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Abstract

Decidability of definitional equality and conversion of terms into canonical form play a central role
in the meta-theory of a type-theoretic logical framework. Most studies of definitional equality are
based on a confluent, strongly-normalizing notion of reduction. Coquand has considered a different
approach, directly proving the correctness of a practical equivalence algorithm based on the shape
of terms. Neither approach appears to scale well to richer languages with unit types or subtyping,
and neither directly addresses the problem of conversion to canonical form.
In this paper we present a new, type-directed equivalence algorithm for the LF type theory that
overcomes the weaknesses of previous approaches. The algorithm is practical, scales to more ex-
pressive languages, and yields a new notion of canonical form sufficient for adequate encodings of
logical systems. The algorithm is proved complete by a Kripke-style logical relations argument
similar to that suggested by Coquand. Crucially, both the algorithm itself and the logical relations
rely only on the shapes of types, ignoring dependencies on terms.
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1 Introduction

At present the mechanization of constructive reasoning relies almost entirely on type theories of
various forms. The principal reason is that the computational meaning of constructive proofs is an
integral part of the type theory itself. The main computational mechanism in such type theories is
reduction, which has therefore been studied extensively.

For logical frameworks the case for type theoretic meta-languages is also compelling, since
they allow us to internalize deductions as objects. The validity of a deduction is then verified
by type-checking in the meta-language. To ensure that proof checking remains decidable under
this representation, the type checking problem for the meta-language must also be decidable. To
support deductive systems of practical interest, the type theory must support dependent types, that
is, types that depend on objects.

The correctness of the representation of a logic in type theory is given by an adequacy theorem
that correlates the syntax and deductions of the logic with canonical forms of suitable type. To
establish a precise correspondence, canonical forms are taken to be β-normal, η-long forms. In
particular, it is important that canonical forms enjoy the property that constants and variables of
higher type are “fully applied” — that is, each occurrence is applied to enough arguments to reach
a base type.

Thus we see that the methodology of logical frameworks relies on two fundamental meta-
theoretic results: the decidability of type checking, and the existence of canonical forms. For
many type theories the decidability of type checking is easily seen to reduce to the decidability of
definitional equality of types and terms. Therefore we focus attention on the decision problem for
definitional equality and on the conversion of terms to canonical form.

Traditionally, both problems have been treated by considering normal forms for β, and possibly
η, reduction. If we take definitional equality to be conversion, then its decidability follows from
confluence and strong normalization for the corresponding notion of reduction. In the case of
β-reduction this approach to deciding definitional equality works well, but for βη-reduction the
situation is much more complex. In particular, βη-reduction is confluent only for well-typed terms,
and subject reduction depends on strengthening, which is difficult to prove directly.

These technical problems with βη-reduction have been addressed in work by Salvesen [Sal90],
Geuvers [Geu92] and later with a different method by Goguen [Gog99], but nevertheless several
problems remain. First, canonical forms are not βη-normal forms and so conversion to canonical
form must be handled separately. Second, the algorithms implicit in the reduction-based accounts
are not practical; if two terms are not definitionally equal, we can hope to discover this without
reducing both to normal form. Third, the approach does not appear to scale to richer theories such
as those including unit types or subtyping.

These problems were side-stepped in the original paper on the LF logical framework [HHP93]
by restricting attention to β-conversion for definitional equality. This is sufficient if we also restrict
attention to η-long forms [FM90, Cer96]. This restriction is somewhat unsatisfactory, especially in
linear variants of LF [CP98].

More recently, η-expansion has been studied in its own right, using modification of standard
techniques from rewriting theory to overcome the lack of strong normalization when expansion is
not restricted [JG95, Gha97]. In the dependently typed case, even the definition of long normal
form is not obvious [DHW93] and the technical development is fraught with difficulties. We have
not been able to reconstruct the proofs in [Gha97] and the development in [Vir99] relies on a
complex intermediate system with annotated terms.

To address the problems of practicality, Coquand suggested abandoning reduction-based treat-
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ments of definitional equality in favor of a direct presentation of a practical equivalence algo-
rithm [Coq91]. Coquand’s approach is based on analyzing the “shapes” of terms, building in the
principle of extensionality instead of relying on η-reduction or expansion. This algorithm improves
on reduction-based approaches by avoiding explicit computation of normal forms, and allowing for
early termination in the case that two terms are determined to be inequivalent. However, Co-
quand’s approach does not address the problem of computing canonical forms, nor can it be easily
extended to richer type theories such as those with unit types. In both cases the problem can be
traced to the reliance on the shape of terms, rather than on their classifying types, to guide the
algorithm. For example, if x and y are two variables of unit type, they are definitionally equal, but
are structurally distinct; moreover, their canonical forms would be the sole element of unit type.

In this paper we present a new type-directed algorithm for testing equality for a dependent type
theory in the presence of β and η-conversion, which generalizes the algorithm for the simply-typed
case in [Pfe92]. We prove its correctness directly via logical relations. The essential idea is that we
can erase dependencies when defining the logical relation, even though the domain of the relation
contains dependently typed terms. This makes the definition obviously well-founded. Moreover,
it means that the type-directed equality-testing algorithm on dependently typed terms requires
only simple types. Consequently, transitivity of the algorithm is an easy property, which we were
unable to obtain without this simplifying step. Soundness and completeness of the equality-testing
algorithm yields the decidability of the type theory rather directly.

Another advantage of our approach is that it can be easily adapted to support adequacy proofs
using a new notion of quasi-canonical forms, that is, canonical forms without type labels on λ-
abstractions. We show that quasi-canonical forms of a given type are sufficient to determine the
meaning of an object, since the type labels can be reconstructed (up to definitional equality) from
the classifying type. Interestingly, recent research on dependently typed rewriting [Vir99] has also
isolated equivalence classes of terms modulo conversion of the type labels as a critical concept.

While it is beyond the scope of this paper, we believe our construction is robust with respect
to extension of the type theory with products, unit, linearity, subtyping and similar complicating
factors. The reason is the flexibility of type-directed equality in the simply-typed case and the
harmony between the definition of the logical relation and the algorithm, both of which are based
on the erased types.

2 A Variant of the LF Type Theory

Syntactically, our formulation of the LF type theory follows the original proposal by Harper, Honsell
and Plotkin [HHP93], except that we omit type-level λ-abstraction. This simplifies the proof of
the soundness theorem considerably, since we can prove the injectivity of products (Lemma 11)
at an early stage. In practice, this restriction has no impact since types in normal form never
contain type-level λ-abstractions. In compensation for the omission of type-level λ-abstractions,
we augment the type theory with a functionality rule stating that families respect equality in
their free variables. The functionality rule for families is derivable in the presence of family-level
abstractions, but appears to be essential in their absence.
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2.1 Syntax

Kinds K ::= type | Πx:A. K
Families A ::= a | AM | Πx:A1. A2

Objects M ::= c | x | λx:A. M | M1M2

Signatures Σ ::= · | Σ, a:K | Σ, c:A
Contexts Γ ::= · | Γ, x:A

We use K for kinds, A,B, C for type families, M,N,O for objects, Γ,Ψ for contexts and Σ for
signatures. We also use the symbol “kind” to classify the valid kinds. We consider terms that differ
only in the names of their bound variables as identical. We write [N/x]M , [N/x]A and [N/x]K for
capture-avoiding substitution. Signatures and contexts may declare each constant and variable at
most once. For example, when we write Γ, x:A we assume that x is not already declared in Γ. If
necessary, we tacitly rename x before adding it to the context Γ.

2.2 Substitutions

In the logical relations argument, we require a notion of simultaneous substitution.

Substitutions σ ::= · | σ,M/x

We assume that no variable is defined more than once in any substitution which can be achieved
by appropriate renaming where necessary. We do not develop a notion and theory of well-typed
substitutions, since it is unnecessary for our purposes. However, when applying a substitution σ
to a term M we maintain the invariant that all free variables in M occur in the domain of σ, and
similarly for families and kinds.

We write idΓ for the identity substitution on the context Γ. We use the notation M [σ], A[σ]
and K[σ] for the simultaneous substitution by σ into an object, family, or kind. It is defined by
simultaneous induction on the structure of objects, families, and kinds.

x[σ] = M where M/x in σ
c[σ] = c

(λx:A. M)[σ] = λx:A[σ]. M [σ, x/x]
(M N )[σ] = M [σ]N [σ]

a[σ] = a

(AM)[σ] = A[σ]M [σ]
(Πx:A. B)[σ] = Πx:A[σ]. B[σ, x/x]

type[σ] = type
(Πx:A. K)[σ] = Πx:A[σ]. K[σ, x/x]

Extending the substitution σ to (σ, x/x) may require some prior renaming of the variable x in order
to satisfy our assumption on substitutions.
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2.3 Judgments

The LF type theory is defined by the following judgments.

` Σ sig Σ is a valid signature

Σ̀ Γ ctx Γ is a valid context

Γ Σ̀ M : A M has type A
Γ Σ̀ A : K A has type K
Γ Σ̀ K : kind K is a valid kind

Γ Σ̀ M = N : A M equals N at type A
Γ Σ̀ A = B : K A equals B at kind K

Γ Σ̀ K = L : kind K equals L

For the judgment Σ̀ Γ ctx we presuppose that Σ is a valid signature. For the remaining
judgments of the form Γ Σ̀ J we presuppose that Σ is a valid signature and that Γ is valid in Σ.
For the sake of brevity we omit the signature Σ from all judgments but the first, since it does not
change throughout a derivation.

If J is a typing or equality judgment, then we write J[σ] for the obvious substitution of J by
σ. For example, if J is M : A, then J[σ] stands for the judgment M [σ] : A[σ].

2.4 Typing Rules

Our formulation of the typing rules is similar to the second version given in [HHP93]. In preparation
for the various algorithms we presuppose and inductively preserve the validity of contexts involved
in the judgments, instead of checking these properties at the leaves. This is a matter of expediency
rather than necessity.

Signatures

` · sig
` Σ sig · Σ̀ K : kind

` Σ, a:K sig

` Σ sig · Σ̀ A : type

` Σ, c:A sig

From now on we fix a valid signature Σ and omit it from the judgments.

Contexts

` Γ ctx

` Γ ctx Γ ` A : type

` Γ, x:A ctx

From now on we presuppose that all contexts in judgments are valid, instead of checking it
explicitly. This means, for example, that we have to verify the validity of the type labels in λ-
abstractions before adding them to the context.
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Objects

x:A in Γ

Γ ` x : A

c:A in Σ

Γ ` c : A

Γ `M1 : Πx:A2. A1 Γ `M2 : A2

Γ `M1M2 : [M2/x]A1

Γ ` A1 : type Γ, x:A1 `M2 : A2

Γ ` λx:A1. M2 : Πx:A1. A2

Γ `M : A Γ ` A = B : type

Γ `M : B

Families

a:K in Σ

Γ ` a : K

Γ ` A : Πx:B. K Γ `M : B

Γ ` AM : [M/x]K

Γ ` A1 : type Γ, x:A1 ` A2 : type

Γ ` Πx:A1. A2 : type

Γ ` A : K Γ ` K = L : kind

Γ ` A : L

Kinds

Γ ` type : kind

Γ ` A : type Γ, x:A ` K : kind

Γ ` Πx:A. K : kind

2.5 Definitional Equality

The rules for definitional equality are written with the presupposition that a valid signature Σ is
fixed and that all contexts Γ are valid. The intent is that equality implies validity of the objects,
families, or kinds involved (see Lemma 7). In contrast to the original formulation in [HHP93],
equality is based on a notion of parallel conversion plus extensionality, rather then βη-conversion.
We believe this is a robust foundation, easily transferred to richer and more complicated type
theories.

Characteristically for parallel conversion, reflexivity is admissible (Lemma 2) which significantly
simplifies the completeness proof for the algorithm to check equality. Similarly, the somewhat
unwieldy congruence rule for λ-abstraction can be derived from the general extensionality principle,
once validity has been established (Lemma 8). We enclose the admissible rules are in [brackets].
Some of the typing premises in the rules are redundant, but for technical reasons we cannot prove
this until validity has been established. Such premises are enclosed in {braces}. Alternatively, it
may be sufficient to check validity of the contexts at the leaves of the derivations (the cases for
variables and constants), a technique used both in the original presentation of LF [HHP93] and
Pure Type Systems [Bar92].

The main departure from standard presentations is an explicit rule of functionality at the level of
type families. It expresses that if M = N and B = C with a free variable x then [M/x]B = [N/x]C
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(taking equality here as definitional equality). In the presence of a family-level λ-abstraction, this
can be derived from β-conversion and congruence: [M/x]B = (λx. B)M = (λx. C)N = [N/x]C. It
seems to be difficult to recover this property when no type-level λ-abstractions are present. Adding
the rule as a primitive does not disturb the completeness proof (the rule is easily validated by the
logical relations) and makes the soundness proof direct, since we can prove validity (Lemma 7) by
syntactic means.

Adding a family-level λ-abstraction is another choice. However, we were then unable to prove
the injectivity of products (Lemma 11) before the soundness theorem (Theorem 27) in whose proof
it is required.

Simultaneous Congruence

x:A in Γ

Γ ` x = x : A

c:A in Σ

Γ ` c = c : A

Γ `M1 = N1 : Πx:A2. A1 Γ `M2 = N2 : A2

Γ `M1M2 = N1N2 : [M2/x]A1[
Γ ` A′1 = A1 : type Γ ` A′′1 = A1 : type Γ, x:A1 `M2 = N2 : A2

Γ ` λx:A′1. M2 = λx:A′′1. N2 : Πx:A1. A2

]

Extensionality

Γ ` A1 : type {Γ `M : Πx:A1. A2} {Γ ` N : Πx:A1. A2} Γ, x:A1 `M x = N x : A2

Γ `M = N : Πx:A1. A2

Parallel Conversion

{Γ ` A1 : type} Γ, x:A1 `M2 = N2 : A2 Γ `M1 = N1 : A1

Γ ` (λx:A1. M2)M1 = [N1/x]N2 : [M1/x]A2

Equivalence

Γ `M = N : A

Γ ` N = M : A

Γ `M = N : A Γ ` N = O : A

Γ `M = O : A[
Γ `M : A

Γ `M = M : A

]
Type Conversion

Γ `M = N : A Γ ` A = B : type

Γ `M = N : B
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Family Congruence

a:K in Σ

Γ ` a = a : K

Γ ` A = B : Πx:C. K Γ `M = N : C

Γ ` AM = BN : [M/x]K

Γ ` A1 = B1 : type {Γ ` A1 : type} Γ, x:A1 ` A2 = B2 : type

Γ ` Πx:A1. A2 = Πx:B1. B2 : type

Family Equivalence

Γ ` A = B : K

Γ ` B = A : K

Γ ` A = B : K Γ ` B = C : K

Γ ` A = C : K[
Γ ` A : K

Γ ` A = A : K

]
Family Functionality

Γ `M = N : A ` Γ, x:A,Γ′ ctx Γ, x:A,Γ′ ` B = C : K

Γ, [M/x]Γ′ ` [M/x]B = [N/x]C : [M/x]K

Kind Conversion

Γ ` A = B : K Γ ` K = L : kind

Γ ` A = B : L

Kind Congruence

Γ ` type = type : kind

Γ ` A = B : type {Γ ` A : type} Γ, x:A ` K = L : kind

Γ ` Πx:A. K = Πx:B. L : kind

Kind Equivalence

Γ ` K = L : kind

Γ ` L = K : kind

Γ ` K = L : kind Γ ` L = L′ : kind

Γ ` K = L′ : kind[
Γ ` K : kind

Γ ` K = K : kind

]
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2.6 Elementary Properties of Typing and Definitional Equality

We establish some elementary properties of the judgments pertaining to the interpretation of con-
texts. There is an alternative route to these properties by first introducing a notion of substitution
and well-typed substitution.

First we establish weakening for all judgments of the type theory. We use J to stand for any of
the relevant judgments of the type theory in order to avoid repetitive statements. We extend the
notation of substitution to all judgments of the type theory in the obvious way. For example, if J
is N : B then [M/x]J is [M/x]N : [M/x]J.

Lemma 1 (Weakening) If Γ,Γ′ ` J then Γ, x:A,Γ′ ` J.

Proof: By straightforward induction over the structure of the given derivation. 2

Note that exchange for independent hypotheses and contraction are also admissible, but we
elide the statement of these properties here since they are not needed for the results in this paper.
Next we show that reflexivity is admissible.

Lemma 2 (Reflexivity)

1. If Γ `M : A then Γ `M = M : A.

2. If Γ ` A : K then Γ ` A = A : K.

3. If Γ ` K : kind then Γ ` K = K : kind.

Proof: By inductions over the structure of the given derivations. In each case the result follows im-
mediately from the available induction hypotheses, except for λ-abstraction since no corresponding
congruence rule is available. We only show this case.

Case:

Γ ` A1 : type Γ, x:A1 `M2 : A2

Γ ` λx:A1. M2 : Πx:A1. A2

Γ, x:A1 `M2 = M2 : A2 By ind. hyp.
Γ, x′:A1 ` [x′/x]M2 = [x′/x]M2 : [x′/x]A2 By renaming
Γ, x:A1, x

′:A1 ` [x′/x]M2 = [x′/x]M2 : [x′/x]A2 By weakening
Γ, x:A1 ` x = x By rule (variable equality)
Γ, x:A1 ` (λx′:A1. [x

′/x]M2) x = [x/x′][x′/x]M2 : [x/x′][x′/x]A2 By rule (parallel conversion)
Γ, x:A1 ` (λx′:A1. [x

′/x]M2) x = M2 : A2 By definition of substitution
Γ, x:A1 `M2 = (λx′:A1. [x

′/x]M2) x : A2 By rule (symmetry)
Γ, x:A1 ` (λx′:A1. [x

′/x]M2) x = (λx′:A1. [x
′/x]M2) x : A2 By rule (transitivity)

Γ ` A1 : type Assumption
Γ ` (λx′:A1. [x

′/x]M2) : Πx:A1. A2 By renaming from assumption
Γ ` (λx′:A1. [x

′/x]M2) = (λx′:A1. [x
′/x]M2) : Πx:A1. A2 By rule (extensionality)

Γ ` (λx:A1. M2) = (λx:A1. M2) : Πx:A1. A2 By renaming

2
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Next we prove the substitution property. Normally, this is an entirely straightforward induction
over the structure of the given derivations. However, in our case the functionality rule upsets this
strategy at level of families. Instead we use this rule directly together with reflexivity to prove the
substitution property for families.

Lemma 3 (Substitution Property for Typing and Definitional Equality)
Assume Γ, x:A,Γ′ is a valid context. If Γ `M : A and Γ, x:A,Γ′ ` J then Γ, [M/x]Γ′ ` [M/x]J.

Proof: By straightforward inductions over the structure of the given derivations, with the exception
of substitution into family-level equality rules. This case follows immediately by reflexivity and the
rule of functionality at the level of families.

Case: The judgment J has the form B = C : K.

Γ `M : A Assumption
Γ `M = M : A By reflexivity
` (Γ, x:A,Γ′) ctx Assumption
Γ ` A : type and
Γ, x:A ` Γ′ ctx By inversion on ` − ctx
Γ, x:A,Γ′ ` B = C : K Assumption
Γ, [M/x]Γ′ ` [M/x]B = [M/x]C : [M/x]K By rule (family functionality)

2

The next lemma applies in a number of the proofs in the remainder of this section.

Lemma 4 (Context Conversion) Assume Γ, x:A is a valid context and Γ ` B : type.
If Γ, x:A ` J and Γ ` A = B : type then Γ, x:B ` J.

Proof: Direct, taking advantage of the structural properties.

Γ, x:B ` x : B By rule (variable)
Γ ` B = A : type By symmetry from assumption
Γ, x:B ` x : A By rule (type conversion)
Γ, x′:A ` [x′/x]J By renaming from assumption
Γ, x:B, x′:A ` [x′/x]J By weakening
Γ, x:B ` [x/x′][x′/x]J By substitution property
Γ, x:B ` J By definition of substitution

2

Lemma 5 (Typing Inversion)

1. If Γ ` x : A then x:B in Γ and Γ ` A = B : type for some B.

2. If Γ ` c : A then c:B in Γ and Γ ` A = B : type for some B.

3. If Γ ` M1 M2 : A then Γ ` M1 : Πx:A2. A1, Γ ` M2 : A2 and Γ ` [M2/x]A1 = A : type for
some A1 and A2.

4. If Γ ` λx:A. M : B, then Γ ` B = Πx:A. A′ : type, Γ ` A : type, and Γ, x:A `M : A′.
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5. If Γ ` Πx:A1. A2 : type then Γ ` A1 : type and Γ, x:A1 ` A2 : type.

6. If Γ ` a : K, then a:L in Σ and Γ ` K = L : kind for some L.

7. If Γ ` AM : K, then Γ ` A : Πx:A1. K2, Γ `M : A1, and Γ ` K = [M/x]K2 : kind.

8. If Γ ` Πx:A1. K2 : kind, then Γ ` A1 : type and Γ, x:A1 ` K2 : kind.

Proof: By a straightforward induction on typing derivations. 2

Besides typing inversion, we require functionality at the level of kinds, which is easily seen to
be admissible.

Lemma 6 (Kind Functionality) Assume ` Γ, x:A,Γ′ ctx.
If Γ `M = N : A and Γ, x:A,Γ′ ` K = L : kind then Γ, [M/x]Γ′ ` [M/x]K = [N/x]L : kind.

Proof: By a straightforward induction on the derivation of Γ, x:A,Γ′ ` K = L : kind, appealing
to the rule of functionality for families in the congruence case for dependent product kinds. 2

For the statement of validity, recall our general assumption that all signatures are valid.

Lemma 7 (Validity) Assume Γ is a valid context.

1. If Γ `M : A then Γ ` A : type.

2. If Γ `M = N : A, then Γ `M : A, Γ ` N : A, and Γ ` A : type.

3. If Γ ` A : K, then Γ ` K : kind.

4. If Γ ` A = B : K, then Γ ` A : K, Γ ` B : K, and Γ ` K : kind.

5. If Γ ` K = L : kind, then Γ ` K : kind and Γ ` L : kind.

Proof: By a straightforward simultaneous induction on derivations. The family functionality rule
is required to handle the case of applications of objects to objects, the kind functionality lemma
for the applications of families to objects. The typing premises on the rule of extensionality ensure
that strengthening is not required.

Case:

E =

E1
Γ `M1 = N1 : Πx:A2. A1

E2

Γ `M2 = N2 : A2

Γ `M1M2 = N1N2 : [M2/x]A1

Γ `M1 : Πx:A2. A1

Γ ` N1 : Πx:A2. A1

Γ ` Πx:A2. A1 : type by i.h. on E1

Γ `M2 : A2

Γ ` N2 : A2

Γ ` A2 : type by i.h. on E2

Γ, x:A2 ` A1 : type by inversion
Γ ` [M2/x]A1 : type by substitution

11



Γ `M1M2 : [M2/x]A1 by rule
Γ ` N1N2 : [N2/x]A1 by rule
Γ ` [M2/x]A1 = [N2/x]A1 : type by functionality
Γ ` N1N2 : [M2/x]A1 by symmetry and type conversion

2

With the central validity property, we can show a few other syntactic results. The first of these
is that the natural congruence rule for λ-abstraction is admissible. We do not need this property
later.

Lemma 8 (Functional Congruence) The rule

Γ ` A′1 = A1 : type Γ ` A′′1 = A1 : type Γ, x:A1 `M2 = N2 : A2

Γ ` λx:A′1. M2 = λx:A′′1. N2 : Πx:A1. A2

is admissible.

Proof: Direct, using extensionality and parallel conversion. The validity lemma is required in
order to assemble the typing premises of extensionality and parallel conversion. 2

We can now show that some of the typing premises in the inference rules are redundant.

Lemma 9 (Redundancy of Typing Premises) The indicated typing premises in the rules of
parallel conversion, family congruence, and type congruence are redundant.

Proof: Straightforward from validity. 2

Lemma 10 (Equality Inversion) Assume Γ is a valid context.

1. If Γ ` K = type : kind or Γ ` type = K : kind then K = type.

2. If Γ ` K = Πx:B1. L2 : kind or Γ ` Πx:B1. L2 = K : kind then K = Πx:A1. K2 such that
Γ ` A1 = B1 : type and Γ, x:A1 ` K2 = L2 : kind.

3. If Γ ` A = Πx:B1. B2 : type or Γ ` Πx:B1. B2 = A : type then A = Πx:A1. A2 for some A1

and A2 such that Γ ` A1 = B1 : type and Γ, x:A1 ` A2 = B2 : type.

Proof: By induction on the given equality derivations. There are some subtle points in the proof
of part 3, so we show three cases. Note that adding a family-level λ would prevent proving this
result at such an early stage. The case where the last inference was family functionality shows that
we cannot restrict this rule to an empty inner context Γ′.

Case:

E =

E1

Γ ` A = C : type
E2

Γ ` C = Πx:B1. B2 : type

Γ ` A = Πx:B1. B2 : type
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C = Πx:C1. C2 for some C1 and C2 such that
Γ ` C1 = B1 : type and
Γ, x:C1 ` C2 = B2 : type By i.h. (3) on E2

A = Πx:A1. A2 for some A1 and A2 such that
Γ ` A1 = C1 : type and
Γ, x:A1 ` A2 = C2 : type By i.h. (3) on E1

Γ ` A1 = B1 : type By rule (transitivity)
Γ, x:A1 ` C2 = B2 : type By context conversion (Lemma 4)
Γ, x:A1 ` A2 = B2 : type By rule (transitivity)

Case:

E =

E1

Γ ` A = Πx:B1. B2 : K
E2

Γ ` K = type : kind

Γ ` A = Πx:B1. B2 : type

K = type By i.h. (1) on E2

A = Πx:A1. A2 for some A1 and A2 such that
Γ ` A1 = B1 : type and
Γ, x:A1 ` A2 = B2 : type By i.h. (3) on E1

Case:

E =

E1

Γ′ `M = N : C
T ′′

` Γ′, x:C,Γ′′ ctx
E2

Γ′, y:C,Γ′′ ` A′ = B′ : type

Γ′, [M/y]Γ′′ ` [M/y]A′ = [N/y]B′ : type

Γ = Γ′, [M/y]Γ′′,
A = [M/y]A′, and
Πx:B1. B2 = [N/y]B′ Assumption
B′ = Πx:B′1. B

′
2 where B1 = [N/y]B′1 and B2 = [N/y]B′2 By defn. of substitution

A′ = Πx:A′1. A
′
2,

Γ′, y:C,Γ′′ ` A′1 = B′1 : type, and
Γ′, y:C,Γ′′, x:A′1 ` A′2 = B′2 : type By i.h. (3) on E2

A = Πx:[M/y]A′1. [M/y]A′2 By defn. of substitution
Γ′, y:C ` (Γ′′, x:A′1) ctx By validity (Lemma 7)
Γ′, [M/y]Γ′′ ` [M/y]A′1 = [N/y]B′1 : type By rule (functionality)
Γ′, [M/y]Γ′′, x:[M/y]A′1 ` [M/y]A′2 = [N/y]B′2 : type By rule (functionality)

2

Lemma 11 (Injectivity of Products)

1. If Γ ` Πx:A1. A2 = Πx:B1. B2 : type then Γ ` A1 = B1 : type and Γ, x:A1 ` A2 = B2 : type.

2. If Γ ` Πx:A1. K2 = Πx:B1. L2 : kind then Γ ` A1 = B1 : type and Γ, x:A1 ` K2 = L2 : kind.

Proof: Immediate by equality inversion (Lemma 10). 2
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3 Algorithmic Equality

The algorithm for deciding equality can be summarized as follows:

1. When comparing objects at function type, apply extensionality.

2. When comparing objects at base type, reduce both sides to weak head-normal form and then
compare heads directly and, if they are equal, each corresponding pair of arguments according
to their type.

Since this algorithm is type-directed in case (1) we need to carry types. Unfortunately, this makes
it difficult to prove correctness of the algorithm in the presence of dependent types, because tran-
sitivity is not an obvious property. The informal description above already contains a clue to the
solution: we do not need to know the precise type of the objects we are comparing, as long as we
know that they are functions.

We therefore define a calculus of simple types and an erasure function ()− that eliminates
dependencies for the purpose of this algorithm. The same idea is used later in the definition of the
Kripke logical relation to prove completeness of the algorithm.

We write α to stands for simple base types and we have two special type constants, type− and
kind−, for the equality judgments at the level of types and kinds.

Simple Kinds κ ::= type− | τ → κ

Simple Types τ ::= α | τ1 → τ2

Simple Contexts ∆ ::= · | ∆, x:τ

We use τ, θ, δ for simple types and ∆,Θ for contexts declaring simple types for variables. We
also use kind− in a similar role to kind in the LF type theory.

We write A− for the simple type that results from erasing dependencies in A, and similarlyK−.
We translate each constant type family a to a base type a− and extend this to all type families.
We extend it further to contexts by applying it to each declaration.

(a)− = a−

(AM)− = A−

(Πx:A1. A2)
− = A−1 → A−2

(type)− = type−

(Πx:A. K)− = A− → K−

(kind)− = kind−

(·)− = ·
(Γ, x:A)− = Γ−, x:A−

We need the property that the erasure of a type or kind remains invariant under equality and
substitution.

Lemma 12 (Erasure Preservation)

1. If Γ ` A = B : K then A− = B−.

2. If Γ ` K = L : kind then K− = L−.

14



3. If Γ, x:A ` B : K then B− = [M/x]B−.

4. If Γ, x:A ` K : kind then K− = [M/x]K−.

Proof: By induction over the structure of the given derivations. 2

We now present the algorithm in the form of three judgments.

M
whr−→ M ′ (M weak head reduces to M ′) Algorithmically, we assume M is given and compute M ′

(if M is head reducible) or fail.

∆ `M ⇐⇒ N : τ (M is equal to N at simple type τ) Algorithmically, we assume ∆, M , N , and τ
are given and we simply succeed or fail. We only apply this judgment if M and N have the
same type A and τ = A−.

∆ `M ←→ N : τ (M is structurally equal to N ) Algorithmically, we assume that ∆, M and N

are given and we compute τ or fail. If successful, τ will be the approximate type of M and
N .

Note that the structural and type-directed equality are mutually recursive, while weak head reduc-
tion does not depend on the other two judgments.

Weak Head Reduction

(λx:A1. M2)M1
whr−→ [M1/x]M2

M1
whr−→M ′1

M1M2
whr−→M ′1M2

Type-Directed Object Equality

M
whr−→M ′ ∆ `M ′ ⇐⇒ N : α

∆ `M ⇐⇒ N : α

N
whr−→ N ′ ∆ `M ⇐⇒ N ′ : α

∆ `M ⇐⇒ N : α

∆ `M ←→ N : α

∆ `M ⇐⇒ N : α

∆, x:τ1 `M x⇐⇒ N x : τ2

∆ `M ⇐⇒ N : τ1 → τ2

Structural Object Equality

x:τ in ∆

∆ ` x←→ x : τ

c:A in Σ

∆ ` c←→ c : A−

∆ `M1 ←→ N1 : τ2 → τ1 ∆ `M2 ⇐⇒ N2 : τ2

∆ `M1 M2 ←→ N1N2 : τ1

15



Structural Family Equality

a:K in Σ

∆ ` a←→ a : K−

∆ ` A←→ B : τ → κ ∆ `M ⇐⇒ N : τ

∆ ` AM ←→ AN : κ

∆ ` A1 ←→ B1 : type− ∆, x:A−1 ` A2 ←→ B2 : type−

∆ ` Πx:A1. A2 ←→ Πx:B1. B2 : type−

Structural Kind Equality

∆ ` type←→ type : kind−

∆ ` A←→ B : type− ∆, x:A− ` K ←→ L : kind−

∆ ` Πx:A. K ←→ Πx:B. L : kind−

The algorithmic equality satisfies some straightforward structural properties. Weakening is
required in the proof of its correctness. It does not appear that exchange or contraction are needed
in our particular argument, but these properties can all be easily proven. Note that versions of the
logical relations proofs nonetheless apply in the linear, strict, and affine λ-calculi.

Lemma 13 (Structural Properties of Algorithmic Equality)
For each type-directed and structural equality judgment J the following hold:

1. [Exchange] If ∆, x1:τ1, x2:τ2,∆
′ ` J then ∆, x2:τ2, x1:τ1,∆

′ ` J.

2. (Weakening) If ∆,∆′ ` J then ∆, x:τ,∆′ ` J.

3. [Contraction] If ∆, x1:τ, x2:τ,∆
′ ` J then ∆, x:τ,∆′ ` [x/x1][x/x2]J.

4. (Strengthening) If ∆, x:τ,∆′ ` J and x /∈ FV (J), then ∆,∆′ ` J.

Proof: By straightforward inductions over the structure of the given derivations. 2

The algorithm is essentially deterministic in the sense that when comparing terms at base type
we have to weakly head-normalize both sides and compare the results structurally. This is because
terms that are weakly head reducible will never be considered structurally equal.

Lemma 14 (Determinacy of Algorithmic Equality)

1. If M
whr−→M ′ and M

whr−→M ′′ then M ′ = M ′′.

2. If ∆ `M ←→ N : τ then there is no M ′ such that M
whr−→ M ′.

3. If ∆ `M ←→ N : τ then there is no N ′ such that N
whr−→ N ′.

4. If ∆ `M ←→ N : τ and ∆ `M ←→ N : τ ′ then τ = τ ′.

5. If ∆ ` A←→ B : κ and ∆ `M ←→ N : κ′ then κ = κ′.
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Proof: The first part and parts four and five are immediate by structural induction. We only show
the second part, since the third part is symmetric. Assume

S
∆ `M ←→ N : τ and

W
M

whr−→M ′

for some M ′. We now show by simultaneous induction over S and W that these assumptions are
contradictory. Whenever we have constructed a judgment such there is no rule that could conclude
this judgment, we say we obtain a contradiction by inversion.

Case:

S =
x:τ in ∆

∆ ` x←→ x : τ

x
whr−→M ′ Assumption (W)

Contradiction By inversion

Case: Structurally equality of constants is impossible as in the case for variables.

Case:

S =

S1

∆ `M1 ←→ N1 : τ2 → τ1

T2

∆ `M2 ⇐⇒ N2 : τ2

∆ `M1M2 ←→ N1N2 : τ1

Here we distinguish two subcases for the derivation W of M1M2
whr−→M ′.

Subcase:

W =
(λx:A1. M

′
1)M2

whr−→ [M2/x]M
′
1

M1 = (λx:A1. M
′
1) Assumption

∆ `M1 ←→ N1 : τ2 → τ1 Assumption (S1)
Contradiction By inversion

Subcase:

W =

W1

M1
whr−→M ′1

M1M2
whr−→M ′1 M2

∆ `M1 ←→ N1 : τ2 → τ1 Assumption (S1)
Contradiction By ind. hyp. on W1 and S1

2
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The completeness proof requires symmetry and transitivity of the algorithm. This would intro-
duce some difficulty if the algorithm employed precise instead of approximate types. This is one
reason why both the algorithm and later the logical relation are defined using approximate types
only.

Lemma 15 (Symmetry of Algorithmic Equality)

1. If ∆ `M ⇐⇒ N : τ then ∆ ` N ⇐⇒ M : τ .

2. If ∆ `M ←→ N : τ then ∆ ` N ←→ M : τ .

3. If ∆ ` A←→ B : κ then ∆ ` B ←→ A : κ.

4. If ∆ ` K ←→ L : kind− then ∆ ` L←→ K : kind−.

Proof: By simultaneous induction on the given derivations. 2

Lemma 16 (Transitivity of Algorithmic Equality)

1. If ∆ `M ⇐⇒ N : τ and ∆ ` N ⇐⇒ O : τ then ∆ `M ⇐⇒ O : τ .

2. If ∆ `M ←→ N : τ and ∆ ` N ←→ O : τ then ∆ `M ←→ O : τ .

3. If ∆ ` A←→ B : κ and ∆ ` B ←→ C : κ then ∆ ` A←→ C : κ.

4. If ∆ ` K ←→ L : kind− and ∆ ` L←→ L′ : kind− then ∆ ` K ←→ L′ : kind−.

Proof: By simultaneous inductions on the structure of the given derivations. In each case, we may
appeal to the induction hypothesis if one of the two derivations is strictly smaller, while the other
is either smaller or the same. The proof requires determinacy (Lemma 14). We only show some
cases in the proof of property (1); others are direct. Assume we are given

TL
∆ `M ⇐⇒ N : τ and

TR
∆ ` N ⇐⇒ O : τ

We have to construct a derivation of ∆ ` M ⇐⇒ O : τ . We distinguish cases for TL and TR. In
case one of them is the extensionality rule, the other must be, too, and the result follows easily
from the induction hypothesis. We show the remaining cases.

Case:

TL = M
whr−→M ′

T ′L
∆ `M ′ ⇐⇒ N : α

∆ `M ⇐⇒ N : α

where TR is arbitrary.

∆ `M ′ ⇐⇒ O : α By ind. hyp. (1) on T ′L and TR
∆ `M ⇐⇒ O : α By rule (whr left)
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Case:

TR = O
whr−→ O′

T ′R
∆ ` N ⇐⇒ O′ : α

∆ ` N ⇐⇒ O : α

where TL arbitrary.

∆ `M ⇐⇒ O′ : α By ind. hyp. (1) on TL and T ′R
∆ `M ⇐⇒ O : α By rule (whr right)

Case:

TL = N
whr−→ N ′

T ′L
∆ `M ⇐⇒ N ′ : α

∆ `M ⇐⇒ N : α

and TR = N
whr−→ N ′′

T ′R
∆ ` N ′′ ⇐⇒ O : α

∆ ` N ⇐⇒ O : α

N ′ = N ′′ By determinacy of weak head reduction (Lemma 14(1))
∆ `M ⇐⇒ O : α By ind. hyp. (1) on T ′L and T ′R.

Case:

TL = N
whr−→ N ′

T ′L
∆ `M ⇐⇒ N ′ : α

∆ `M ⇐⇒ N : α

and TR =

SR
∆ ` N ←→ O : α

∆ ` N ⇐⇒ O : α

This case is impossible by determinacy of algorithmic equality (Lemma 14(2)).

Case:

TL =

SL
∆ `M ←→ N : α

∆ `M ⇐⇒ N : α

and TR = N
whr−→ N ′

T ′R
∆ ` N ′ ⇐⇒ O : α

∆ ` N ⇐⇒ O : α

This case is impossible by determinacy of algorithmic equality (Lemma 14(3)).

Case:

TL =

SL
∆ `M ←→ N : α

∆ `M ⇐⇒ N : α

and TR =

SR
∆ ` N ←→ O : α

∆ ` N ⇐⇒ O : α

∆ `M ←→ O : α By ind. hyp. (2) on SL and SR
∆ `M ⇐⇒ O : α By rule

2
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4 Completeness of Algorithmic Equality

In this section we develop the completeness theorem for the type-directed equality algorithm. That
is, if two terms are definitionally equal, the algorithm will succeed. The goal is to present a flexible
and modular technique which can be adapted easily to related type theories, such as the one
underlying the linear logical framework [CP98], one based on non-commutative linear logic [PP99],
or one including subtyping [Pfe93]. Other techniques presented in the literature, particularly those
based on a notion of η-reduction, do not seem to adapt well to these richer theories.

The central idea is to proceed by an argument via logical relations defined inductively on the
approximate type of an object, where the approximate type arises from erasing all dependencies in
an LF type.

The completeness direction of the correctness proof for type-directed equality states:

If Γ `M = N : A then Γ− `M ⇐⇒ N : A−.

One would like to prove this by induction on the structure of the derivation for the given equality.
However, such a proof attempt fails at the case for application. Instead we define a logical relation
∆ `M = N ∈ [[τ ]] that provides a stronger induction hypothesis so that both

1. if Γ `M = N : A then Γ− `M = N ∈ [[A−]], and

2. if Γ− `M = N ∈ [[A−]] then Γ− `M ⇐⇒ N ∈ A−,

can be proved.

4.1 A Kripke Logical Relation

We define a Kripke logical relation inductively on simple types. At base type we require the property
we eventually would like to prove. At higher types we reduce the property to those for simpler
types. We also extend it further to include substitutions, where it is defined by induction over the
structure of the matching context.

We say that a context ∆′ extends ∆ (written ∆′ ≥ ∆) if ∆′ contains all declarations in ∆ and
possibly more.

1. ∆ `M = N ∈ [[α]] iff ∆ `M ⇐⇒ N : α.

2. ∆ ` M = N ∈ [[τ1 → τ2]] iff for every ∆′ extending ∆ and for all M1 and N1 such that
∆′ `M1 = N1 ∈ [[τ1]] we have ∆′ `MM1 = N N1 ∈ [[τ2]].

3. ∆ ` A = B ∈ [[type−]] iff ∆ ` A←→ B : type−.

4. ∆ ` A = B ∈ [[τ → κ]] iff for every ∆′ extending ∆ and for all M and N such that
∆′ `M = N ∈ [[τ ]] we have ∆′ ` AM = BN ∈ [[κ]].

5. ∆ ` σ = θ ∈ [[·]] iff σ = · and θ = ·.

6. ∆ ` σ = θ ∈ [[Θ, x:τ ]] iff σ = (σ′,M/x) and θ = (θ′, N/x) where ∆ ` σ′ = θ′ ∈ [[Θ]] and
∆ `M = N ∈ [[τ ]].

Three general structural properties of the logical relations that we can show directly by induction
are exchange, weakening, and contraction. We will use only weakening.
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Lemma 17 (Structural Properties of the Logical Relations) For all logical relations R the
following hold:

1. [Exchange] If ∆, x1:τ1, x2:τ2,∆
′ ` R then ∆, x2:τ2, x1:τ1,∆

′ ` R.

2. (Weakening) If ∆,∆′ ` R then ∆, x:τ,∆′ ` R.

3. [Contraction] If ∆, x1:τ, x2:τ,∆
′ ` R then ∆, x:τ,∆′ ` [x/x1][x/x2]R.

4. [Strengthening] If ∆, x:τ,∆′ ` R and x /∈ FV (R), then ∆,∆′ ` R.

Proof: By induction on the structure of the definition of R (either simple type, kind, or context).
For contraction and strengthening, it is easiest to take advantage of weakening in the case for
function types. We show only the proof for weakening, that is, if ∆,∆′ `M ∈ [[τ ]] then ∆, x:θ,∆′ `
M = N ∈ [[τ ]].

Case: τ = α.

∆,∆′ `M = N ∈ [[α]] Assumption
∆,∆′ `M ⇐⇒ N : α By definition of [[α]]
∆, x:θ,∆′ `M ⇐⇒ N : α By weakening (Lemma 1)
∆, x:θ,∆′ `M = N ∈ [[α]] By definition of [[α]]

Case: τ = τ1 → τ2.

∆,∆′ `M = N ∈ [[τ1 → τ2]] Assumption
∆+, x:θ,∆

′
+ `M1 = N1 ∈ [[τ1]]

for arbitrary ∆+ ≥ ∆ and ∆′+ ≥ ∆′ New assumption
(∆+, x:θ,∆

′
+) ≥ (∆,∆′) By definition of ≥

∆+, x:θ,∆
′
+ `MM1 = N N1 ∈ [[τ2]] By definition of [[τ1 → τ2]] and assumption

∆, x:θ,∆′ `M = N ∈ [[τ1 → τ2]] By definition of [[τ1 → τ2]]

2

4.2 Logically Related Terms are Algorithmically Equal

It is straightforward to show that logically related terms are considered identical by the algorithm.
This proof always proceeds by induction on the structure of the type. A small insight may be
required to arrive at the necessary generalization of the induction hypothesis. Here, this involves
the statement that structurally equal terms are logically related. This has an important consequence
we will need later on, namely that variables and constants are logically related to themselves.

Theorem 18 (Logically Related Terms are Algorithmically Equal)

1. If ∆ `M = N ∈ [[τ ]] then ∆ `M ⇐⇒ N : τ .

2. If ∆ ` A = B ∈ [[κ]], then ∆ ` A←→ B : κ.

3. If ∆ `M ←→ N : τ then ∆ `M = N ∈ [[τ ]].

4. If ∆ ` A←→ B : κ then ∆ ` A = B ∈ [[κ]].

21



Proof: By simultaneous induction on the structure of τ .

Case: τ = α, part 1.

∆ `M = N ∈ [[α]] Assumption
∆ `M ⇐⇒ N : α By definition of [[α]]

Case: κ = type−, part 2.

∆ `M = N ∈ [[type−]] Assumption
∆ `M ←→ N : type− By definition of [[type−]]

Case: τ = α, part 3.

∆ `M ←→ N : α Assumption
∆ `M ⇐⇒ N : α By rule
∆ `M = N ∈ [[α]] By definition of [[α]]

Case: κ = type−, part 4.

∆ ` A←→ B : type− Assumption
∆ ` A = B ∈ [[type−]] By definition of [[type−]]

Case: τ = τ1 → τ2, part 1.

∆ `M = N ∈ [[τ1 → τ2]] Assumption
∆, x:τ1 ` x←→ x : τ1 By rule
∆, x:τ1 ` x = x ∈ [[τ1]] By i.h. 3 on τ1

∆, x:τ1 `M x = N x ∈ [[τ2]] By definition of [[τ1 → τ2]]
∆, x:τ1 `M x⇐⇒ N x : τ2 By i.h. 1 on τ2

∆ `M ⇐⇒ N : τ1 → τ2 By rule

Case: κ = τ1 → κ2, part 2.

∆ ` A = B ∈ [[τ1→ κ2]] Assumption
∆, x:τ1 ` x←→ x : τ1 By rule
∆, x:τ1 ` x = x ∈ [[τ1]] By i.h. 3 on τ1

∆, x:τ1 ` Ax = B x ∈ [[κ2]] By definition of [[τ1 → κ2]]
∆, x:τ1 ` Ax←→ B x : κ2 By i.h. 2 on κ2

∆, x:τ1 ` A←→ B : τ ′1 → κ2 By inversion
∆ ` A←→ B : τ ′1 → κ2 By strengthening (Lemma 13)
∆ ` A←→ B : τ1 → κ2 By determinacy (Lemma 14(5))

Case: τ = τ1 → τ2, part 3.
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∆ `M ←→ N : τ1 → τ2 Assumption
∆+ `M1 = N1 ∈ [[τ1]] for an arbitrary ∆+ ≥ ∆ New assumption
∆+ `M1 ⇐⇒ N1 ∈ τ1 By i.h. 1 on τ1

∆+ `M ←→ N : τ1 → τ2 By weakening (Lemma 13)
∆+ `MM1 ←→ N N1 ∈ τ2 By rule
∆+ `MM1 = N N1 ∈ [[τ2]] By i.h. 3 on τ2

∆ `M = N ∈ [[τ1 → τ2]] By definition of [[τ1 → τ2]]

Case: κ = τ1 → κ2, part 4.

∆ ` A←→ B : τ1 → κ2 Assumption
∆+ `M1 = N1 ∈ [[τ1]] for an arbitrary ∆+ ≥ ∆ New assumption
∆+ `M1 ⇐⇒ N1 ∈ τ1 By i.h. 1 on τ1

∆+ ` A←→ B : τ1 → κ2 By weakening (Lemma 13)
∆+ ` AM1 ←→ BN1 ∈ κ2 By rule
∆+ ` AM1 = BN1 ∈ [[κ2]] By i.h. 4 on κ2

∆ ` A = B ∈ [[τ1→ κ2]] By definition of [[τ1 → κ2]]

2

4.3 Definitionally Equal Terms are Logically Related

The other part of the logical relations argument states that two equal terms are logically related.
This requires a sequence of lemmas regarding algorithmic equality and the logical relation.

Lemma 19 (Closure under Head Expansion)

1. If M
whr−→M ′ and ∆ `M ′ = N ∈ [[τ ]] then ∆ `M = N ∈ [[τ ]].

2. If N
whr−→ N ′ and ∆ `M = N ′ ∈ [[τ ]] then ∆ `M = N ∈ [[τ ]].

Proof: Each part follows by induction on the structure of τ . We show only the first, since the
second is symmetric.

Case: τ = α.

M
whr−→M ′ Assumption

∆ `M ′ = N ∈ [[α]] Assumption
∆ `M ′ ⇐⇒ N : α By definition of [[α]]
∆ `M ⇐⇒ N : α By rule (whr)
∆ `M = N ∈ [[α]] By definition of [[α]]

Case: τ = τ1 → τ2.

M
whr−→M ′ Assumption

∆ `M ′ = N ∈ [[τ1 → τ2]] Assumption
∆+ `M1 = N1 ∈ [[τ1]] for ∆+ ≥ ∆ New assumption
∆+ `M ′M1 = N N1 ∈ [[τ2]] By definition of [[τ1 → τ2]]

MM1
whr−→ M ′M1 By rule

∆+ `MM1 = N N1 ∈ [[τ2]] By i.h. on τ2

∆ `M = N ∈ [[τ1 → τ2]] By definition of [[τ1 → τ2]]
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2

Lemma 20 (Symmetry of the Logical Relations)

1. If ∆ `M = N ∈ [[τ ]] then ∆ ` N = M ∈ [[τ ]].

2. If ∆ ` A = B ∈ [[κ]] then ∆ ` B = A ∈ [[κ]].

3. If ∆ ` σ = θ ∈ [[Θ]] then ∆ ` θ = σ ∈ [[Θ]].

Proof: By induction on the structure of τ , κ, and Θ, using Lemma 15. We show some represen-
tative cases.

Case: τ = α.

∆ `M = N ∈ [[α]] Assumption
∆ `M ⇐⇒ N : α By definition of [[α]]
∆ ` N ⇐⇒ M : α By symmetry of type-directed equality (Lemma 15)
∆ ` N = M ∈ [[α]] By definition of [[α]]

Case: τ = α.

∆ `M = N ∈ [[τ1 → τ2]] Assumption
∆+ ` N1 = M1 ∈ [[τ1]] for ∆+ ≥ ∆ New assumption
∆+ `M1 = N1 ∈ [[τ1]] By i.h. on τ1

∆+ `MM1 = N N1 ∈ [[τ2]] By definition of [[τ1 → τ2]]
∆+ ` N N1 = MM1 ∈ [[τ2]] By i.h. on τ2

∆ ` N = M ∈ [[τ1]] By definition of [[τ1 → τ2]]

2

Lemma 21 (Transitivity of the Logical Relations)

1. If ∆ `M = N ∈ [[τ ]] and ∆ ` N = O ∈ [[τ ]] then ∆ `M = O ∈ [[τ ]].

2. If ∆ ` A = B ∈ [[κ]] and ∆ ` B = C ∈ [[κ]] then ∆ ` A = C ∈ [[κ]].

3. If ∆ ` σ = θ ∈ [[Θ]] and ∆ ` θ = δ ∈ [[Θ]] then ∆ ` σ = δ ∈ [[Θ]].

Proof: By induction on the structure of τ , κ, and Θ, using Lemma 16. We show some represen-
tative cases.

Case: τ = α. Then the properties follows from the definition of [[α]] and the symmetry of type-
directed equality (Lemma 16).

∆ `M = N ∈ [[α]] Assumption
∆ ` N = O ∈ [[α]] Assumption
∆ `M ⇐⇒ N : α By definition of [[α]]
∆ ` N ⇐⇒ O : α By definition of [[α]]
∆ `M ⇐⇒ O : α By transitivity of type-directed equality (Lemma 16)
∆ `M = O ∈ [[α]] By definition of [[α]]
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Case: τ = τ1 → τ2.

∆ `M = N ∈ [[τ1 → τ2]] Assumption
∆ ` N = O ∈ [[τ1 → τ2]] Assumption
∆+ `M1 = O1 ∈ [[τ1]] for ∆+ ≥ ∆ New assumption
∆+ `MM1 = N O1 ∈ [[τ2]] By definition of [[τ1 → τ2]]
∆+ ` O1 = M1 ∈ [[τ1]] By symmetry (Lemma 20)
∆+ ` O1 = O1 ∈ [[τ1]] By i.h. on τ1

∆+ ` N O1 = OO1 ∈ [[τ2]] By definition of [[τ1 → τ2]]
∆+ `MM1 = OO1 ∈ [[τ2]] By i.h. on τ2

∆ `M = O ∈ [[τ1 → τ2]] By definition of [[τ1 → τ2]]

2

Lemma 22 (Definitionally Equal Terms are Logically Related under Substitutions)

1. If Γ `M = N : A and ∆ ` σ = θ ∈ [[Γ−]] then ∆ `M [σ] = N [θ] ∈ [[A−]].

2. If Γ ` A = B : K and ∆ ` σ = θ ∈ [[Γ−]] then ∆ ` A[σ] = B[θ] ∈ [[K−]].

Proof: By induction on the derivation D of definitional equality, using the prior lemmas in this
section. For this argument, some subderivations of the equality judgment are unnecessary (in
particular, those establishing the validity of certain types). We elide those premises and write . . .
instead.

Case:

D =
x:A in Γ

Γ ` x = x : A

∆ ` σ = θ ∈ [[Γ−]]
∆ `M = N ∈ [[A−]] for M/x in σ and N/x in θ By definition of [[Γ−]]
∆ ` x[σ] = x[θ] ∈ [[A−]] By definition of substitution

Case:

D =
c:A in Σ

Γ ` c = c : A

∆ ` c←→ c ∈ [[A−]] By rule
∆ ` c = c ∈ [[A−]] By Theorem 18(3)
∆ ` c[σ] = c[θ] ∈ [[A−]] By definition of substitution

Case:

D =

D1

Γ `M1 = N1 : Πx:A2. A1

D2

Γ `M1 = N2 : A2

Γ `M1M2 = N1N2 : [M2/x]A1
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∆ `M1[σ] = N1[θ] ∈ [[A−2 → A−1 ]] By i.h. on D1

∆ `M2[σ] = N2[θ] ∈ [[A−2 ]] By i.h. on D2

∆ ` (M1[σ])(M2[σ]) = (N1[θ])(N2[θ]) ∈ [[A−1 ]] By definition of [[τ2 → τ1]]
∆ ` (M1M2)[σ] = (N1N2)[θ] ∈ [[A−1 ]] By definition of substitution

Case:

D = . . .

D2

Γ, x:A1 `M x = N x : A2

Γ `M = N : Πx:A1. A2

∆+ `M1 = N1 ∈ [[A−1 ]] New assumption
∆+ ` σ = θ ∈ [[Γ−]] By weakening (Lemma 17)
∆+ ` (σ,M1/x) = (θ, N1/x) ∈ [[Γ−, x:A−1 ]] By definition of [[∆, x:τ ]]
∆+ ` (M x)[σ,M1/x] = (N x)[θ, N1/x] ∈ [[A−2 ]] By i.h. on D2

∆+ `M [σ]M1 = N [θ]N1 ∈ [[A−2 ]] By properties of substitution
∆ `M = N ∈ [[A−1 → A−2 ]] By definition of [[τ1 → τ2]]

Case:

D = . . .

D2

Γ, x:A1 `M2 = N2 : A2

D1

Γ `M1 = N1 : A1

Γ ` (λx:A1. M2)M1 = [N1/x]N2 : [M1/x]A2

∆ ` σ = θ ∈ [[Γ−]] Assumption
∆ `M1[σ] = N1[θ] ∈ [[A−1 ]] By i.h. on D1

∆ ` (σ,M1[σ]/x) = (θ, N1[θ]/x) ∈ [[Γ−, x:A−1 ]] By definition of [[Θ, x:τ1]]
∆ `M2[σ,M1[σ]/x] = N2[θ, N1[θ]/x] ∈ [[A−2 ]] By i.h. on D2

∆ ` [M1[σ]/x](M2[σ, x/x]) = N2[θ, N1[θ]/x] ∈ [[A−2 ]] By properties of substitution
∆ ` (λx:A1. M2[σ, x/x])(M1[σ]) = N1[θ, N1[θ]/x] ∈ [[A−2 ]]

By closure under head expansion (Lemma 19)
∆ ` ((λx:A1. M2)M1)[σ] = ([N1/x]N2)[θ] ∈ [[A−2 ]] By properties of substitution
∆ ` ((λx:A1. M2)M1)[σ] = ([N1/x]N2)[θ] ∈ [[[M1/x]A

−
2 ]] By erasure preservation (Lemma 12)

Case:

D =

D′
Γ ` N = M : A

Γ `M = N : A

∆ ` σ = θ ∈ [[Γ−]] Assumption
∆ ` θ = σ ∈ [[Γ−]] By symmetry (Lemma 20)
∆ ` N [θ] = M [σ] ∈ [[A−]] By i.h. on D′
∆ `M [σ] = N [θ] ∈ [[A−]] By symmetry (Lemma 20)

Case:

D =

D1

Γ `M = O : A
D2

Γ ` O = N : A

Γ `M = N : A
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∆ ` σ = θ ∈ [[Γ−]] Assumption
∆ ` θ = σ ∈ [[Γ−]] By symmetry (Lemma 20)
∆ ` θ = θ ∈ [[Γ−]] By transitivity (Lemma 21)
∆ `M [σ] = O[θ] ∈ [[A−]] By i.h. on D1

∆ ` O[θ] = N [θ] ∈ [[A−]] By i.h. on D2

∆ `M [σ] = N [θ] ∈ [[A−]] By transitivity (Lemma 21)

Case:

D =

D1

Γ `M = N : B Γ ` B = A : type

Γ `M = N : A

∆ `M [σ] = N [θ] ∈ B− By i.h. on D1

∆ `M [σ] = N [θ] ∈ A− By erasure preservation (Lemma 12)

Case: Γ ` a = a : K. As for constants c.

Case: Γ ` A1 M2 = B1 N2 : [M2/x]K1. As for applications M1M2.

Case:

D =

D1

Γ ` A1 = B1 : type
D2

Γ, x:A1 ` A2 = B2 : type

Γ ` Πx:A1. A1 = Πx:B1. B2 : type

∆ ` A1[σ] = B1[θ] ∈ [[type−]] By i.h. on D1

∆ ` A1[σ]←→ B1[θ] : type− By definition of [[type−]]
∆, x:A−1 ` x←→ x : A−1 By rule
∆, x:A−1 ` x = x ∈ [[A−1 ]] By Theorem 18
∆, x:A−1 ` (σ, x/x) = (θ, x/x) ∈ [[Γ−, x:A−1 ]] By definition of [[Θx:τ1]]
∆, x:A−1 ` A2[σ, x/x] = B2[θ, x/x] ∈ [[type−]] By i.h. on D2

∆, x:A−1 ` A2[σ, x/x]←→ B2[θ, x/x] : type− By definition of [[type−]]
∆ ` Πx:A1[σ]. A2[σ, x/x]←→ Πx:B1[θ]. B2[θ, x/x] : type− By rule
∆ ` Πx:A1[σ]. A2[σ, x/x]←→ Πx:B1[θ]. B2[θ, x/x] ∈ [[type−]] By definition of [[type−]]
∆ ` (Πx:A1. A2)[σ]←→ (Πx:B1. B2)[θ] ∈ [[type−]] By definition of substitution

Case: Family symmetry rule. As for the object-level symmetry.

Case: Family transitivity rule. As for the object-level transitivity.

Case:

D =

D1

Γ1 `M = N : C . . .

D2

Γ1, x:C,Γ2 ` A′ = B′ : type

Γ1, [M/x]Γ2 ` [M/x]A′ = [N/x]B′ : type
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∆ ` σ = θ ∈ [[Γ−1 , ([M/x]Γ2)
−]] Assumption

σ = σ′, σ′′ and θ = θ′, θ′′ where
∆ ` σ′ = θ′ ∈ [[Γ−1 ]] and
∆ ` σ′′ = θ′′ ∈ [[Γ−2 ]] By definition of [[Γ−]] and erasure preservation
∆ `M [σ′] = N [θ′] ∈ [[C−]] By i.h. on D1

∆ ` (σ′,M [σ′]/x, σ′′) = (θ′, N [θ′]/x, θ′′) ∈ [[Γ−1 , x:C
−,Γ−2 ]] By definition of [[−]]

∆ ` A′[σ′,M [σ′]/x, σ′′] = B′[θ′, N [θ′]/x, θ′′] ∈ [[type−]] By i.h. on D2

∆ ` ([M/x]A′)[σ′, σ′′] = ([N/x]B′)[θ′, θ′′] ∈ [[type−]] By properties of substitution

Case: Kind conversion rule. As for type conversion rule.

2

Lemma 23 (Identity Substitutions are Logically Related)
Γ− ` idΓ = idΓ ∈ [[Γ−]].

Proof: By definition of [[Γ−]] and part (3) of Lemma 18. 2

Theorem 24 (Definitionally Equal Terms are Logically Related)

1. If Γ `M = N : A then Γ− `M = N ∈ [[A−]].

2. If Γ ` A = B : K then Γ− ` A = B ∈ [[K−]].

Proof: Directly by Lemmas 22 and 23. 2

Corollary 25 (Completeness of Algorithmic Equality)

1. If Γ `M = N : A then Γ− `M ⇐⇒ N : A−.

2. If Γ ` A = B : K then Γ− ` A←→ B : K−.

Proof: Directly by Theorem 24 and Theorem 18. 2

5 Soundness of Algorithmic Equality

In general, the algorithm for type-directed equality is not sound. However, when applied to valid
objects of the same type, it is sound and relates only equal terms. This direction requires a number
of lemmas established in Section 2.6, but is otherwise mostly straightforward.

Lemma 26 (Subject Reduction)

If M
whr−→M ′ and Γ `M : A then Γ `M ′ : A and Γ `M = M ′ : A.

Proof: By induction on the definition of weak head reduction, making use of the inversion and
substitution lemmas.

Case:

(λx:A1. M2)M1
whr−→ [M1/x]M2
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Γ ` (λx:A1. M2)M1 : A Assumption
Γ ` λx:A1. M2 : Πx:B1. B2

Γ `M1 : B1

Γ ` [M1/x]B2 = A : type By inversion (Lemma 5)
Γ ` A1 : type
Γ, x:A1 `M2 : A2

Γ ` Πx:A1. A2 = Πx:B1. B2 : type By inversion (Lemma 5)
Γ ` A1 = B1 : type
Γ, x:A1 ` A2 = B2 : type By injectivity of products (Lemma 11)
Γ ` [M1/x]M2 : [M1/x]A2 By substitution (Lemma 3)
Γ ` [M1/x]A2 = [M1/x]B2 : type By substitution (Lemma 3)
Γ ` [M1/x]A2 = A : type By transitivity
Γ ` [M1/x]M2 : A By rule (type conversion)
Γ ` A1 : type By above
Γ, x:A1 `M2 = M2 : A2 By reflexivity
Γ `M1 = M1 : A1 By reflexivity
Γ ` (λx:A1.M2)M1 = [M1/x]M2 : [M1/x]A2 By rule (parallel conversion)
Γ ` (λx:A1.M2)M1 = [M1/x]M2 : A By rule (type conversion)

Case:

M1
whr−→M ′1

M1M2
whr−→M ′1M2

Γ `M1M2 : A Assumption
Γ `M1 : Πx:A2. A1

Γ `M2 : A2

Γ ` [M2/x]A1 = A : type By inversion (Lemma 5)
Γ `M ′1 : Πx:A2. A1 By inductive hypothesis
Γ `M ′1M2 : [M2/x]A1 By rule (application)
Γ `M ′1M2 : A By rule (type conversion)
Γ `M1 = M ′1 : Πx:A2. A1 By inductive hypothesis
Γ `M2 = M2 : A2 By reflexivity
Γ `M1M2 = M ′1M2 : [M2/x]A1 By rule (simultaneous congruence)
Γ `M1M2 = M ′1M2 : A By rule (type conversion)

2

For the soundness of algorithmic equality we need subject reduction and validity (Lemma 7).

Theorem 27 (Soundness of Algorithmic Equality)

1. If Γ `M : A and Γ ` N : A and Γ− `M ⇐⇒ N : A−, then Γ `M = N : A.

2. If Γ `M : A and Γ ` N : B and Γ− `M ←→ N : τ , then Γ `M = N : A, Γ ` A = B : type
and A− = B− = τ .
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3. If Γ ` A : K and Γ ` B : L and Γ− ` A ←→ B : κ, then Γ ` A = B : K, Γ ` K = L : kind
and K− = L− = κ.

4. If Γ ` K : kind and Γ ` L : kind and Γ− ` K ←→ L : kind− then Γ ` K = L : kind.

Proof: By induction on the structure of the given derivations for algorithmic equality, using validity
and inversion on the typing derivations.

Case:

T =
x:τ in Γ−

Γ− ` x←→ x : τ

Γ ` x : A Assumption
Γ ` x : B Assumption
x:C in Γ, Γ ` C = A : type, Γ ` C = B : type By inversion (Lemma 5)
Γ ` A = B : type By symmetry and transitivity
Γ ` x = x : C By rule
Γ ` x = x : A By type conversion
A− = B− = C− = τ By erasure preservation (Lemma 12)

Case: T ends in an equality of constants. Like the previous case.

Case:

T =

T1

Γ `M1 ←→ N1 : τ2 → τ1

T2

Γ `M2 ⇐⇒ N2 : τ2

Γ `M1M2 ←→ N1N2 : τ1

Γ `M1M2 : A Assumption
Γ ` N1N2 : B Assumption
Γ `M1 : Πx:A2. A1,
Γ `M2 : A2, and
Γ ` [M2/x]A1 = A : type By inversion (Lemma 5)
Γ ` Πx:A2. A1 : type By validity (Lemma 7)
Γ ` A2 : type
Γ, x:A2 ` A1 : type Inversion
Γ ` N1 : Πx:B2. B1,
Γ ` N2 : B2, and
Γ ` [N2/x]B1 = B : type By inversion (Lemma 5)
Γ ` Πx:B2. B2 : type By validity (Lemma 7)
Γ ` B2 : type
Γ, x:B2 ` B1 : type By inversion
Γ `M1 = N1 : Πx:A2. A1,
Γ ` Πx:A2. A1 = Πx:B2. B1 : type, and
(Πx:A2. A1)

− = (Πx:B2. B1)
− = τ2 → τ1 By i.h. on T1

Γ ` A2 = B2 : type and
Γ, x:A2 ` A1 = B1 : type By injectivity (Lemma 11
Γ ` N2 : A2 By symmetry and type conversion
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Γ `M2 = N2 : A2 By i.h. on T2

Γ `M1M2 = N1N2 : [M2/x]A1 By rule
Γ `M1M2 = N1N2 : A By type conversion
Γ ` [M2/x]A1 = [N2/x]B1 : type By family functionality
A− = A−1 = B−1 = B− = τ1 By erasure preservation

Case:

T =

W
M

whr−→M ′
T ′

Γ `M ′ ⇐⇒ N : P−

Γ `M ⇐⇒ N : P−

Γ `M : P Assumption
Γ ` N : P Assumption
Γ ` P : type Validity (Lemma 7)
Γ `M ′ : P By subject reduction (Lemma 26)
Γ `M ′ = N : P By i.h. on T ′
Γ `M = M ′ : P By subject reduction (Lemma 26)
Γ `M = N : P By transitivity

Case: Reduction on the right-hand side follows similarly.

Case:

T =

T2

Γ, x:τ1 `M x⇐⇒ N x : τ2

Γ `M ⇐⇒ N : τ1 → τ2

Γ `M : Πx:A1. A2 Assumption
Γ ` N : Πx:A1. A2 Assumption
Γ ` Πx:A1. A2 : type By assumption
Γ ` A1 : type
Γ, x:A1 ` A2 : type Inversion
A−1 = τ1 and A−2 = τ2 Assumption and definition of ()−

Γ, x:A1 `M x : A2 By weakening and rule
Γ, x:A1 ` N x : A2 By weakening and rule
Γ, x:A1 `M x = N x : A2 By i.h. on T2

Γ ` A1 : type By inversion (Lemma 5)
Γ `M = N : Πx:A1. A2 By extensionality rule

2

Corollary 28 (Logically Related Terms are Definitionally Equivalent)
Assume Γ is valid.

1. If Γ `M : A, Γ ` N : A, and Γ− `M = N ∈ [[A−]], then Γ `M = N : A.

2. If Γ ` A : K, Γ ` B : K, and Γ− ` A = B ∈ [[K−]], then Γ ` A = B : K.
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Proof: Direct from the assumptions and prior theorems. We show the proof for the first case.

Γ− `M = N ∈ [[A−]] Assumption
Γ− `M ⇐⇒ N : A− By Theorem 18
Γ `M = N : A By Theorem 27

2

6 Decidability of Definitional Equality and Type-Checking

In this section we show that the judgment for algorithmic equality constitutes a decision procedure
on valid terms of the same type. This result is then lifted to yield decidability of all judgments in
the LF type theory.

The first step is to show that equality is decidable for terms that are algorithmically equal to
themselves. Note that this property does not depend on the soundness of completeness of algo-
rithmic equality—it is a purely syntactic result. The second step uses completeness of algorithmic
equality and reflexivity to show that every well-typed term is algorithmically equal to itself. These
two observations, together with soundness and completeness of algorithmic equality, yield the de-
cidability of definitional equality for well-typed terms.

We say an object is normalizing iff it is related to some term by the type-directed equivalence
algorithm. More precisely, M is normalizing at simple type τ iff ∆ `M ⇐⇒ M ′ : τ for some term
M ′. Note that by symmetry and transitivity of the algorithms, this implies that ∆ `M ⇐⇒ M : τ .
A term M is structurally normalizing iff it is related to some term by the structural equivalence
algorithm. That is, M is structurally normalizing iff ∆ ` M ←→ M ′ : τ for some M ′. A similar
definition applies to families and kinds. Equality is decidable on normalizing terms.

Lemma 29 (Decidability for Normalizing Terms)

1. If ∆ `M ⇐⇒ M ′ : τ and ∆ ` N ⇐⇒ N ′ : τ then it is decidable whether ∆ `M ⇐⇒ N : τ .

2. If ∆ ` M ←→ M ′ : τ and ∆ ` N ←→ N ′ : θ then it is decidable whether ∆ ` M ←→ N : δ
for some δ.

3. If ∆ ` A ←→ A′ : κ1 and ∆ ` B ←→ B′ : κ2 then it is decidable whether ∆ ` A ←→ B : κ3

for some κ3.

4. If ∆ ` K ←→ K ′ : kind− and ∆ ` L←→ L′ : kind− then it is decidable whether ∆ ` K ←→
L : kind−.

Proof: We only sketch the proof of the first two properties—the others are similar. First note
that ∆ ` M ⇐⇒ N : τ iff ∆ ` M ′ ⇐⇒ N : τ iff ∆ ` M ⇐⇒ N ′ : τ iff ∆ ` M ′ ⇐⇒ N ′ : τ , so
decidability of one implies decidability of the others with equal results. Given this observation, we
prove parts (1) and (2) by simultaneous structural inductions on the given derivations. The critical
lemma is the determinacy of algorithmic equality (Lemma 14). 2

Now we can show decidability of equality via reflexivity and completeness of algorithmic equality.

Theorem 30 (Decidability of Equality) Assume Γ is valid.

1. If Γ `M : A and Γ ` N : A then it is decidable whether Γ− `M ⇐⇒ N : A−.
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2. If Γ ` M : A and Γ ` N : A then it is decidable whether Γ− ` M ←→ N : τ for some τ .
Moreover, if such a τ exists it is unique.

3. If Γ `M : A and Γ ` N : A then it is decidable whether Γ `M = N : A.

Proof:

1. By reflexivity of definitional equality (Lemma 2) and the completeness of algorithmic equality
(Corollary 25), both M and N are normalizing. Hence by Lemma 29, algorithmic equivalence
is decidable.

2. As above, both M and N are normalizing. It is easy to check whether or not they are also
structurally normalizing by inspection of the shapes of the terms. The result follows by
Lemma 29.

3. By soundness and completeness it suffices to check algorithmic equality, which by (1) and (2)
is decidable.

2

We present an algorithmic version of type-checking that uses algorithmic equality as an auxiliary
judgment.

Objects

x:A in Γ

Γ ` x⇒ A

c:A in Σ

Γ ` c⇒ A

Γ `M1 ⇒ Πx:A′2. A1 Γ `M2 ⇒ A2 Γ ` A′2 ←→ A2 : type

Γ `M1M2 ⇒ [M2/x]A1

Γ ` A1 ⇒ type Γ, x:A1 `M2 ⇒ A2

Γ ` λx:A1. M2 ⇒ Πx:A1. A2

Families

a⇒ K in Σ

Γ ` a⇒ K

Γ ` A⇒ Πx:B′. K Γ `M ⇒ B Γ ` B′ ←→ B : type

Γ ` AM ⇒ [M/x]K

Γ ` A1 ⇒ type Γ, x:A1 ` A2 ⇒ type

Γ ` Πx:A1. A2 ⇒ type

Kinds

Γ ` type⇒ kind

Γ ` A⇒ type Γ, x:A ` K ⇒ kind

Γ ` Πx:A. K ⇒ kind

Similar rules exist for checking validity of signatures and contexts.
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Lemma 31 (Correctness of Algorithmic Type-Checking) Assume Γ is valid.

1. (Soundness) If Γ `M ⇒ A then Γ `M : A.

2. (Completeness) If Γ `M : A then Γ `M ⇒ A′ for some A′ such that Γ ` A = A′ : type.

Proof: Part 1 follows by induction on the structure of the algorithmic derivation, using validity
(Theorem 7), soundness of algorithmic equality (Theorem 27) and the rule of type conversion.

Part 2 follows by induction on the structure of the typing derivation, using transitivity of
equality, inversion on type equality, and completeness of algorithmic equality. 2

Theorem 32 (Decidability of Type-Checking) Assume Γ is valid.

1. It is decidable if Γ is valid.

2. Given a valid Γ, M , and A, it is decidable whether Γ `M : A.

3. Given a valid Γ, A, and K, it is decidable whether Γ ` A : K.

4. Given a valid Γ and K, it is decidable whether Γ ` K : kind.

Proof: Since the algorithmic typing rules are syntax-directed and algorithmic equality is decidable
(Theorem 30), there either exists a unique A′ such that Γ ` M ⇒ A′ or there is no such A′. By
correctness of algorithmic type-checking we then have Γ `M : A iff Γ ` A′ = A : type, which can
be decided by checking Γ− ` A′ ←→ A : type. 2

The correctness of algorithmic type-checking also allows us to show strengthening, and a stronger
form of the extensionality rule.

Theorem 33 (Strengthening) For each judgment J of the type theory, if Γ, x:A,Γ′ ` J and
x /∈ FV (Γ′) ∪ FV (J), then Γ,Γ′ ` J.

Proof: Strengthening for the algorithmic version of type-checking follows by a simple structural
induction, taking advantage of strengthening for algorithmic equality (Lemma 13). Strengthening
for the original typing rules then follows by soundness and completeness of algorithmic typing.
Strengthening for equality judgments follows from completeness (Corollary 25), soundness (Theo-
rem 27), and strengthening for the typing judgment. 2

Corollary 34 (Strong Extensionality) The typing premises for M and N in the extensionality
rule are redundant. That is, the following strong form of extensionality is admissible:

Γ ` A1 : type Γ, x:A1 `M x = N x : A2

Γ `M = N : Πx:A1. A2

Proof: By inversion and strengthening.

Γ, x:A1 `M x : A2 By validity
Γ, x:A1 `M : Πx:B1. B2,
Γ, x:A1 ` x : B1, and Γ, x:A1 ` B2 = A2 : type By inversion (Lemma 5)
Γ ` A1 = B1 : type By inversion and strengthening
Γ ` Πx:B1. B2 = Πx:A1. A2 : type By rule
Γ, x:A1 `M : Πx:A1. A2 By rule (type conversion)
Γ `M : Πx:A1. A2 By strengthening
Γ ` N : Πx:A1. A2 Similarly
Γ `M = N : Πx:A1. A2 By extensionality

2
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7 Quasi-Canonical Forms

The representation techniques of LF mostly rely on compositional bijections between the expressions
(including terms, formulas, deductions, etc.) of the object language and canonical forms in a meta-
language, where canonical forms are η-long and β-normal forms. So if we are presented with an LF
object M of a given type A and we want to know which object-language expression M represents,
we convert it to canonical form and apply the inverse of the representation function.

This leads to the question on how to compute the canonical form of a well-typed objectM of type
A in an appropriate context Γ. Generally, we would like to extract this information from a derivation
that witnesses that M is normalizing, that is, a derivation that shows that M is algorithmically
equal to itself. This idea cannot be applied directly in our situation, since a derivation Γ− `M ⇐⇒
M : A− yields no information on the type labels of the λ-abstractions in M . Fortunately, these turn
out to be irrelevant: if we have an object M of a given type A which is in canonical form, possibly
with the exception of some type labels, then the type labels are actually uniquely determined up
to definitional equality.

We formalize this intuition by defining quasi-canonical forms (and the auxiliary notion of quasi-
atomic forms) in which type-labels have been deleted. A quasi-canonical form can easily be extract
from a derivation that shows that a term is normalizing. Quasi-canonical forms are sufficient to
prove adequacy theorems for the representation, since the global type of a quasi-canonical form is
sufficient to extract an LF object unique up to definitional equality applied to type labels. The set
of quasi-canonical (QC) and quasi-atomic (QA) terms are defined by the following grammar:

Quasi-canonical objects ¯̄M ::= M̄ | λx. ¯̄M

Quasi-atomic objects M̄ ::= x | c | M̄ ¯̄M

It is a simple matter to instrument the algorithmic equality relations to extra a common quasi-
canonical or quasi-atomic form for the terms being compared. Note that only one quasi-canonical
form need be extracted since two terms are algorithmically equivalent iff they have the same quasi-
canonical form. The instrumented rules are as follows:

Instrumented Type-Directed Object Equality

M
whr−→M ′ ∆ `M ′ ⇐⇒ N : α ⇑ ¯̄O

∆ `M ⇐⇒ N : α ⇑ ¯̄O

N
whr−→ N ′ ∆ `M ⇐⇒ N ′ : α ⇑ ¯̄O

∆ `M ⇐⇒ N : α ⇑ ¯̄O

M ←→ N : α ↓ Ō

M ⇐⇒ N : α ⇑ ¯̄O

∆, x:τ1 `M x⇐⇒ N x : τ2 ⇑ ¯̄O

∆ `M ⇐⇒ N : τ1 → τ2 ⇑ λx. ¯̄O

Instrumented Structural Object Equality

x:τ in ∆

∆ ` x←→ x : τ ↓ x
c:A in Σ

∆ ` c←→ c : A− ↓ c

∆ `M1 ←→ N1 : τ2 → τ1 ↓ Ō1 ∆ `M2 ⇐⇒ N2 : τ2 ⇑ ¯̄O2

∆ `M1M2 ←→ N1N2 : τ1 ↓ Ō1
¯̄O2
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It follows from the foregoing development that every well-formed term has a unique quasi-
canonical form. We now have the following theorem relating quasi-canonical forms to the usual
development of the LF type theory. We write |M | for the result of erasing the type labels from an
object M .

Theorem 35 (Quasi-Canonical and Quasi-Atomic Forms)

1. If Γ ` M1 : A and Γ ` M2 : A and Γ− ` M1 ⇐⇒ M2 : A− ⇑ ¯̄O, then there is an N such
that |N | = ¯̄O, Γ ` N : A, Γ ` M1 = N : A and Γ `M2 = N : A and this N is unique up to
definitional equality.

2. If Γ ` M1 : A1 and Γ ` M2 : A2 and Γ− ` M1 ←→ M1 : τ ⇑ Ō then Γ ` A1 = A2 : type,
A− = B− = τ and there exists an N such that |N | = Ō, Γ ` N : A, Γ ` M1 = N : A and
Γ `M2 = N : A and this N is unique up to definitional equality.

Proof: By simultaneous induction on the instrumented equality derivations. It is critical that we
have the types of the objects that are compared (and not just the approximate type) so that we
can use this information to fill in the missing λ-labels. 2

Note that the uniqueness of N up to definitional equality affects only the type labels, since O
determines N in all other respects. This result shows that all adequacy proofs for LF representation
on canonical forms still hold. In fact, they can be carried out directly on quasi-canonical forms.

We can also directly state and prove prove adequacy theorems for encodings of logical systems
in LF using quasi-canonical forms. It is interesting to observe that the type labels on λ’s are not
necessary for this purpose; in an adequacy theorem, the type of the bound variable is determined
from context. For example, the following relation sets up a compositional (natural) bijection
between (a) terms and formulas of first-order logic over a given first-order signature and (b) quasi-
canonical forms of types ι and o, respectively, in the signature of first-order logic. We only show
an excerpt, illustrating the idea over the signature

cf : ι→ · · · → ι

c= : ι→ ι→ o

c∧ : o→ o→ o

c∀ : (ι→ o)→ o

Let Γ be a context of the form x1:ι, . . . , xn:ι for some n ≥ 0. A correspondence relation between
terms and formulas with (free) variables among the x1, . . . , xn and quasi-canonical objects of type
ι and o, respectively, over that signature and context may be defined as follows:
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Γ ` x! x : ι

Γ ` t1 ! ¯̄M1 : ι . . . Γ ` tn! ¯̄Mn : ι

Γ ` f(t1, . . . , tn)! cf
¯̄M1 . . .

¯̄Mn : ι

Γ ` t1 ! ¯̄M1 : ι Γ ` t2 ! ¯̄M2 : ι

Γ ` t1=t2 ! c=
¯̄M1

¯̄M2 : o

Γ ` φ1 ! ¯̄M1 : o Γ ` φ2 ! ¯̄M2 : o

Γ ` φ1 ∧ φ2 ! c∧
¯̄M1

¯̄M2 : o

Γ, x:ι ` φ! ¯̄M : o

Γ ` ∀x. φ! c∀ (λx. ¯̄M) : o

Theorem 36 (Adequacy for Syntax of First-Order Logic) Let Γ be a context of the form
x1 : ι, . . . , xn : ι for some n ≥ 0.

1. The relation Γ ` t! M : ι is a compositional bijection between terms t of first-order logic
over variables x1, . . . , xn and quasi-canonical forms M of type ι relative to Γ.

2. The relation Γ ` φ ! M : o is a compositional bijection between formulas φ with free
variables among x1, . . . , xn and quasi-canonical forms M of type o relative to Γ.

Proof: We establish by induction over the t and φ that for every term t and formula φ there exist a
unique M and N and derivations of Γ ` t! ¯̄M : ι and Γ ` φ! ¯̄N : o, respectively. Similarly, we
show that for a quasi-canonical ¯̄M and ¯̄N at type ι and o, respectively, there exists unique related
t and φ. This establishes a bijection. To see that it is compositional we use an induction over the
structure of terms t and formulas φ. 2

Adequacy at the level of derivations can be established by analogous means.

8 Conclusions

We have presented a new, type-directed algorithm for definitional equality in the LF type theory.
This algorithm improves on previous accounts by avoiding consideration of reduction and its as-
sociated meta-theory and by providing a practical method for testing definitional equality in an
implementation. The algorithm also yields a notion of canonical form, which we call quasi-canonical,
that is suitable for proving the adequacy of encodings in a logical framework. The omission of type
labels presents no difficulties for the methodology of LF, essentially because abstractions arise only
in contexts where the domain type is known. The formulation of the algorithm and its proof of
correctness relies on the “shapes” of types, from which dependencies on terms have been eliminated.

Surprisingly, it was the soundness proof for the algorithm, and not its completeness proof, that
presented some technical difficulties. In particular, we have eliminated family-level λ-abstractions
from our formulation of the type theory in order to prove injectivity of products syntactically.
However, this means that it is no longer possible to β-expand a type, convert the argument object
of the resulting application, and substitute the converted object back into the type. As a result we
had to add a primitive family-level rule to simulate the effect of this operation. It may be possible
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to adapt the technique of our completeness theorem to other formulations of the type theory and
establish soundness by other means.

The type-directed approach scales to richer languages such as those with unit types, precisely
because it makes use of type information during comparison. For example, one expects that any
two variables of unit type are equal, even though they are structurally distinct head normal forms.
A similar approach is used by Stone and Harper [SH99] to study a dependent type theory with
singleton kinds and subkinding. There it is impossible to eliminate dependencies, resulting in
a substantially more complex correctness proof, largely because of the loss of symmetry in the
presence of dependencies. Nevertheless, the fundamental method is the same, and results in a
practical approach to checking definitional equality for a rich type theory.
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