBL

≤↓S
L

↓L
L

AL ≤ BL

↑LLAL ≤ ↑LLBL

≤↑L
L

AL ≤ BL

↓LLAL ≤ ↓LLBL

≤↓L
L

Using the new connectives, we can complete the auction protocol where the
two phases are manifest in the session type; a client must actually view the
auction protocol linearly!

bidding = ↑L
L&{bid : ⊕ {ok : id ⊃ money ⊃ ↓L

Lbidding,

collecting : ↓L
Lcollecting}}

collecting = ↑L
L&{collect : id ⊃ ⊕ {prize : item ∧ ↓L

Lbidding,

refund : money ∧ ↓L
Lbidding,

bidding : ↓L
Lbidding}}

where auction ≤ bidding and auction ≤ collecting. Compared to the initially
presented linear auction protocol, this version inserts the purely linear shifts ↑L

L

and ↓L
L where appropriate such that the protocol is compatible with the shared

auction protocol that the auctioneer provides. Therefore, the addition of ↑L
L and

↓L
L to our system allows a natural subtyping relation between shared session

types and linear session types, where they serve as a means to safely bridge
between shared and linear modalities.

Remark 2. A protocol spanning multiple phases can also be interpreted as a
deterministic finite autonomata (DFA) where nodes represent the phase or the
state of the protocol and edges represent choice branches. The previous auction
protocol can be encoded as a two state DFA as shown in Fig. 1.

Manifestly Phased Communication via Shared Session Types 33

biddingstart collecting

bid → ok

bid → collecting

collect → {prize, refund , bidding}

Fig. 1. A DFA representation of the two phases in the auction protocol. Multiple labels
enclosed in brackets as in {prize, refund , bidding} mean that any of those labels can be
selected.

5.1 Subsynchronizing Constraint

We note in Sect. 2.2 that in previous work [2], we require session types to be equi-
synchronizing, which requires that processes following the protocol are released at
the exact type at which it was acquired. This constraint guarantees that clients do
not acquire at a type that they do not expect. With the introduction of subtyping
however, there are two major relaxations that we propose on this constraint.

Releasing At a Subtype. A client P using some channel as some type aS:AS can
safely communicate with any (shared) process offering a channel of type aS:A′

S

such that A′
S ≤ AS due to subtyping. If another client acquires aS and releases

it at some A′′
S such that A′′

S ≤ A′
S, then P can still safely communicate along

aS since A′′
S ≤ AS by transitivity. Thus, one reasonable relaxation to the equi-

synchronizing constraint is that processes do not need to be released at the same
exact type but instead a subtype.

Branches That Never Occur. A major consequence of subtyping is that providers
and clients can wait on some branches in the internal and external choices which
in fact never will be sent by the other party. For example, suppose a provider
P provides a channel of type AS = ↑S

L&{a : ↓S
LAS, b : ↓S

LBS}. Assuming some
unrelated BS, we can see that AS is not equi-synchronizing because the b branch
can lead to releasing at a different type. However, suppose some client C views
the channel as ↑S

L&{a : ↓S
LAS} – in this case, P can only receive a, and the b

branch can safely be ignored since C will never send the b label. This points to
the necessity of using both the provider and client types to more finely verify
the synchronizing constraint. Of course, if there is another client D that views
the channel in a way that the b branch can be taken, then the entire setup is not
synchronizing. Thus, we must verify the synchronization constraint for all pairs
of providers and clients.

Following previous work [2], we formulate constraints by extending the shared
types: Â ::= ⊥ | AS | � where ⊥ ≤ AS ≤ � for any AS. Intuitively, � indicates
a channel that has not been acquired yet (no constraints on a future release), AS

indicates the previous presentation of shared channels, and ⊥ indicates a channel

34 C. Sano et al.

that will never be available (hence, any client attempting to acquire from this
channel will never succeed and be blocked).

We are now ready to present the subsynchronizing judgment, interpreted
coinductively, which is of the form � (A,B, D̂) ssync for some A and B such
that A ≤ B. It asserts that a provider providing a channel of type A and a
client using that channel with type B is subsynchronizing with respect to some
constraint D̂. To verify a pair of types A and B to be subsynchronizing, we take
� as its initial constraint (recall that � represents no constraint), that is, we say
that A and B are subsynchronizing if � (A,B,�) ssync.

� (1, 1, D̂) ssync
S1

� (BL, B′
L, D̂) ssync

� (AL ⊗ BL, A′
L ⊗ B′

L, D̂) ssync
S⊗ � (BL, B′

L, D̂) ssync

� (AL � BL, A′
L � B′

L, D̂) ssync
S�

∀i ∈ l � (AiL, A′
iL, D̂) ssync

� (⊕{l:AL}, ⊕{l:A′
L, m:BL}, D̂) ssync

S⊕ ∀i ∈ l � (AiL, A′
iL, D̂) ssync

� (&{l:AL, m:BL}, &{l:A′
L}, D̂) ssync

S&

� (AL, A′
L, D̂) ssync

� (↑L
LAL, ↑L

LA′
L, D̂) ssync

S↑L
L

� (AL, A′
L, D̂) ssync

� (↓L
LAL, ↓L

LA′
L, D̂) ssync

S↓L
L

� (AL, A′
L, ↑S

LAL) ssync

� (↑S
LAL, ↑S

LA′
L, �) ssync

S↑S
L

� (AS, A′
S, �) ssync ↓S

LAS ≤ D̂

� (↓S
LAS, ↓S

LA′
S, D̂) ssync

S↓S
L

� (AL, A′
L, ↑S

LAL) ssync

� (↑S
LAL, ↑L

LA′
L, �) ssync

S↑S
L↑L

L

� (AS, A′
L, �) ssync ↓S

LAS ≤ D̂

� (↓S
LAS, ↓L

LA′
L, D̂) ssync

S↓S
L↓L

L

The general progression of derivations to verify that two types are subsyn-
chronizing is to first look for an upshift ↑S

L on the provider’s type, involving
either S↑S

L or S↑S
L↑L

L. After encountering a ↑S
L, it “records” the provider’s type

as the constraint and continues to look at the continuations of the types. When
encountering internal and external choices, it only requires the continuations for
the common branches to be subsynchronizing. When it encounters a downshift
↓S

L from the provider’s side, it checks if the release point as denoted by the con-
tinuation of ↓S

L is a subtype of the recorded constraint, in which case it continues
with the derivation with the � constraint.

Remark 3. Subsynchronizing is a strictly weaker constraint than equi-
synchronizing. In particular, if A is equi-synchronizing, then the pair A,A are
subsynchronizing.

6 Metatheory

In this section we present the progress and preservation theorems in a syn-
chronous message passing concurrent system implementing our type system. We
defer many of the technical details of the system and the proofs to our extended
report [20] which follows a similar style to the system in a previous work [2]. In
particular, the two theorems are equally strong as the ones in [2], justifying our
subtyping extension.

Manifestly Phased Communication via Shared Session Types 35

6.1 Process Typing

We take the typing judgment presented in Sect. 2.1 and extend it with shared
channels as introduced in Sect. 2.2:

Γ � P :: (aS:AS)
Γ ;Δ � Q :: (aL:AL)

where Γ = a1S:Â1, . . . , anS:Ân is a structural context of shared channels and
constraints (⊥ and �) which can appear at runtime.

The first judgment asserts that P provides a shared channel aS:AS while
using shared channels in Γ ; the lack of dependence on any linear channels Δ is
due to the independence principle presented in [2]. The second judgment asserts
that Q provides a linear channel aL:AL while using shared channels in Γ and
linear channels in Δ.

Forwarding is a fundamental operation that allows a process to identify its
offering channel with a channel it uses if the types match.

BL ≤ AL

Γ ; yL:BL � fwd xL yL :: (xL:AL)
IDL

B̂ ≤ AS

Γ, yS:B̂ � fwd xS yS :: (xS:AS)
IDS

B̂ ≤ AL

Γ, yS:B̂; · � fwd xL yS :: (xL:AL)
IDLS

The rules IDL and IDS require the offering channel to be a supertype of
the channel it is being identified with. Since we syntactically distinguish shared
channels and linear channels, we require an additional rule IDLS that allows
linear channels to be forwarded with a shared channel provided the subtyping
relation holds.

We also show the right rule of ⊗, which requires the provider to send a
channel yL alongside its offering channel xL:

A′
L ≤ AL Γ ; Δ � P :: (xL:BL)

Γ ; Δ, yL:A′
L � send xL yL; P :: (xL:AL ⊗ BL)

⊗R

Similar to the forwarding case, a shared channel can instead be sent if the
appropriate subtyping relation holds:

Â ≤ AL Γ, yS:Â; Δ � P :: (xL:BL)

Γ, yS:Â; Δ � send xL yS; P :: (xL:AL ⊗ BL)
⊗RS

One important observation is that typing judgments remain local in the pres-
ence of subtyping; the channels in Γ and Δ may be provided by processes at some
subtype (maintained in the configuration; see Sect. 6.3) and need not match. We
therefore do not adopt a general subsumption rule that allows arbitrary substi-
tutions that preserve subtyping and instead precisely manage where subtyping
occurs in the system.

36 C. Sano et al.

6.2 Processes and Configuration

To reason about session types and process calculi, we must consider a collection
of message passing processes, which is known as a configuration. In our system,
we split the configuration into the shared fragment Λ and the linear fragment
Θ, where Λ is a list of process predicates that offer shared channels and Θ is
similarly a list of process predicates that offer linear channels.

The most fundamental process predicate denotes a process term P that pro-
vides some channel a and is of form proc(a, P). We also introduce the predicate
unavail(aS), which represents a shared process that is unavailable to be acquired,
for example, due to it being acquired by another process, and connect(aL, bS),
which provides a linear reference aL to a shared channel bS, needed to express
shared to linear subtyping.

We require the linear configuration Θ to obey an ordering that processes
can only depend on processes that appear to its right; proc(aL, P),proc(bL, Q)
would be ill-formed if P depends on bL. On the other hand, Λ has no ordering
constraints. For the subsequent sections, we require that configurations are well-
formed, which essentially requires that both shared and linear processes provide
unique channel names thereby avoiding naming conflicts.

6.3 Configuration Typing

The configuration typing judgment asserts that a given configuration collectively
provides a set of shared and linear channels; each fragment is checked separately
as shown by the only typing rule for the combined configuration:

Γ |= Λ :: (Γ) Γ |= Θ :: (Δ)

Γ |= Λ; Θ :: (Γ ; Δ)
Ω

The shared context Γ appears on both sides due to circularity; the appearance
on the left side allows any processes to depend on a particular shared channel in
Γ while the appearance on the right side asserts that Λ collectively provides Γ .
In most cases, Â is some shared session type AS, but the maximal and minimal
types ⊥ and � can appear at runtime.

For the shared fragment, we check each process predicate independently; in
particular, a configuration typing rule for some proc(aS, P) is shown below.

� (A′
S, AS, �) ssync Γ � P :: (aS:A′

S)

Γ |= proc(aS, P) :: (aS:AS)
Λ3

An important point is that aS is of type AS in Γ and A′
S is only local to the

process typing judgment; thus, the provider P views the channel aS at type
A′

S while all clients view the channel aS at type AS. The subtyping relation
A′

S ≤ AS is subsumed by the subsynchronizing judgment � (A′
S, AS,�) ssync

which guarantees that the pair (A′
S, AS) is subsynchronizing.

A configuration typing rule for some (linear) proc(aL, P), Θ′ is shown below.

Manifestly Phased Communication via Shared Session Types 37

aS:Â ∈ Γ � (A′
L, AL, Â) ssync Γ ; Δa � P :: (aL:A′

L) Γ |= Θ′ :: (Δa, Δ′)

Γ |= proc(aL, P), Θ′ :: (a : AL, Δ′)
Θ3

Since P may use some linear channels Δa, we split the offering channels of Θ′

to Δa,Δ′ and make explicit that P will consume Δa. Similar to the shared
case, the process typing judgment (third premise) locally assumes aL is of type
A′

L such that A′
L ≤ AL (again, subsumed by the subsynchronizing judgment),

guaranteeing that a client of aL view the channel as type AL.

6.4 Dynamics

The operational semantics of the system is formulated through multiset rewrit-
ing rules [5], which is of form S1, . . . , Sn → T1, . . . , Tm, where each Si and Tj

corresponds to a process predicate. Each rule captures a transition in a subset
of the configuration; for example, the following is one of three rules that capture
the semantics of forwarding:

proc(aL, fwd aL bS) → connect(aL, bS) (D-FWDLS)

Connect predicates are consumed if a process acquires linearly on a channel that
is provided by a shared process. We first show how a shared process providing
some bS can be acquired:

proc(aL, xL ← acqS bS; P)

proc(bS, xL ← accS bS; Q)
→

proc(aL, [bL/xL]P),

proc(bL, [bL/xL]Q)
, unavail(bS) (D-↑S

L)

The rule says that a client can successfully acquire if there is a corresponding
accept by the provider. In the following rule, a connect predicate “coordinates”
the acquire/accept between different modes:

proc(aL, xL ← acqL bL; P)

proc(cS, xL ← accS cS; Q)
, connect(bL, cS) →

proc(aL, [cL/xL]P),

proc(cL, [cL/xL]Q)
, unavail(cS)

(D-↑S
L2)

6.5 Theorems

So far, we have incompletely introduced the statics [20, Appendix D] and the
dynamics [20, Appendix E] of the system, focusing on the interesting cases that
depart from the system presented in [2].

The preservation theorem, or session fidelity, guarantees that well-typed con-
figurations remain well-typed. In particular, this means that processes will always
adhere to the protocol denoted by the session type.

Theorem 1 (Preservation). If Γ |= Λ;Θ :: (Γ ;Δ) for some Λ,Θ, Γ, and Δ,
and Λ;Θ → Λ′;Θ′ for some Λ′;Θ′, then Γ ′ |= Λ′;Θ′ :: (Γ ′;Δ) where Γ ′
 Γ .

38 C. Sano et al.

Proof. By induction on the dynamics and constructing a well-typed configu-
ration for each case. See [20, Appendix F] for the detailed proof, covering all
cases.

The Γ ′
 Γ captures the idea that the configuration can gain additional shared
processes and that the types of shared channels can become smaller. For example,
if a process spawns an additional shared process, then the configuration will gain
an additional channel in Γ and if a shared channel is released to a smaller type,
the type of the shared channel in Γ can become smaller. Note that although it is
indeed true that linear processes can be spawned, it will never appear in Δ since
the linear channel that the newly spawned process offers must be consumed by
the process that spawned the channel, meaning Δ is unchanged.

The progress theorem is as in [2], where we only allow configurations to be
stuck due to failure of some client to acquire, for example, due to deadlock.
A poised process [2,17] is one that is currently trying to communicate across
its offering channel and is analogous to the role of values in typical functional
languages. Both shared and linear configurations are poised if and only if all its
processes are trying to communicate across its offering channel.

Theorem 2 (Progress). If Γ |= Λ;Θ :: (Γ ;Δ) then either:

1. Λ;Θ → Λ′;Θ for some Λ′ or
2. Λ is poised and one of:

(a) Λ;Θ → Λ′;Θ′ or
(b) Θ is poised or
(c) a linear process in Θ is unable stuck and therefore unable to acquire

Proof. By induction on the typing of the configuration Λ;Θ. We begin by induc-
tion on the typing of Λ to prove either (1) or Λ is poised. After, we prove (2) by
induction on the typing of Θ while assuming Λ is poised. See [20, Appendix G]
for the detailed proof.

Remark 4. Another paper [3] introduces additional static restrictions to allow
a stronger and more common notion of progress, which are orthogonal to our
results. Adopting this extension to the system we present here would give the
usual notion of progress with deadlock freedom.

7 Related Work

Our paper serves as an extension to the manifest sharing system defined in [2] by
introducing a notion of subtyping to the system which allows us to statically relax
the equi-synchronizing constraint. Early glimpses of subtyping can be seen in the
previous system with the introduction of ⊥ and � as the minimal and maximal
constraints, which happened to be compatible with our subtyping relation.

Subtyping for session types was first proposed by Gay and Hole [11], and
a slightly modified style of session types guided from the correspondence with
intuitionistic linear logic was given a subtyping extension [1]. Both these papers

Manifestly Phased Communication via Shared Session Types 39

do not investigate the more recently discovered modal shifts, which is our con-
tribution to the subtyping front.

There have also been many recent developments in subtyping in the context
of multiparty session types [6,7,12,13], which are a different class of type sys-
tems that describe protocols between an arbitrary number of participants from a
neutral global point of view. Understanding the relation of our subtyping system
to these systems is an interesting item for future work.

8 Conclusion

We propose a subtyping extension to a message passing concurrency program-
ming language introduced in previous work [2] and showed examples highlighting
the expressiveness that this new system provides. Throughout the paper, we fol-
low two important principles, substitutability and ignorance is bliss, which gave
a rich type system that in particular allows phases (in a shared setting) to be
manifest in the type.

One immediate application of shared subtyping is that combined with refine-
ment types [9,10], it can encode finer specifications of protocols. For example
in the auction scenario, we can statically show that each client that does not
win a bid gets refunded precisely the exact amount of money it bid. Without
shared to linear subtyping, specifications of shared communication across mul-
tiple acquire-release cycles were not possible.

A future work in a more theoretical platform is to extend the setting to adjoint
logic [18], which provides a more general framework of reasoning about modal
shifts in a message passing system. In particular, we found that affine session
types, where contraction (aliasing) is rejected, have immediate applications.

Acknowledgements. We would like to thank the anonymous reviewers for feedback
on the initially submitted version of this paper.

References

1. Acay, C., Pfenning, F.: Intersections and unions of session types. In: Kobayashi,
N. (ed.) 8th Workshop on Intersection Types and Related Systems (ITRS 2016),
EPTCS 242, Porto, Portugal, pp. 4–19, June 2016

2. Balzer, S., Pfenning, F.: Manifest sharing with session types. In: International
Conference on Functional Programming (ICFP), pp. 37:1–37:29. ACM, September
2017. Extended version available as Technical Report CMU-CS-17-106R, June 2017

3. Balzer, S., Toninho, B., Pfenning, F.: Manifest deadlock-freedom for shared session
types. In: Caires, L. (ed.) ESOP 2019. LNCS, vol. 11423, pp. 611–639. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-17184-1 22

4. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4 16

5. Cervesato, I., Scedrov, A.: Relating state-based and process-based concurrency
through linear logic. Inf. Comput. 207(10), 1044–1077 (2009)

https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-642-15375-4_16

40 C. Sano et al.

6. Chen, T.c., Dezani-Ciancaglini, M., Scalas, A., Yoshida, N.: On the preciseness of
subtyping in session types. Log. Methods Comput. Sci. 13(2) (2017). https://doi.
org/10.23638/LMCS-13(2:12)2017

7. Chen, T.C., Dezani-Ciancaglini, M., Yoshida, N.: On the preciseness of subtyping
in session types. In: Proceedings of the Conference on Principles and Practice of
Declarative Programming (PPDP 2014), Canterbury, UK. ACM, September 2014

8. Crary, K., Harper, R., Puri, S.: What is a recursive module? In: In SIGPLAN
Conference on Programming Language Design and Implementation, pp. 50–63.
ACM Press (1999)

9. Das, A., Balzer, S., Hoffmann, J., Pfenning, F., Santurkar, I.: Resource-aware ses-
sion types for digital contracts. In: Küsters, R., Naumann, D. (eds.) 34th Computer
Security Foundations Symposium (CSF 2021), Dubrovnik, Croatia. IEEE (June
2021, to appear)

10. Das, A., Pfenning, F.: Session types with arithmetic refinements. In: Konnov, I.,
Kovács, L. (eds.) 31st International Conference on Concurrency Theory (CONCUR
2020), LIPIcs, Vienna, Austria, vol. 171, pp. 13:1–13:18, September 2020

11. Gay, S.J., Hole, M.: Subtyping for session types in the π-calculus. Acta Informatica
42(2–3), 191–225 (2005)

12. Ghilezan, S., Jakšić, S., Pantović, J., Scalas, A., Yoshida, N.: Precise subtyping for
synchronous multiparty sessions. J. Log. Algebr. Methods Program. 104, 127–173
(2019). https://doi.org/10.1016/j.jlamp.2018.12.002

13. Ghilezan, S., Pantović, J., Prokić, I., Scalas, A., Yoshida, N.: Precise subtyping for
asynchronous multiparty sessions (2020)

14. Griffith, D.: Polarized substructural session types. Ph.D. thesis, University of Illi-
nois at Urbana-Champaign (2015, in preparation)

15. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57208-2 35

16. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

17. Pfenning, F., Griffith, D.: Polarized substructural session types. In: Pitts, A. (ed.)
FoSSaCS 2015. LNCS, vol. 9034, pp. 3–22. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46678-0 1

18. Pruiksma, K., Pfenning, F.: A message-passing interpretation of adjoint logic. In:
Martins, F., Orchard, D. (eds.) Workshop on Programming Language Approaches
to Concurrency and Communication-Centric Software (PLACES), EPTCS 291,
Prague, Czech Republic, pp. 60–79, April 2019

19. Sano, C.: On Session Typed Contracts for Imperative Languages. Masters thesis,
Carnegie Mellon University, December 2019. Available as Technical Report CMU-
CS-19-133, December 2019

20. Sano, C., Balzer, S., Pfenning, F.: Manifestly phased communication via shared
session types. CoRR abs/2101.06249 (2021). https://arxiv.org/abs/2101.06249

21. Toninho, B.: A logical foundation for session-based concurrent computation. Ph.D.
thesis, Carnegie Mellon University and Universidade Nova de Lisboa, May 2015.
Available as Technical Report CMU-CS-15-109

22. Wadler, P.: Propositions as sessions. In: Proceedings of the 17th International
Conference on Functional Programming (ICFP 2012), Copenhagen, Denmark, pp.
273–286. ACM Press, September 2012

https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-662-46678-0_1
https://doi.org/10.1007/978-3-662-46678-0_1
https://arxiv.org/abs/2101.06249

	Manifestly Phased Communication via Shared Session Types
	1 Introduction
	2 Background
	2.1 Linear Session Types
	2.2 Shared Session Types

	3 Equi-Synchronizing Rules Out Phasing
	4 Subtyping
	5 Phasing
	5.1 Subsynchronizing Constraint

	6 Metatheory
	6.1 Process Typing
	6.2 Processes and Configuration
	6.3 Configuration Typing
	6.4 Dynamics
	6.5 Theorems

	7 Related Work
	8 Conclusion
	References

