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Abstract

We develop an interpretation of linear type theory as dependent session types for a term passing
extension of the m-calculus. The type system allows us to express rich constraints on sessions,
such as interface contracts and proof-carrying certification, which go beyond existing session type
systems, and are here justified on purely logical grounds. We can further refine our interpretation
using proof irrelevance to eliminate communication overhead for proofs between trusted parties.
Our technical results include type preservation and global progress, which in our setting naturally
imply compliance to all properties declared in interface contracts expressed by dependent types.
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1 Introduction

We develop a theory of dependent session types for distributed processes, based on an interpre-
tation of pure linear type theory for a term passing extension of the 7-calculus (this report is an
extended version of [34]).

The m-calculus is a foundational model for interacting concurrent processes, building on the
key ideas of naming, and name mobility. Name mobility overcame essential limitations of previ-
ous models, which were expressive enough to capture value passing concurrent computation, but
not dynamic allocation and reference passing, as needed to model, e.g., ML-like programming
languages and higher-order processes [28, 33]. As for the A-calculus, the 7-calculus was origi-
nally presented as an untyped language. This has opened the opportunity for intensive research
on various type disciplines, some based on notions of linearity and sharing, inspired by concepts
originating in linear logic [26]. More recently, session types have been introduced as a general typ-
ing discipline for name passing processes that structure interactions around the notion of sessions
[22, 24].

A session connects, via a private communication channel, exactly two subsystems which inter-
act on it in perfect harmony. Interactions within a session always match precisely: when one side
sends, the other receives; when one side offers a selection, the other chooses; when one side termi-
nates, the other quits as well. Such discipline is enforced even when session channels are passed
along in communications. New sessions may be dynamically created by calling on capabilities of
persistent shared servers. Various forms of session types have proven useful to model realistic con-
current interactions in scenarios ranging from service-oriented computing [12] to operating system
kernels [17].

In prior work [10], we have discovered a remarkable correspondence between session types
and (intuitionistic) linear logic, which offers the first purely logical account of all the key features
(both linear and shared) of session types. In this paper, we extend our basic interpretation to
cover processes that communicate data values of an underlying functional language, not just pure
sessions, and generalize it by introducing dependent types.

Our framework yields a powerful theory of dependent session types in which types may be
used to specify not only the dynamics of protocols, but also properties of data received and sent in
communications in the style of interface contracts. For generality, we assume data to be defined
by terms of some dependent type theory, such as LF [21]. This way, functional terms may be used
to represent not only basic data (such as integers, strings, structures, and higher-order functions)
but also, quite importantly, proofs of data properties. Such proof terms may also be exchanged in
communications, thus modeling a form of proof-carrying certification (cf. [29]), clearly useful for
distributed computing. Our development is based on a purely logical foundation, via an interpreta-
tion of a sequent calculus proof system [14] for intuitionistic linear logic [4], where base types are
drawn from an underlying functional type theory [13].

All types in the logical structure are interpreted as some kind of session behavior. Following
[10], multiplicative types A — B and A ® B, correspond to input and output session types A?.B,
the type of sessions that receive a session of type A and then behaves as B, and A!.B, the type
of sessions that send a session of type A and then behaves as B, respectively. The exponential
type !A is used to type shared channels, associated with replicated servers. As we will see, a



session channel of base type $7 just carries a basic value N of the appropriate functional type 7. A
dependent type Vx:7.B types a session process that inputs a value IV of type 7, and then behaves
as B{N/x}. Compatibly, a type Jz:7.B types a session process that outputs a value N of type 7,
and then behaves as B{/N/x}. As an example, consider the process:

Up(z) £ z(n).x(n+1).0

In a classical session type system, this process is given type z :?int.lint.end, which in our basic
linear session type system is rendered = : $int — ($int ® 1). Using dependent types we can
provide a much more informative interface contract, such as (among many others):

Uplnterface(z) £ x : Vn:int.¥p:(n > 0).3y:int.3¢:(y > 0).0

This type specifies that if the process receives a positive amount (on session x), it will send back a
positive amount as well. A sample process inhabiting type Uplnterface(z) is

UpCert(z) = x(n).z(p).x{n + 1).2{incp(n, p)).0

Here, we have used incp(n, p) to denote a proof term of type (n + 1 > 0), computed by some
function
incp : IImzint.(m > 0) — (m+ 1 > 0)

given n and p. Clearly, process UpCert(x) mimics Up(x) defined above, but also explicitly re-
ceives and sends proof certificates for the interface properties, thus witnessing the validity, at the
appropriate steps, of all properties expressed by dependent types. For example, UpCert(x), after
outputting m, also issues a proof of (m > 0).

Explicitly manipulating proof certificates may be necessary in a distributed setting, but may
also turn out redundant in other scenarios. To address this potential issue, again building on purely
logical foundations, we explore proof irrelevance [31]. Proof irrelevance allows us to safely mark
parts of a type specification that must be respected at runtime, but need not to be explicitly wit-
nessed in the typed process. Irrelevant components A in a type are marked by a bracketing operator
[A]. So, instead of type Uplnterface(z) for UpCert(x), we may instead pick type

UplnterfaceP(z) £ z : Vn:int.¥p:[n > 0].3y:int.3¢:[y > 0].0

Then, by applying to the process UpCert(x) a type-directed erasure map based on UplnterfaceP(x),
we may prune the behavior associated with irrelevant components of the process type. We then get
back to the process

Up(z) = z(n).z(n+1).0

which can still be shown to conform to the rich interface type UplnterfaceP(x), in a precise sense,
since we know the process passed type-checking with the extra information.

Our technical results show that our logical type system enjoys type preservation under reduc-
tion in a rather strong sense, and (global) progress, meaning that well typed processes never get
stuck. The standard result of type preservation naturally holds in our system (Theorem 3.3). A
stronger result, relating reduction in the process world and cut reduction/conversion steps in the
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sequent calculus world also holds, but is out of the scope of this particular presentation. The
progress property (Theorem 3.5), in our setting, implies not only that all communications pre-
scribed by types will succeed, but also that all “assertions” captured by dependent types hold at the
appropriate protocol steps.

The presentation is structured as follows: In Section 2 we discuss our interpretation of linear
logic as session types, beginning with a session composition principle that is embodied by a se-
quent calculus cut. We interpret each of the propositions of intuitionistic linear logic as session
behaviors, beginning with the multiplicative fragment, followed by atomic propositions, additives
and exponentials and, finally, quantifiers, which correspond to input and output of proof terms.
Section 3 presents the results of type preservation and progress for our type system. Section 4 de-
scribes the usage of proof irrelevance as a form of type-directed runtime optimization of processes
and Section 5 concludes.

2 Linear Logic as Session Types

In this section, we present our correspondence of quantified linear logic propositions as session
types for a term passing m-calculus by interpreting each linear logic proposition as a type describing
the session behavior of a particular channel (a summary of the process calculus definition is given
in Section 2.9). The interpretation extends the one given in [10] with a functional layer, based on
some dependent type theory, giving meaning to base types, and also crucially, with universal and
existential dependent type constructors.

We begin by first defining our typing judgment. We start off with a single typing context A
which is used according to a linear discipline (it is not subject to weakening or contraction). Later
in the paper we add new context regions as necessary to account for the full generality of our
system. Our type system assigns types to channels. The context A records assignments of the
form x : A, denoting that a process typed under such an assumption expects to be placed in an
environment providing the behavior A along channel x. Our typing judgmentis: A = P :: z : A,
meaning that process P implements, on channel z, the session behavior described by A provided
it is composed with a process environment that implements the behaviors specified by A (linearity
imposes that all behaviors specified in A are completely used by P). We tacitly assume that
all channels declared in A and the channel z are distinct. We can apply renaming as necessary
to satisfy this condition. We always consider processes modulo structural congruence, therefore
typing is closed under structural congruence by definition.

In existing presentations of session types [22] a notion of type duality is commonly present, in
which the behavior of the inhabitants of a type is in some sense symmetric to the behavior of the
inhabitants of its dual (e.g. the output session is dual to the input session, the choice session is dual
to the branch session). In our setting a notion of behavioral duality also arises naturally from the
additive and multiplicative nature of linear logic propositions. Multiplicative conjunction &® and
implication —o are dual in the sense that using a session of one type is equivalent to implementing
a session of the other. The same applies to additive conjunction and disjunction.



2.1 Cut as composition

A fundamental aspect of process calculi is parallel composition. Parallel composition allows for a
process to rely on the functionality of another to implement its own. In our typed setting, this means
that given a process P that implements behavior A along some channel x, thatis, A = P :: x : A,
we can take a process () that uses the behavior of type A (and maybe more) to implement the
behavior C' on z (formally A, x : A = @ :: z : C) and compose the two processes so that the
composition provides C' along z outright. Since we follow a linear typing discipline, () requires
all the behavior supplied by P along x and therefore the composition must restrict the scope of
x to the two processes. The cognoscenti will have already identified this reasoning principle as a
sequent calculus cut, and we thus obtain the rule:

A=P:x:A Nzx:A=Q:z:C
AN = (va)(P|Q):z:C

cut

When we compose two processes as in the above rule, we do so in order for them to interact with
one another. In general, both P and () may perform some interaction with the outside environ-
ment, but the point of composing them together with a shared local name is so they communicate
with each other and evolve together to some residual processes P’ and ()’. All of these process
reductions (interaction with the “outside world” by P, by (), and interaction between P and ())
can be given meaning through the reduction of cuts in a proof. We thus take the correspondence
of principal cut reductions and process reductions as a guiding principle in our design, just as the
correspondence between proof reductions and A-calculus reductions are the guiding principle for
the Curry-Howard isomorphism.

We now build up the system, following and extending [10]. We interpret linear logic proposi-
tions as types that characterize behaviors of processes as session-based interactions. The grammar
of propositions is given by:

A B = 1 | 87 |A—B| A®B | A
| A& B|A® B|Ve:r.B| Jx:1.B

2.2 Linear implication

The usual way of reading A — B in linear logic is that, given an A, we consume it and produce
a B. Alternatively, we can think of A — B as receiving something of type A and producing
something of type B. We therefore type a channel =z with A — B as:
Ajx: A= P: z:B
A= z(x).P:zA— B -

R

Given a process that performs an input on z, binding it to  and continuing as P, we can type z with
A —o B if, under the assumption that x provides a behavior of type A, P will use that behavior to
provide B along z. We have defined what it means to type a channel with A — B, so we must
now define what it means to use such a channel:
A=P:y:A A zB=Q::zC
AN 2 A — B = (vy)z(y).(P| Q) = 2:C

—olL

4



We use a channel of type A — B to produce behavior C' along z by first outputting a fresh name
y. Since the contract of x : A — B dictates that x expects to receive a session that is to be used
as A, we must ensure that such is indeed the case, which we do by having P provide A along y.
Having given x a channel of type A, it will now provide behavior of type B, which can be used by
@ to provide C' along z. We can see that this interpretation is reasonable by composing an instance
of —oR with an instance of —oL and appealing to our guiding principle of corresponding process
reductions with cut reductions (we omit the full typing contexts for brevity):
yA=P:xz:B = QYA B= Q9 z:C
= x(y).P:2:A—o B 12:A— B= (vy)z(y).(Q1 | Q2) :: z:C
= (vz)(z(y)-P | (vy)a(y).(Q1 | Q2)) :: 2:C
=@ yA yA= P xB
= (vy)(Q1 | P) :: :B x:B=Qy:2C
— = (vz)((vy)(Q1 | P) | Q2) :: 2:C

We can isolate the process reduction induced by this cut reduction

(vz)(x(y)-Pl(vy)z(y) (Q1]Q2)) — (va)((vy)(Qi| P)[Q2)

and observe that, modulo structural congruence, it is the expected interaction between an input
process z(y). P and output process z(y).(¢); | Q2) along a private channel z.

2.2.1 A simple example

Consider we want to describe a bank service in our system. With what we have presented so far,
we can specify what is, for the moment, the protocol of a very simple bank process that receives a
string encoding a user’s identification and an amount that is to be deposited and just terminates:

TBank = $string —o ($nat —o 1)

We have not yet introduced base types (such as $string), but we will get into that shortly. The
multiplicative unit 1, as we show in the following section, denotes the terminated session. An
example of a process providing a session of this type on channel x is:

x(s).z(n).0 :: z : TBank

This is not yet a particularly interesting example. However, as we interpret more linear logic
connectives, we can gradually refine our bank specification to describe richer and more interesting
features.

2.3 Multiplicative unit

The multiplicative unit of intuitionistic linear logic, written 1, is a proposition that is proved using
no resources. Dually, using the unit just consumes it, providing no resources. In a process calculus
setting, we interpret 1 as the terminated session:

A= P:z:C
Tz

Ar:1= P: 1L

1R

=021 C
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We provide a session of type 1 with the terminated process (it uses no further ambient resources)
and use it (if such is even the appropriate term) by simply erasing. This is one of the two cases
where no process reduction takes place in composition, since the inactive process and the scope
restriction are erased through structural congruence, not through reduction:

= P:z:C
=0:2:1 z:1=P:z2:C
= (vz)(0| P)::z:C = =>P:uz:C

Note that in terms of behavior duality, 1 is self-dual.

2.4 Multiplicative conjunction

Multiplicative conjunction, written A ® B, means that we must be able to divide our resources (in
our interpretation, the sessions available for interaction in the context) in such a way that we can
produce both an A and a B. In fact, the rules for ® exhibit a deep symmetry with those for linear
implication (® is behaviorally dual to —o in the manner explained in the introduction of Section 2).
We exploit this symmetry and interpret ® on the right as output and as input on the left:

A=P:y:A N=Q:z2:B
AN = (vy)z(y).(P1Q):z: A® B

®R

Since we need to able to provide both session behaviors A and B, we output a fresh channel v,
through which the process P provides a session of type A. Since we are already communicating
along z, we use it to provide a session of type B, which is realized by process (). We use a session
of type A ® B as follows:

Ay:Ajx:B=P:z:C L
A,x:A(X)B:>:I;(y).l’:’::z:C®

We input along x, because the contract of = : A ® B enforces that an output of a channel which
can be used as a session of type A will take place on x, we bind that channel to y, and we can
then safely use = as providing type B to provide C' along z. The reduction that supports this
interpretation is:

=P yA =P :xB y:Ax:B= P:zC
= (vy)z(y).(P | P2) nx:A®B 2:A® B = z(y).Q :: 2:C
= (va)((vy)z(y).(P1 | P2) | 2(y).Q) = 2:C
=Py A yAxeB=Q:zC
= P, x:B B = (vy)(P | Q) :: 2:C
T S B WP Q) 5 sC

Again, modulo structural congruence, this is exactly the appropriate process reduction, communi-
cating along the private channel z.



2.4.1 A slightly less simple example

The example of 2.2.1 consists of a bank specification that only allows a client to send its user
identification, an amount to be deposited and then terminate. Now that we have available the ®
type, we can slightly enrich our bank to send back to the client a receipt of the deposited amount:

TBank = $string — ($nat —o ($nat ® 1))
For which we can produce the process:
2(s).z(a).(vr)z(r).(Preceipt | 0) = 2 : TBank

where Peceipt 15 @ process that will return an appropriate receipt back to the client. In order to
give a precise definition of Pleceipt We need to develop a way of mentioning basic values such as
numbers, which we do in the following section.

Note, however, that this is still a rather simplistic bank process in that it only offers deposit
operations (which would not leave its clients very happy), and only runs once. Moreover, this
specification only really guarantees that the bank will send back a number. Nothing ensures that it
really corresponds to the same value that the client wanted to deposit. In the following sections we
develop our system to adress each of these issues, ultimately building up to the a dependent linear
type theory of sessions.

2.5 Base types and the identity rule

In the previous section we have shown how to interpret linear implication and conjunction as the
types of input and output sessions, respectively. Before proceeding to the remaining linear logic
connectives, we will assign meaning to base types and interpret the identity axiom of linear logic.
As we have hinted at in the previous example, these turn out to be essential for our development.

A base type $7 denotes a proposition that can only be ultimately proved from an ambient
assumption of that particular type because it cannot be decomposed further. In this sense, $7 is an
atom. Moreover, linear logic only allows us to prove $7 if it is our only remaining resource. In
previous work [10], since the focus was on interpreting the composite connectives as pure process
behavior, no interpretation was given for atomic types. Here, atomic types connect us to another
language layer.

Commonly, we want processes to exchange data, such as numbers and strings (indeed, most
work on session types takes this for granted and assumes that processes exchange channels and
data values [24, 8, 7, 20]). In our approach processes communicate not just names, but also terms
of a functional language that assigns meaning to the base types of the full calculus and, as we show
in Section 2.8, produces the witnesses for universally and existentially quantified types.

Note that while these terms populate base types, the types need not actually be atomic in the
term language. Any extra type structure only has meaning in the term language, while from the
perspective of the process calculus they are opaque types with no further decomposable structure.
Letters M, N range over the terms of this language and we rely on a separate judgment for well-
formedness of such terms, written W = M : 7. W is a context region that is reserved for the term



language (we may trivially add the context W to all the sequents in the rules we have seen so far,
since these do not affect V). Note that 7 itself has meaning in the functional language, while in the
process calculus all such types are internalized as $7.

We refrain from fully specifying the term language to maintain full generality. We instead
assume that the term language is defined by some intuitionistic system of natural deduction with
the usual properties of substitution and weakening (we could relax the requirement of weakening
by considering a typed linear lambda calculus as the term language such as [13], but we refrain
from doing so for simplicity of presentation).

We only require two additional rules to fully account for base types and the corresponding
terms of the functional language:

VE-M:T1
U= [z M]:z:$7

$R

The $R rule allows us to use terms from the functional language to give meaning to names at base
type. The process construct [z <— M| locates functional term M at name z (we will introduce the
operational semantics for this construct shortly). The final missing piece is a rule that takes names
of base type from the linear context and places them in the appropriate W context:
Vrx:msA=P:uz:C
VA x:$7r=P:z:C

$L

This rule realizes our design to give meaning to base types in the external functional language:
given a channel that provides complex session behavior, we successively play out the session down
to its basic constituents (which are the types of the functional term language, the terminated session
1 or, as we detail later, persistent sessions), at which point, if we are in the presence of a base type,
we move it to the context ¥ where it can be further interpreted as needed.
We can now determine what the behavior of the construct in the $R rule should be:
FM:T x:7;-=>Puz:C
s+ M:ux:$r z:$97=P:uz:C
= (vr)([zr < M]|P):z:C

— = P{M/z}:2:C

where P{M/x} is the substitution of term M for variable = in P. The construct [z < M] is
reminiscent of the applied m-calculus notion of active substitution [1]. In the applied 7-calculus,
there is no reduction step like the one above, and the substitution is instead silently performed
by a structural congruence principle. Although we might have alternatively interpreted this cut-
elimination step by a structural congruence (as we have done for multiplicative unit), we prefer not
to do so, without any loss of generality, to maintain a crisper correspondence with the dynamics
suggested by the proof theory.

2.5.1 Identity as renaming

We have stated that hypotheses denote the existence of ambient names providing certain behaviors.
On the logical side, initial sequents ¥;x : A = P :: z : A allow us to use an assumption directly
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to prove the conclusion, a rule absent in [10]. We know that = stands for a name or a term of
type A, whatever it may be, and we want to make use of z to provide that same A as z. We
thus want to equate x and z as the same, and that is precisely the behavior that process P must
implement. For this we introduce a new process construction, [z <> z], meaning that both names
are interchangeable, obtaining the rule:

\If;x:A:>[x<—>z]::z:Aid

The proof reductions that we obtain in cut elimination can inform us of what the reductions should

be:
y:A=y<z)iax:A v:A=Puz: C

y: A= wa)(ly<z] | P)=z:C
—y: A= Ply/z} = z2:C

=Pur:A z: A=z nz A
= (wr)(Pllxrz]) nz: A

— = P{z/z}uz: A

And so interchangeable names will, operationally, be substituted for each other. We are justified
in renaming one to the other in a type-safe way. It is possible to replace this construct at any
composite type by a process that acts as an intermediary between the ambient session and the
provided one, simply acting as a copycat process, until we reach a base type, at which point the
two names are equated to refer to the same functional term. This is the computational content of
the meta-theoretic proof of admissibility of the identity rule (or initial rule) in a sequent calculus.
The two rules above define the reduction of the renaming construct with the proviso that y and
z do not occur in P, respectively. In general, we impose the formation restriction that one of the
names appearing in the renaming construct must be bound, while the other one must not occur
within the remaining scope of the renaming construct, which is enforced by our typing discipline.
By adding a structural congruence, [y <> x] = [z <> y], we can summarize the two rules as one:

(vz)(ly < 2] | P) — P{y/z}

2.6 Additive conjunction and disjunction

We now turn our attention to additive conjunction, written A & B. Additive conjunction represents
alternative availability of resources (we are prepared to provide sessions A and B, but can only
provide one of them), where the choice of resource A or B is made by the client of A & B. We
thus type a channel with A & B if it offers a choice between the two behaviors A and B:

UVA=P:z:A V. A=Q:z:B
U:A = zcase(P,Q) ::z: A& B

&R

The process above branches to provide either A or B. If A is selected, the process P provides the
necessary session behavior along z, otherwise, process () provides the session behavior B along z.
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We can use a channel of type A & B by triggering either one of the possible choices:
UV, Ajx: A= Puz:C

U Ax: A& B=xin;P: z:C

UV Alz:B=P:z:C L

U Ax: A& B=xinr; P z:C &bz

&Ly

This form of minimal labeled choice is comparable to the n-ary branching constructs of standard
session-oriented 7-calculi [24]. The behavioral dual of binary branching is binary choice, which
corresponds to additive disjunction:

UV A= Pz A
UV, A= zinP:2: A® B

V.A=P:z:B
U, A= zinr;P::z: A® B

DRy

DR

This means that in order to use a session of type A & B to offer a session behavior of type C', we
must be able to offer C' for both possibilities of the choice:
UV:Ax:A=P:z:C V;Alz:B=Q:z:C
U:Ax: A® B = z.case(P,Q) :: z: C

oL

The reduction we obtain through composition is:
=P A =P :aB A= Q::zC
= x.case(P, ) m A& B A& B = z.inl;Q :: 2:C
= (vz)(z.case(Py, P,) | z.inl; Q) :: 2:C
=P A A= Q 2O
— = (vo)(P | Q) = z:C

and symmetrically:
=P 2xA = P:aB rB=Q:z:C
= x.case(P, ) m A& B ©:A& B = z.inr;Q :: 2:C
= (vz)(x.case(Py, P,) | z.inr; Q) i 2:C
=P x:B x:B=Q:zC
— = (vo)(P | Q) 2:C

2.6.1 A slightly less simple example. .. with choice

We refine our previous bank specification to account for the fact that a bank offers several possible
operations to its clients. In particular, we consider the deposit operation of Section 2.4.1 and
consulting the account balance:

TBank = $string —o (($nat —o ($nat ® 1)) & ($nat ® 1))
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We abstract the details of performing the deposit operation with a function dep : string — nat —
nat that takes the user identification and the deposit amount and returns the receipt, and the details
of obtaining the balance of an account with a function bal : string — nat that takes the user
identification and returns the balance of the account:

2(s).z.case(z(a).(vr)z(r).([r < dep(s,a)] | 0),
(vb)z(b).([b < bal(s)] | 0) :: z : TBank

2.7 Replication and exponential

We now develop the technical apparatus to provide an interpretation of the linear logic exponential
IA. Proof-theoretically, the exponential enables a form of controlled weakening and contraction.
More precisely, a proposition ! A provides an arbitrary number of copies of A (possibly 0). This
means that to prove !A, we cannot use any linear resource, otherwise we would not be able to
use A an arbitrary number of times. To cleanly account for the ability to weaken and contract
certain resources, we split the context in an unrestricted zone that is subject to weakening and
contraction, which we call I, and the linear zone (not subject to weakening or contraction), which
we still denote as A (this form of context splitting is consistent with Barber and Plotkin’s DILL
[4]). Variables declared in I are called unrestricted and are denoted by (u, v, w). As before with
the context ¥, we simply add I" to all sequents in the rules we have presented so far, since they do
not use or change I' in any way.
We can now assign the type !A to a channel z as follows:

U:I-=Puy: A
U =lz(y). Pz 1A

'R

We represent the persistent (or unrestricted) nature of the exponential by using an input-guarded
process replication construct. The above process expects an input along z (call it y) to trigger the
replication. The received name y will be the one through which P provides the session behavior of
type A. Since the input is replicated (and P does not depend on any linear sessions), the process
is able to provide an arbitrary number of copies of the session behavior A. Note that while we do
require the linear context to be empty, we can use any ambient persistent session channel (called
standard channels in [19]) in I" to implement a session of type ! A.

Using a (linear!) channel z of type ! A conceptually requires two steps. The first is to unlock
the ability for this channel to provide session A multiple times. This is accomplished simply by
renaming, taking care to make sure that the new channel « : A is persistent and therefore declared
il U:u: A A= Pz C

U Az A= Plz/u} o 2: C

The second step is to actually create a fresh channel y : A while retaining the capability to create
more in the future, encoded by keeping u : A in the context.

L

U:lu: AN y: A= Puz:C
U:lu: A A = (vy)u(y).Pz: C

copy
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This copy rule is characteristic of sequent calculi implementing DILL. It is interesting that !L
merely renames, while copy outputs a new bound name, being the computationally significant
operation.

To follow our program of identifying process reductions with principal cut reductions, we must
first observe that our previous composition rule cut cannot properly account for ambient unre-
stricted assumptions and thus does not completely explain typed composition in its full generality.
In fact, if we simply compose the instances of |R and !L using cut:

U= P:yA U uwA;A=Q: z2:C
U= lz(y).PzlA 0 U A 2lA = Qe /u} = 2:C
U A = (ve)(lz(y).P | Q{z/u}) == 2:C

not only can we not produce a process reduction (which is expected due to the “silent” nature of
IL), but we also are unable to produce a proof reduction, since up to this point we have not defined
a persistent version of cut. We can fix this by considering a composition rule for unrestricted
sessions:

Ulh-=Pur: A Tu: A A=Q:z:C |
VDA = (wu)(lu(@) P Q) z:C cut

Given a process P that provides a session A along x without using any ambient linear sessions,
and a process () that implements session behavior C' along z by (potentially) using the unrestricted
ambient session u : A (as well as linear ambient sessions A), we may compose () with P if we
prepend a replicated input along u to P, so it may now provide the necessary multiple copies of the
session behavior A to produce a process that provides C' along z outright. We can now exhibit our
correspondence on the copy rule, where the process reduction is matched with a proof reduction
obtained by the elimination of a persistent cut:

wA; A= Q ::z2:C
= PuxA wA;= (vo)u(x).Q : 2:C
= (vu)(lu(z).P | (vo)u(zr).Q) :: 22C —>
wA= P 1A wArzA=Q: zC
= P:xA wA= (vz)(P|Q):2C
= (vu)(lu(z).P | (vz)(P | Q)) = z:C

If we now revisit our previous composition of !R and L, we can observe that the process composi-
tion is structurally equivalent to persistent composition (which we know to exhibit the appropriate
process reduction when the persistent session u is actually used). Similarly to what happens with
1, this is also one of the situations where we witness a proof reduction (of a cut to a persistent cut)
that is matched by structural congruence in the process calculus. Note that the proof reductions of
the persistent cut are again matched by process reductions (as we have shown above).

This form of composition of unrestricted resources introduces a proof conversion in which
the unrestricted resource is “garbage collected” if never used. We can interpret this conversion as
extending the standard structural congruence = between processes with the following rule (we will
refer to this extended congruence as =g):

(wz)(lz(y).P | Q) =s Qif x & fn(Q)
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While not essential to our development, =g allows us to provide a more concise statement for
some of the theorems of Section 3.

2.7.1 A bank with a persistent service

Having properly defined persistent sessions through linear logic exponentials, we can now have a
bank service that persists through multiple sessions, instead of just being available for one usage:

TBank = !($string —o (($nat —o ($nat ® 1)) & ($nat ® 1)))
We modify the bank process to be

12(y)-y(s).y.case(y(a).(vr)y(r).([r < dep(s,a)] | 0),
(wb)y(b).([b « bal(s)] | 0)) :: = : TBank

which now receives a session channel (bound to y) and spawns a replica that provides the behavior
$string —o (($nat —o ($nat ® 1)) & ($nat ® 1)) along y.

We now have what may seem to be a good specification for what a bank process should be.
However, if we only consider the type TBank, we are really only describing a persistent service
that will receive a string and give a choice between either receiving a number and sending one
back or just sending a number. When seen under this light, it becomes less obvious that we should
be happy with our specification of what a simple bank process should be. In the next section,
we develop a way of refining the specification such that typing will ensure strong guarantees not
just on the pure session behavior, but also on the relationships between the actual communicated
data. This refinement comes from the universal and existential quantifiers of linear logic, which
are interpreted as a form of dependent product and sum, respectively.

2.8 Quantification and term passing

In intuitionistic first-order linear logic we usually consider the quantifiers Vx.A and Jx. A as rang-
ing over a single domain that is left unspecified in order to study quantification in a general setting,
independent of a particular domain of discourse. We now reconsider the quantifiers as Vx:7. A and
Jx:7. A, and therefore focus on quantification where the domain of discourse is typed (in particular,
with a type 7).

Let us first consider universal quantification. Logic allows us to conclude Vx:7.A if by hy-
pothesizing the existence of some element of type 7, labeled by =, we can prove A (which may
depend on x). In linear logic, the hypothesis x : 7 is given an unrestricted character since it avoids
the problematic situation where a proposition may refer to an object that may have already been
consumed. Conversely, we use an assumption of Vx:7.A by providing an object of type 7, which
enables us to use A with the free variable x appropriately instantiated (in type theory this means
that A depends on a term of type 7). We thus interpret a channel of type Vz:7. A as follows:

Ve:mI"A=Puz: A
U:INA = z(x).Pz:Vo:1.A

VR
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Similarly to how in type theory the universal quantifier corresponds to implication, we type the
name z with Vz:7.A if after performing an input of a term of type 7, we can type z with A in the
continuation P. We now define how to use a name of type Vy:7.A:

UVEN:7 U, T;A2: A{N/y}=P:z:C
U Az :Vy: A= x(N).P:z:C

VL

To use an ambient channel x of this type, we must output a functional term of type 7. Upon doing
so, z now offers the session A, where the free variable in A has been instantiated with the term IV,
which we can use in P to provide session C along z.

We choose to use functional terms as the quantifier witnesses because they allow us to refer to
the values communicated by processes (which are defined by the same functional language). This
allows us to express rich properties of the values communicated by processes (which we will see
shortly). Furthermore, it allows us to give a clean and logically based account of processes that
exchange proof objects (i.e., the functional terms) which can serve as a form of inspectable proof
certificate (vis., a high-level model of proof carrying code [29]).

The reduction for the processes in VR and VL is:

yr;— — = PuxA FN71 v A{N/y} = Q:2C
= z(y).P :: a:Vy:T. A zr:Vy1.A= 2(N).Q :: 2:C
= (vz)(z(y).P | 2(N).Q) :: z:C
= P{N/y} = x:A{N/y} z:A{N/y}=Q :zC
— = (vz)(P{N/y} | Q) :: z:C

We now consider existential quantification. Logic allows us to conclude Jz:7. A if we can produce
a witness of type 7 and (potentially) use it to show A (in which x may be free and therefore we
need to instantiate the variable x with the witness). Just as universal quantification was interpreted
as term input, we interpret existential quantification as its behavioral dual, that is, as term output:

UVEN:7 U, T5A= Pz A{N/x}
U:INA = z(N).Pz:der. A

IR

The term N provides a witness of 7, which is used to instantiate = in the session type A provided
by P along z. Using a channel of type Jy:7.A is defined as:
Uy ;A z: A= P:z:C
U:Az: Jyr A= x(y).Pz: C

JL

Given that the contract of = : Jy:7.A is to output a term of type 7 along = and then provide
behavior A (with the appropriate instantiation of the variable y), we use a session of existential
type by performing an input along x, that is bound in the continuation as y, which then uses the
residual behavior A to provide C along z.

14



The reduction of the process composition is identical to that for sessions of universal quantifi-
cation type:
FN:7 = P:a:A{N/y} yrrA= Qo zC
= o(N).P :: x:3y:1. A r:3y: A= 2(y).Q  2:C
= (vz)(x(N).P | 2(y).Q) :: z:C
= P o A{N/y} A= Q{N/y}:zC
— = (vz)(P | Q{N/y}) :: z:C

We must note that as of this moment in our presentation, our system is not yet a truly dependent
type theory of sessions, since we have not yet defined a way in which we can actually have oc-
currences of the quantified variables in the bodies of types. In logic, this is achieved by allowing
atomic propositions p to depend on (typed) variables, that is, to have atomic propositions be pred-
icates on typed objects (e.g. in Va:7.p(z), p is a predicate on objects of type 7). In type theory,
predicates correspond to indexed families of types. For instance, Vz:7.p(x) defines a type family
p indexed by objects of type 7, that is, p(N) is a type for any object N of type 7. We refrain
from presenting further insights into the technical aspects of dependent type theories for the sake
of brevity, simply noting that their expressive power gives rise to practical and useful solutions to
problems that range from foundational aspects [27, 15, 16] to more practical aspects of computer
science [35, 30].

In our interpretation, we assume that we can define type families in the functional term lan-
guage, that is, the functional term language is a dependent type theory in the style of [21, 30]. We
thus introduce the final requirement that makes our interpretation a fully dependent type theory of
sessions.

2.8.1 A more sophisticated bank service

We now extend our running example of the bank process to a system with a bank and an ATM that
interfaces between the bank and its clients. The ATM charges any client a small amount for any
operations performed. We therefore specify such an ATM, with the additional caveat that it may
only charge at most 2 dollars per operation, and it must provide a proof of such to the client. We
begin with the bank specification:

TBank = (Vs : string.$uid(s) —o
(Vn : nat.$deposit(s,n) —o (Sreceipt(s,n) ® 1)) &
(3m : nat.$balance(s,m) ® 1))

By using dependent types at both the session level and at the functional term level, we can provide
a refined specification in which the bank receives the user identification and then offers the deposit
and balance operations: the former receives a deposit order of n dollars for the specified user s and
issues a receipt that refers to s and n (all of which is ensured by typing); the latter simply issues
a balance statement that refers to s and an amount m corresponding to the account balance. We
use dependent functions dep with type ILs : string.IIn : nat.deposit(s,n) — receipt(s,n) and bal
with type Ils:string.Xm : nat.balance(s, m) to implement the bank process (;(/N') denotes the ith
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projection of NV):
).y(id).y.case(y(n).y(d).(vr)y(r).
= dep(s,n,d)] | 0), y(m (bal(s))).(vb)y(b).
([b < ma(bal(s))] | 0)) :: z : TBank

The ATM client interface specification is (to make matters simpler, we assume the ATM only
performs deposits):

TATMClient = Vs : string.$uid(s) —o
(Vn : nat.$deposit(s,n) —o Im : nat.
dp:(n—2<m < n).($receipt(s,m) ® 1))

L2(y)-y(s
([r

The client sends its user id, a deposit instruction for some amount 7, and the ATM sends back to
the client the receipt for the deposited amount, along with a proof object p that guarantees that the
amount charged for the deposit is within the bounds imposed by the specification. Note that we
can now ensure by typing alone that any well-typed ATM will be guaranteed to not overcharge its
clients. For the ATM process, we use a function charge of type:

charge : IIs:string.Iln : nat.deposit(s,n) —
Ym :nat.Xp: (n —2 < m < n).deposit(s,m)

The charge function takes the deposit object and issues a new deposit object, providing the nec-
essary proof objects to ensure that the amount charged for the operation is within specification
bounds. An inhabitant of type TATMClient (assuming the bank session is available on channel x)

is:
2(s).2(id).2(n).2(d).
(vy)a(y).y(s). (vi)y(@).([i < id] |
y.inl; y(m (charge(s,n,d))).
vd)y(d).([d  ma(ma(charge(s, n, )] |
y(r).z(m (charge(s,n, d))).
z(m(ma(charge(s, n, d)))).
(wt)z(t).([t <> r] | 0))) :: z : TATMClient

Note that there are potentially several inhabitants of the type TATMClient, due to the many possible
ways in which the communication on the bank session channel = and the client session channel z
can be validly interleaved (e.g. the ATM might send the proof objects to the client before sending
the deposit message to the bank).

2.9 Summary

We now take a step back and summarize. We have presented a type system of dependent session
types for a term passing 7-calculus, whose process constructors are given below:

P == 0|PlQ|(vy)P
| 2(y).P [ =(N).P | z(y).P
| lz(y).P | z.inl; P | z.inr; P
| w.case(P,Q) [ [y < a] | [z < N]
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The typing rules for our system are summarized in Fig. 1, which is defined modulo structural
congruence. Structural congruence is the least congruence on processes defined by the following
rules:

Plo=P P=,Q=P=Q
PlQIR)=(P|Q)|R PlQ=Q|P

x € m(P)= Pl(vx)Q = (vx)(P|Q) (vz)0=0
(vz)(vy) P = (vy)(ve) P ly < 2] =[z+y

The operational semantics for the [y > x] and [z < N] constructs, as informed by the proof
theory, consist of channel renaming and term substitution, respectively. The channel renaming
construct’s behavior is to “re-implement” an ambient session on a different name. The reduction
rules for our calculus are summarized below:

z(y).Q | z(z).P — Q| P{y/z}
w(y).Q [ 12(2).P = Q| P{y/z} | lx(2).P
(N).Q | x(2).P — Q| P{N/z}

(va)(z < y] | P) — P{y/x}

(vz)([x + N]| P) — P{N/x}

z.inl; P | x.case(Q,R) — P | Q

x.inr; P | z.case(Q,R) - P | R

Q—=Q=P|Q—->P|Q

P—= Q= (vy)P — (vy)Q

P=P P —-Q,Q0=Q=P—Q
The term substitution construct is similar to the active substitutions of the applied m-calculus,
with the particular differences that active substitutions are persistent and applied by structural
congruence, while ours obey a linear discipline and are applied by an actual reduction step. Our
term language is also very different from the one in the applied m-calculus, since our terms are
defined in a functional language that does not include the notion of process calculus (channel)
name, whilst the terms in [1] can contain names. A labeled transition system that characterizes

relevant external actions can be defined by a judgment P -+ (), where « denotes an action that
can be silent, an output or input of a (bound) name or of a term:

a z= 7| W2)z(z) | x(y) [ #(N) [ 2(N)

We now present some of the formal results that we have established for our system.

3 Properties of the type system

In this section we establish the results of type preservation and progress for our type system,
following the results of [10]. The proof of type preservation relies on several reduction lemmas
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i UkEM:T Vor:mI5A=> Pz C
\I/;F;x:A:>[ac<—>z]::z:Ald \II;F;-:>[2<—M]::Z:$T$R \IJ;F;A,x:$T:>P::z:C’$L
UIA=P:z:C U= Puy: A
\I';F;~j0::z:11R W;F;A,x:ljp::z:ClL ;T = l2(y).P:z: 14 'R
U:Tiu: A; A= P:z:C " Ul u: A;Ay: A= P:z:C copy
U: A 2 1A= P{z/u} i z:C Ul u: A A= (vy)uly).Puz: C
UIA=P:z:A U, I"A=Q::z2:B U:IAx: A= P:z:C
U: ;A= z.case(P,Q)::2: A& B &R U:TsAz: AXB=z.in;P::z:C &b
U:IsAz:B=P:z:C UIAj=>Puy: A U IAA=>Q:2: B
A z: A& B=ainr Pz C &bs ;T A1, Ay = (vy)2{(y).(P| Q)i 2: A® B “R
U IsAy: A,z :B=P:z:C U.IA=P:uz: A
U T5A2: A B=z(y).P:z:C 3L U:I"A=zin;P::z: A® B BRy
. I"A=P:z:B UIAz:A=P:z:C U TIAx:B=Q:z:C
U:TA=zinnbP:z: A& B ORs U TsA2: A® B = z.case(P,Q) :z: C Bl
U o:mINA=Piz: A UEN:7 UTA2: ANy} =P:uz:C
U T5A = 2(z).Pz:Ve:1.A R U TsA 2 :Vy: T A= 2(N).P:z:C L
UEN:7 U;T;A= P:A{N/z} U y:m A c: A= P:z:C
U:IA= 2z(N).P:z:3x:7.A U A z:Jy: 7 A=x(y)Puz: C AL
U:IAj=Puxz: A U IAz:A=>Qz2:C Ul =Puz:A V. Thu: A A= Q:z:C \
U: T AL, Ay = (v)(P Q) =z: C cut U A = (vu)((lu(z).P) | Q) z: C cut

Figure 1: A Dependent Type Theory of Sessions.
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that relate process reductions with parallel composition through the cut rule. We illustrate these
with the cases for the quantifiers.

Lemma 3.1. Assume
(a) ;I Ay = P:x:Vy: 7. Awith P ) pr

(b) U:T'; Ao,z :Vy:7.B=Q :: z: Cwitth<—]>V> Q'
Then:

(c) U;T5 A1, Ay = (va)(P Q) = 2:C
Lemma 3.2. Assume

(a) V;I' Ay = P:x:3dy:7.Bwith P “N P and

(b) ;T Ag,x:Jy:7.B=Q :: z: Cwitth(—]>V) Q'
Then:

(c) U;T5 A1, A = (va)(P Q)2 C
We can now state and sketch the proof of type preservation.

Theorem 3.3 (Type Preservation). IfV: [ A= P:z:Aand P — Qthen V;I; A = Q :: 2 :
A

Proof. By induction on the typing derivation. When the last rule is an instance of cut, we appeal to
the reduction lemmas, one for each type C of the cut formula (these are of the form of Lemmas 3.1
and 3.2), or to the rules for renaming and substitution. 0

To establish progress, a lemma that establishes a contextual progress property is required. First,
we define:
live(P) 2 P = (vn)(Q | R) forsome Q, R, 7

where () = 7.Q)' (7 is a non-replicated prefix), ) = [z <> y| or Q = [z < N]. Given an action
label o, we denote by s(a) the subject of the action « (i.e., the name through which the action
takes place). We can now establish the contextual progress property (note the use of =g, defined
in Section 2.7).

Lemma 34. Let V;I'; A = P :: z : C. If live(P) then there is () such that one of the following
holds:

(@) P—@Q,
(b) P = Q for some a where s(a) € z,T', A and s(o) € T, Aif C = A,

(c) P =g [x < z], for some x € A,
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(d) P =g [z < N] for some N.

Proof. Induction on typing. The proof is similar to that of [10], with more cases when the last rule
applied is cut, to account for renaming, term substitutions, and quantifiers. 0

Global progress follows directly from Lemma 3.4.

Theorem 3.5 (Progress). If -;+;- = P :: x : 1, and live(P), then there exists a process ) such
that P — Q).

Note that this is the case because P cannot perform any action « with subject x, since x : 1.

The guiding principle mentioned earlier allows us to make a stronger formal connection be-
tween cut reductions and pi-calculus reductions, but this is beyond the scope of this particular
paper (and is straightforward, given the results of [10] and the earlier presented reductions).

4 Proofirrelevance

We now tackle the problem of eliminating some of the communication overhead generated by
the exchange of explicit proof objects. Process calculi are a class of languages that allow us to
reason about concurrent processes that may or may not be executing in a distributed setting. If
such is indeed the case, there is an argument to be made that trust between the communicating
parties should not be assumed outright. In these scenarios, our system, in which properties of
the communicated data are ensured by typing but also witnessed by explicit proof objects that are
passed by processes, seems to be a reasonable way of addressing the issue of trust (or lack thereof).
A client may not trust the remote server code, but provided the server sends the proof objects, the
client may in principle check that the proof objects are valid and thus obtains further assurances on
the server.

However, it may not necessarily be the case that the communication of explicit proof objects is
required by the parties involved. For instance, the properties in question may be easily decidable,
or we have a scenario where we have code residing on the same machine that represents multiple
communicating sessions (e.g. an operating system, a file system, etc.), or it may be the case that
the communicating parties do indeed exist in a distributed setting, but have established trust by
some exterior means. In some of these cases we can type-check the process code, and so the proof
objects are in principle no longer really needed at runtime. Of course, the system as we have
presented so far has really no way of determining if it is really the case that a proof object is not
used for its computational content. Luckily, proof theory can help us, with the concept of proof
irrelevance [3, 31].

Proof irrelevance is a technique that allows us to selectively hide portions of a proof. These
“hidden” proofs must exist, but it must also be the case that they can be safely erased from a
process at runtime. This means that typing must ensure that these hidden proofs are never required
to compute something that is not erased. We internalize this notion of proof irrelevance in the
functional term language with a new type, [A] (read bracket A), meaning that there is a term of
type A, but the term itself can be safely erased before runtime without changing the meaning
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of the process. We can give a precise meaning to [A] by adding a new introduction form for
terms, written [M], meaning that M will not be available computationally. We also add a new
class of assumptions -+ A, meaning that x stands for a term of type A that is not computationally
available. Following the style of [31], we define a promotion operation on contexts that transforms
computationally irrelevant hypotheses into ordinary ones:

(-)®
(U, 2:A)®
(U, z+A)®

Ue A
e x:A

> 11> >

We can then define the introduction and elimination forms of proof irrelevant terms:

Ue - M:-A Uk M:J[A] V,z2+AF N:C
U [)A] U let [1f] = Min N:C L

And the appropriate substitution principle for the new hypothesis form:

Theorem 4.1 (Irrelevant Substitution). If ¥® = M:A and V,2+A,¥' = N : C then ¥, ¥
N{M/z}:C.

Proof. By structural induction on the derivation of ¥, x+A, V' - N : C. [

These rules guarantee that a variable of the form = + A can only be used in terms that are
irrelevant (in the technical sense). In such terms, we are allowed to refer to all variables, including
the irrelevant ones, since the term is not intended to be available at runtime. Terms of bracket
type can still be used through the let binding shown above, but the bound variable x is tagged with
the irrelevant hypothesis form, to maintain the invariant that no relevant term can use irrelevant
variables in a computational manner. Using bracketed types, we ensure that assigned terms are
never explored for their computational value, and so can be safely erased at runtime. We first
illustrate this with a very simple example and then generalize to our running example of the bank.
Consider a very simple process with the following type:

T £ Vf:nat — nat.Vn:nat.vp:(n > 0).nat ® 1

The type describes a process that receives a natural number function f, a natural number n and a
proof that the n is strictly positive (for instance, because f is not defined for 0). It will then reply
with a natural number (the result of applying f to n) and terminate. A sample process obeying this
specification is:

Server 2 x(f).x(n).z(p).(vy)x{y).([y < f(n)] | 0) =: &:T
A sample client that properly interacts with the above process is
Client £ x(M).x(1).2(N).z(r).[r <> z] =: z:nat

where M must be a term of type nat — nat and NN is a term of type 1 > 0.
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Notice that in this situation, the proof object p in Server only serves the purpose of ensuring a
restriction on n, its content is never actually used in a computationally meaningful manner. That
is, p is a computationally irrelevant proof object. We can now make use of proof irrelevance to
identify that the proof object p in Server can be erased before runtime:

T, £ Vf:nat — nat.Vn:nat.Vp:[n > 0].nat ® 1
The server process stays the same, while the Client must now send [N] instead of just N:
Client; = x(M).2{1).z([N]).x(r).[r +> 2] :: z:nat

We can define an operation 7 that, given a well-typed process, erases all terms of bracket type and
replaces them with unit elements. Let the unit type of the functional language be denoted by unit,
with the single inhabitant (). Since we do not specify the complete type structure of the types
of the functional language, we will assume, for illustration purposes, that the functional layer has
function types 7, D 7, and pairs 7; X 75. The key aspect is that { preserves the type structure for
all types except for bracketed types, which are replaced consistently with unit. We thus define
on contexts, types, processes and terms according to the rules of Fig. 2, and we can establish the
following correctness result.

Theorem 4.2 (Correctness of Erasure). If U;T; A = P :: 2:A then VT TT: AT = PT . 2: AT

Proof. Straightforward, by induction on the typing derivation. Note that in the case for the let-
binding for bracket types we rely on irrelevant substitution (Theorem 4.1) and on the fact that the
variable [z] can only occur in a bracketed term (which is itself replaced by () in 1). O

The erasure is to be applied after we have ensured that a process is well-typed (and therefore
abides by whatever specification is defined in its type), but before the code is actually executed.
Thus, the erasure is safe because we know that all properties that typing ensured still hold. After
performing the erasure {, we can make use of type isomorphisms (Fig. 3) to completely erase the
communication actions of elements of unit type, thus removing the communication overhead of the
proof objects in the original process. In our example above, the erased server and client processes
would be (up to type isomorphism):

Te £ Vf:nat — nat.Vn:natnat® 1
Servere = x(f).x(n).(vy)z{y).(ly < f(n)] | 0) = 2:T,
Cliente = a(M).x(1).z(r).[r <> 2] :: z:nat

In our running example of the bank system, if we assume the client trusts the ATM code to not
be malicious, we may employ proof irrelevance and write the type of the ATM interface as:

TATMClient; £ Vs:string.uid(s) —o
(Vn:nat.deposit(s,n) — Im : nat.
dp:[n — 2 < m < n].(receipt(s,m) ® 1))
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(A, z:A)F & At 2 Af
(T, z:A)F & Tt pAf
(U,z: A & O 2:At
(U, z+A)F & 0t
1f 21 (Vo:r. A & Vot Af
(A—B)f 2 At - Bt (Br:r. At & Jrrt Al
(A B)Yf £ Al Bt (momn) 2 7>
(Ao B = Ate Bt (mxm) 2 7 x7l
(A& B £ Afg Bt al 2 unit
(1A)T £ 1At unit’ £ unit
of £ 0 (z.case(P,Q))I = x.case(P!, Q)
(PlQ)t £ PHQf (z.inl; P)1 £ g.inl; P
(vz)P)! & (va)Pt (z.inr; P)1 £ zinr; Pt
(z(y).P)t = a(y).Pt z(M).P 2 g(Mt.pt
(z(y)-P) = a(y).P! [z 4 yf 2 [z ey
(lz(y).P)t & la(y).Pf [z« M] £ [z« M|
M = ()
(Az. M)t 2 \x. Mt
(M, N & (i, N
(let [z] = M in N) & N
Figure 2: Type directed proof erasure.
Vz:unitA = A unit@ A = A unit x A =
Jz:unittA = A unit—o A = A unit O A =

Figure 3: Type isomorphisms.
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which then allows us to safely erase the communication overhead of the proof object p. To con-
clude, the technique of internalizing proof irrelevance in bracket types provides a clean and mod-
ular way of singling out terms (through their types) that are never used for their computational
content. This provides us with the opportunity to erase these terms and minimize communication
overheads when appropriate. The erasure itself takes place in two steps: first we perform the type-
directed erasure 7 of Fig.2, in which we replace all terms of bracketed type with the unit element.
We then make use of type isomorphisms to fully erase the communications envolving elements of
unit type.

5 Concluding Remarks

We have presented an interpretation of intuitionistic linear type theory as a dependent session
type system for a m-calculus with value passing. Our framework introduces value passing by
interpreting the (higher-order) type structure of an underlying functional dependent type theory as
atomic from the process perspective. Dependent types may be used to elegantly specify properties
of data exchanged by processes in their session types (the combination of dependent types, proof
irrelevance and a logical notion of affirmation has been exploited in [32] to give an account of
digitally signed, certified code). Previous work [7] encoded these as assertions built into the session
type. In particular, we have shown how certified interface contracts, expressing rich properties
of distributed protocols, may be expressed in our framework. Our development provides a new
account of dependent session types [8] that is completely grounded in logic, and is free from
special-purpose technical machinery that is usually required in this setting.

Our approach naturally addresses challenges not yet tackled by other session type systems, such
as the use of proof-based certification in scenarios involving communication between untrusted
parties. We have also explored proof irrelevance as a way of singling out proofs that may be safely
erased at runtime. We have proven that our system ensures type preservation, session fidelity, and
global progress.

Several other connections between the m-calculus and linear logic have been establish. A first
line of research has investigated the use of linearity in type systems (see, €.g., [26, 25,9, 20]). These
type systems have not developed any interpretation of the pure linear logic connectives as behav-
ioral (session) type operators, a program that we have initiated [10], and extend here to the setting
of a much richer dependent linear type theory. A second line of work has investigated operational
interpretations of linear logic proofs in the 7-calculus and related models (see, e.g., [2, 6, 5, 23]).
We may broadly characterize these as applications of the 7-calculus as a convenient language for
analyzing linear logic proof objects, while our aim is to develop the linear propositions-as-types
paradigm as a foundation for distributed, session-based, practical programming languages, with
rich interface specifications.

In future work, we plan on extending our program of providing logical explanations to the
phenomena of concurrency to multi-party session types, which are a generalization of the binary
session types we have given logical meaning in this and prior work. To achieve this, we plan to
investigate potential relationships of multi-party sessions to linear epistemic logic [18], which pro-
vides a natural way of reasoning about several principals. Another interesting line of research is the
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development of appropriate theories of bisimulation and observational equivalence for (dependent)
session types and the study of their relationship to forms of logical and proof equivalence. Finally,
we also wish to consider a potentially tighter integration of functional and concurrent computation
that does not require the two-layer stratification that we have presented in this paper. Ongoing
research in concurrent evaluation strategies for functional programs using logical interpretations
might provide deeper insights in this particular direction.
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A Preservation

We prove a strong form of type preservation that relates process reduction steps with proof reduc-
tions (obtained in cut elimination steps). We do this through a faithful proof term assignment for
the sequent calculus (and their respective correspondence to processes), following the development
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in [10]. We present here only the rules pertaining to the connectives that are novel:

Uilo:A = id e~ [z ¢ 2] ::z:AId

V. xrm [A= D~ Piz:C
U: Iy Az = promo x (z.D) ~» P i z2:C
VM1
U:T'; - = coerce M ~~ [z < M| = zi7
U oA A= D~ P z:B
U: I A = VR (2.D) ~» 2(z).P :: 2:Vx:A.B
U NA U T5A 2:B{N/y} = D~ P::z:C
U A xVy:A.B = V0L N (x.D) ~ (N).P :: z:C v
UkENA U TA= D~ P:B{N/x}
U:I'A=3RN D~ z(N).P:: z232:A.B
Uy AT A e:B= D~ P z:C
U: Az 3y : AB= 3Lz (yx.D) ~ z(y).P:: 2:C

promo

coerce

VR

L

IR

JL

To prove preservation, we require the following lemmas:
Lemma A.1. Assume

(a) V:I' A1 =D~ P:a:Cy & Cy with P wig! P';

(b) U;T; Ao, 2:C1 & Oy b E ~» Q 12 2:C with Q =% .
Then

(c) cut D(x. E) === F for some F;

(d) V;T; A1, Ao = F ~» R:: 2 :C for some R = (vx)(P' | Q).
Lemma A.2. Assume

(@) U:T: Ay D~ P 2:Cy & Co with P25 P

(b) U:T: Ag,2:01 & Oy F E ~ Q 2 2:0 with Q %' ().
Then
(c) cut D(x. E) === F for some F;
(d) ;T A1, Ay F ~~ R z: C for some R = (vx)(P' | Q).

Lemma A.3. Assume

(a) U:T:A, F D ~» P 2:C; @ Cy with P P';
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(b) U:T: Ag,2:0, & Cy b E ~ Q 2 2:C withQ %' .
Then
(c) cut D(z. E) === F for some F;
(d) U;T; A1, Ay F ~> R::z: C for some R = (vx)(P' | Q).

Lemma A.4. Assume

(@) U;T;A, F D~ P 2:0y @ Cy with P25 P/
(b) W;T; g, 0:0, @ Co + B~ Q 12 2:C with Q ™% Q.
Then
(c) cut D (x. E) === F for some F;
(d) U;T; A1, A F ~ R::z: C forsome R = (vx)(P' | Q).

Lemma A.5. Assume

(@) U:T: Ay F D~ P a:Cy @ Cy with P 75Y pr,

(b) U;T'; Ag,2:Cy @ Co - E ~~ Q =2 z:C' with Q il Q.
Then

(c) cut D(x. E) === F for some F;

(d) ;T A1, A F ~~ R z: C for some R = (vx)(P' | Q).
Lemma A.6. Assume

(a) V:T'; A1 H D~ P:a:Cy — Cy with P xg) P’;

(b) U;:I'; Ay, 2:C; — Co = E ~ Q = 2:C with Q) (VyE><y> Q'
Then

(c) cut D(x. E) === F for some F;

(d) U;T'; A1, A F F ~» R z: C for some R = (vx)(vy)(P' | Q).
Lemma A.7. Assume

(a) ;T Ay =D ~» P:x!Awith P m(i) =
(b) \I’; F; AQ, x'A l_ E ~ Q o Z:C Wlﬂ’l Q (Vyﬁ;(y) Q/.
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Then

(c) cut D(x. E) === F for some F;

(d) U;T; A1, A F ~» R::z: C for some R = (vx)(vy)(P' | Q).
Lemma A.8. Assume

(a) V;T';- =D ~» P :uAand

(b) U;T, u:A; Ak B~ Q : 2:C with @ 5" .
Then

(c) cut' Dy (u. Dy) === cut' Dy (u. F) for some F;

(d) U;T,uwA; A F ~ R z:Cwith R= (vy)(P{y/u} | Q).
Lemma A.9. Assume

(a) V;I';-+ D~ P ::u:Aand

(b) U:T' wA; Ao b E ~ Q :: 2:C with Q (u)slv) Q.
Then

(c) cut' D (u. E) === F for some F and

(d) O;T; A F~ R:z:Cforsome R= (vu)(lu(x).P | (vy)(P{y/u} | Q).
Lemma A.10. Assume

1. \I/;F;Al:>D->P::m:‘v’y:Al.AgwithPx(—NgP’;

2. U Ag,x:Vy : A As = B~ Q2 CwithQM—NgQ’
Then

1. cut D (x. E) === F for some F;

2. U AL Ay = F ~» Rz 2 C for some R = (vz) (P | Q')
Lemma A.11. Assume

1. U: T, Ay ﬁDWP::x:Hy:Al.AzwithPﬂP’;

2. \I/;F;Ag,x:Ely:Al.Ag:EWQ::Z:CwithQI(—NQQ’
Then

1. cut D (x. E) === F for some F;

2. I A, Ay = F ~» R z: C forsome R = (vx)(P' | Q)

The proofs for Lemmas A.1 through A.9 are proved in [11]. Two extra cases are required when
D or E are an instance of $L, which just follow straightforwardly by induction, similar to the !L
cases, since $L does not add any extra process constructs.
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Al

Proof of Lemma A.10

Proof. By simultaneous induction on D and E. The possible cases for D are VR, 1L, !L, $L, cut

and cut'. The possible cases for E are VL, 1L, IL, $L , cut and cut'.

Case:

Case:

Case:

Case:

Case:

D =VR (z. Dy)and E =VLz N (x. E}).

D ~ x(y).Py and E ~ x(N).Q,

cut D (z. F) === cut [N/y|D; (z. E;) = F
F o~ (vz)([N/yl Py | Q1)

P’ =[N/y|P, and Q' = @),

D =1L y D, and F arbitrary.

Dy~ P

cut D (z. E) =cut (1L y Dy) (z. E)

=1Ly (cut Dy (z.F))

= 1L y F’ = F for some F' ~~ (vz)(P' | Q)
F o (v2)(P'| Q)

D =1L n (u.D') and E arbitrary.

D'~ P

cut D (z. F) =cut (ILn (u. D)) (z. E)

=ILn (u.cut D (z.F))

=L n (u. F’) = F for some [ ~ (vz)(P' | Q)
Foos (va) (P Q)

D =3$Ln (n.D')and E arbitrary.

D~ P

cut D (z. E) =cut (L n (n.D")) (z. E)

=S%Ln (n.cut D' (z. E))

= $L n (n. F') = F for some F' ~~ (vz)(P' | Q')
Fos (va) (P Q)

D = cut Dy (n. Dy) and E arbitrary.

Dy ~ PP and Dy ~ P§ and Py "% PJ* where
P=@n)(P"| Py) = (vn)(Pl" | B5") = P

cut D (z. F) = cut (cut Dy (n. Ds)) (z. E)
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by (cut/VR/VL)

by inversion

by (cut/1L/—)
by i.h. on Dy and F

by inversion

by (cut/!IL/—)
byih. D' and E

by inversion

by (cut/$L/—)
by i.h. D’ and E

by inversion



Case:

Case:

Case:

Case:

F~ (v

D1 ~ ('U

(va) (P | Q%)
D

= (vu)

n).P") and Dy ~ Py and Py
(fu(n). P”) | pp) "8 ) (va) (tu(n).Py) | PE)

=cut Dy (n.cut Dy (z. F))

= cut D (n. Fy) = F where I ~ (vx)(Py* | Q%)

n) (P | (ve) (R | Q7))
= (vz)((vn) (P | B5") | Q)

cut' Dy (u. D;) and E arbitrary.

’ N) P where

cut' Dy (u. D)) (x. E)

where Fy ~

| (
)

(vz)(Fy" | @7)
va) (B | Q7))

") P) 1 @F)

E =1L n E" and D arbitrary.

E/ ~ QZ

cut D (z. E) =cut D (x
=1L n (cut D (z. E'))

=1L n F' =
F o~ (vx)(P* | Q%)

F for some F' ~~

Al n E)

(vz)(P™ [ Q%)

E =1L n (u. E') and D arbitrary.

E/ ~ QZ

cut D (z. E) =cut D (x.!L (u. E')
=ILn (u.cut D (z. E"))

= ILn (u. F') =
Fos (va) (P QF)

F for some F' ~~

(vz)(P™ | Q%)

E =8$Ln (n. E') and D arbitrary.

E/ ~ QZ

cut D (z. F) =cut D (x
=S$Ln (n.cut D (z. E"))

= SL n (n. F’)
Fos (vr) (P [ QF)

= F for some F' ~~

SLn (n.E))

(va) (P [ Q%)

Case: F =cut £y (n. Ey) and z € FV(Ey).
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— P/ZU

by (cut/cut/—)
by i.h.on Dy and E

by inversion

by (cut/cut'/—)
Byih.on D, and E

by inversion

By (cut/—/1L)
by i.h. on D and £’

by inversion

by rule (cut/—/IL)
by i.h. on D and £’

by inversion

by rule (cut/—/$L)
by i.h. on D and £’



Case:

Case:

A2

z(N)

Ey, ~ Q7 and By ~~ Q5 for Q7 "= Q" where
Q= ()@ 1 Q5) ™ (vm)(Qr | Q3)
cut D (z. F) = cut D (z.cut By (n. Es))

= cut (cut D (z. EY)) (n. Es)
= cut F} (n. Ey) = F for some F} ~>

Fo~s (vn)((vz) (P | Q) | Q3)
= (vz)(P™ | (vn)(Q1" | €3))
(va)(P™" | Q%)

(v)(P™ | Q)

E =cut Fy (n. E3) and x € FV(Es).
n z 4 'T<N> 1z

Ey ~ Q7 and Ey ~ @5 for Q5 —" Q5 where
Q= @n)(Q1]Q3) = (wn)(Q7 | Q3)

cut D (z. F) =cut D (z.cut Fy (n. Es))
= cut By (n.cut D (z. Es))
= cut E; (n. Fy) = F for some Fy ~~

Fos (vn)(QF | (ve) (P | Q)
= (va)(P™ | (vn)(Q7 | €5))
(va) (P | Q%)

(vz) (P | @)

E = CUt! E1 (U EQ)

x € FV(E3)

By ~» (tu(r)-Qf) nd B - Q3 for Q3 5
Q = (vu)(u(n)-Q1) | @3) ™ (wu)((tu(n) Q1) | Q5)
cut D (x E)=cut D (z.cut' E| (u. E))

= cut' By (u.cut D (2. E))

= cut' B (u. ;) = F for some Fy ~
Fos (vu)((tu(n). Q1) | (ve) (P | QF))

= (va) (P | (vu)((tu(n).QY) | @5))
(vz)(P" | Q%)

& where

(vz) (P | @)

Proof of Lemma A.11

by inversion

by (cut/cut/—) and = & FV(Es)

by i.h. on D and F;

by inversion

by (cut/—/cut) and = & FV(E))

by i.h. on D and F,

by inversion

by inversion

by (cut/—/cut')
by i.h. on D and F,

Proof. By simultaneous induction on D and E. The possible cases for D are IR, 1L, IL, $L, cut

and cut'. The possible cases for £ are 3L, 1L, L, $L, cut and cut.
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Case:

Case:

Case:

Case:

Case:

D=3RN Dyand E = 3L z (y.x. Ey).

D ~» z(N).P; and E ~~ x(y).Q1

cut D (z. E) ===cut Dy (x.[N/y|E,) = F
F s (va)(Py | [N/ylQy)

P’ =P and Q' = [N/y|Q:

D =1L y D, and F arbitrary.

Dl ~ P

cut D (z. E) =cut (1L y Dy) (z. E)

=1Ly (cut Dy (z.E))

= 1L y F’' = F for some F' ~~ (vz)(P' | Q')
F o (v2)(P'| Q)

D =1L n (u.D’) and E arbitrary.

D'~ P

cut D (z. F) =cut (IL n (u. D)) (z. E)

=ILn (u.cut D' (z.F))

=L n (u. F’) = F for some ' ~ (vz)(P' | Q)
F s (v2)(P'| Q)

D =8$Ln (n.D') and F arbitrary.

D'~ P

cut D (z. E) =cut ($L n (n. D")) (x. E)

=S%Ln (n.cut D' (z. F))

= $L n (n. F') = F for some F' ~ (vz)(P' | Q')
Fos (va) (P Q)

D = cut Dy (n. Dy) and E arbitrary.

Dy ~ PP and Dy ~ P§ and Py "5 Pl* where
P=(wn)(P! | By) = (vn)(P!' | By") = P

cut D (z. FE) = cut (cut Dy (n. Ds)) (z. E)

= cut Dy (n.cut Dy (z. E))

= cut Dy (n. Fy) = F where I ~~ (vx)(Py* | Q%)

Fos (vn) (PP | (va) (B | Q7))
= (ve)((wn) (P | P57) | Q)
(va) (P | Q%)
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by (cut/3R/3L)

by inversion

by (cut/1L/—)
by i.h. on Dy and

by inversion

by (cut/!L/—)
by ih. D' and E

by inversion

by (cut/$L/—)
by i.h. D’ and E

by inversion

by (cut/cut/—)
by i.h. on D and F



Case:

Case:

Case:

Case:

Case:

D = cut' Dy (u. D) and E arbitrary.

D1 ~ ('U
P = (vu)

) = cut cut! D1 (U D2>> ($E)
u.cut Dy (z. E))
= F where F; ~ (vx)(Py* | Q%)

E =1L n E' and D arbitrary.

E/ s QZ

cut D (z. E)=cut D (x.1L n E')

=1L n (cut D (z. E'))

= 1L n F’ = F for some [’ ~ (vx)(P"™ | Q%)
F s (vz) (P | QF)

E =1L n (u. E') and D arbitrary.

El S QZ

cut D (z. E) =cut D (x.!L (u. £)

=ILn (u.cut D (z. E"))

= IL n (u. F') = F for some I ~~ (vz)(P'" | Q%)
Fos (va)(P7 | QF)

E =$Ln (n. E') and D arbitrary.

El/ > QZ

cut D (z.E) =cut D (z.$L n (n. E))

=S$Ln (n.cut D (z. E'))

= $L n (n. F') = F for some F' ~~ (vx)(P” | Q%)
Fo~s (vz) (P | QF)

E =cut E; (TL EQ) and z € FV(El)

Ey ~ Q7 and Ey ~~ Q5 for Q7 &) Q7" where
n NN, n 5
Q= (wn)(Qy | Q3) =" (vn)(Q" | Q3)

cut D (z. F) = cut D (z.cut By (n. Ey))
= cut (cut D (z. Ey)) (n. Es)
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n).P") and Dy ~ Py and Py ) P.* where
(u(n).PP) | PF) "X (wu)((tu(n).Pry | P = P by inversion

by (cut/cut'/—)
Byih.on D; and

by inversion

By (cut/—/1L)
by i.h. on D and £’

by inversion

by rule (cut/—/IL)
by i.h. on D and £’

by inversion

by rule (cut/—/$L)
by i.h.on D and F’

by inversion

by (cut/cut/—) and x & FV(E,)



= cut F} (n. Ey) = F for some Fy ~ (vz)(P” | Q) by i.h. on D and F;

Foos (vn)((vr) (P ] QT) | Q)
= (va)(P™ | (vn)(Q1" | €3))
(va) (P | Q%)

Case: F = cut £y (n. Ey) and z € FV(E,).

Ey ~~ Q7 and Ey ~ Q3 for Q5 ) 7 where

n z z(N) n z : :
Q= @n)(Q]Q3) = (wn)(Q1 | Q3) by inversion
cut D (z. F) = cut D (z.cut By (n. Ey))
= cut Fy (n.cut D (x. Ey)) by (cut/—/cut) and = & FV(E))
= cut By (n. Fy) = F for some Fy ~ (vz)(P™ | QF) by i.h. on D and E,

Fos (vn)(QF | (ve) (P | Q)
= (va)(P™ ! (vn)(Q1 | Q5))
(vz)(P" | Q%)

Case: E = cut' E; (u. Ey)

x € FV(E3) by inversion
Ey ~ (lu(n).Q7) and Ey ~~ Q2 for Q3 oy ¥ where

Q = (ru) ((u(n).Q1) | Q3) ™ (vu) ((tu(n) Q1) | Q%) by inversion
cut D (:c E)=cut D (x.cut' E; (u. Ey))

=cut' By (u.cut D (z. Ey)) by (cut/—/cut')
= cut' B (u. Fy) = F for some F) ~ (va)(P™ | Q%) by i.h. on D and F;

F s (vu)((tu(n).Q7) | (vz) (P | @)

= (va)(P™ | (vu)((fu(n).@7) | QF))
(vz)(P" | Q%)

]

Theorem A.12. Let V;I;A = D ~~ P 2 z : Aand P — (. There there is E such that
D===FandV;I';A=FE~(Q::z

Proof. By induction on the structure of D. The possible cases for D are 1L, L, $L , cut, and cut'.
In all other cases P cannot offer 7.

Case: D =1L n D'.

A= (A*n:1)
U, IA* = D'~ Pz A by inversion
U: I A* = B~ Q i z:Afor some E' with D' === FE’ by i.h.
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Case:

Case:

Case:

Case:

Pick E =1L n E'.
D===F
U A=E~wQ::z:A

D=Lz (u. D).

A= (A*z:!B)

Ul u: ByA*= D'~ P z:A

U:Iu: B;A* = E' ~ Q :: z:A for some E' with D’
Pick E =!L z (u. E').

D===F

U, I': A= FE~Q:z:A

=== F

D=3$Lz (z. D).

A= (A* x:$7)

UV o:m,UTA= D'~ P2 A

Uo7, U, T A* = E ~ Q :: z:A for some E' with D' === FE’
Pick E = $L = (z. E').

D===F

U IA= E~wQ::z:A
D:CUt! D1 (u Dz)

P = (vu)(lu(w).Py | Pr)

U: T = Dy~ P wC
U:le:C;A= Dy~ Py 2:A

From P — () either

(1) P2 — QQ and Q = ( )('U(U))Pl ‘ QQ)

@ P "BY @y and Q = (vu) (u(w). Py | (vy) (Pu{y/w} | Q2))
case (1):

U:Tx:C; A= D ~ Q2 z:A for some E’ with D,

cut' Dy (u. Dy) === cut' Dy (u. ')
Pick £ = cut' D; (u. E")

U TA= EwmQ oz A

case (2):

cut' Dy (u. Dy) === F for some E
U IA=FE~ R:zzAwith R=(Q

==F

D = cut Dy (z. Dy).
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by congruence
by 1L

by inversion
by i.h.

by congruence
by 1L

by inversion
by i.h.

by congruence
by $L

by inversion

by i.h.

by cut'

by Corollary A.9



P=(vx)(P | Py)

A= (A1, Ay)

U: I AL = Dy~ PpcaC

U Ag,x: C= Dy~ Py 22 A
Since P — () there are seven cases:
(1) PL— Qrand Q = (vz)(Q1 | )
(2) P, = Q2and @ = (vz)(P1 | Q2)
B) P 5 Qrand P, = Q,
(4)P1£>Q1 andP23>Q2
S)Pr=(R| [z + N])with N : C
6) L= (R | [y + z]) withy : C
M P=(R|[z <+ 2]

Case (1): P, — Q1

D, === FE, for some F;

U A = By~ Qqx:C

D = cut Dy (z. Dy)

=== cut £ (z. D)

Pick E = cut F; (x. Ds)

U A=E~wQ:z:A

Case (2): P, — ()

Identical to Case (1).

Case 3): P, > Q;and P, 5 Qs
Subcase: C' =1

not possible

Subcase: C' = C; & O,

a = x.inlor a = x.inr

cut Dy (2. Dy) === D for some D
UIA=D~R:z:C

with R = (vx)(Q1 | Q2) = Q
Subcase: C' = C| @ O,y

not possible

Subcase: C' = ] ® (9

not possible

Subcase: C = O] — Cy

a=z(y) and @ = (vy)z(y)

cut Dy (z. Dy) === D for some D
UVIA=D~~Q:z:C

with R = (vx)(vy) (@1 | Q2) = Q
Subcase: C' = Vy : (.05

by inversion

by i.h.

by congruence

By inversion lemma

by Lemmas A.l1 and A.2

By inversion

By inversion

By inversion lemma

by Lemma A.6
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o =xz(N)and @ = z(N)

cut Dy (2. Dy) === D for some D
UVIA=D~Q:z:C

with R = (va)(vy) (@1 | Q2) = Q
Subcase: C' =10}

a = z(y) anda = (vy)z(y)

cut D (. Dy) === D for some D
UVIA=D~~Q:z:C

with B = (v2) (v9)(Q1 | Q2) = @
Case (4): P, = Q, and P, > Q)
Subcase: C' =1

not possible

Subcase: C' = ] & Cy

not possible

Subcase: C' = C @ Oy

a = x.inlora = x.inr

cut Dy (. Dy) === D for some D
UIA=D~R:z:C

with R = (vz)(Q1 | Q2) = @
Subcase: C' = C; ® Cy

a = (vy)z(y) and o = z(y)

cut Dy (2. Dy) === D for some D
UVIA=D~Q:z:C

with R = (vr)(vy)(Q1 | Q2) = Q
Subcase: C' = dy : C41.C5
a=z(N)and a = z(N)

cut Dy (. Dy) === D for some D
U, I A= D~ Q:z:C

with R = (vz)(vy)(Q1 | Q2) = Q
Subcase: C = C; — Oy

not possible

Subcase: C' = 1C}

not possible

Case 5) P, = (IR | [xt + N])with N : C
Note: other cases for D, and D, are always*“pushed out”
by proof conversions until we reach the appropriate form.

D is coerce N
Dy is promo z (x.D})

cut (coerce N) (x.promo z (z.D})) = [N/z|D),

By inversion lemma

by Lemma A.10

By inversion lemma

by Lemma A.7

By inversion lemmas

by Lemmas A.3 and A.4

By inversion lemmas

By inversion lemmas

by Lemma A.11

by inversion
by inversion
by (cut/coerce/promo)



U: Ty A = [N/z|Dy ~ [N/z|Py: z: C

with Q = [N/z] P,

Case (6) P, = (IR | [y <> «]) withy : C

Note: other cases for D, are always‘‘pushed out”

by proof conversions until we reach the appropriate form.

Diisidy by inversion
cut (id y) (x.D3) = [y/x]| Dy by (cut/id/—)
U A = [y/z|Dy ~ y/z| Py z: C

with [y/z]P, = Q typing ensures that y & fn(FP) and x € fn(F2)

Case (7) P, = (IR | [z + 2])
Note: other cases for D, are always‘“‘pushed out”
by proof conversions until we reach the appropriate form.

Dsisid x by inversion
cut Dy (z.id x) = Dy by (cut/—/id)
UV:I5A= Dy~ P :z:C by renaming
with P = [z/z]P, = Q typing ensures that z € fn(P;) and z € fn(P;)

O

B Progress

Lemma B.1. Assume
1. U;T,A = D~ P: z:C and not live(P);
Then
1. C=1o0rC =!C" for some C'.
2. (x;: A;) € Aimplies A; = 1 or there is Bj with A; = | B;;
3. C =!C"implies P = (vz)(!2(y).R | R).
The proof of the above lemma, as well as the required inversion lemmas are given in [11].

Lemma B.2 (Contextual Progress). Let V;T'; A = D ~» P :: z : C. If live(P) then there is @
such that either (a) P — Q, or (b) P = Q for some a where s(a) € z,T', A and s(o)) € T, A if
C=1A0r(c) P=(R ||z <> z]), for some x € A, where R is an arbitrary number of replicated
processes in parallel processes, or (d) P = (R | [z <> NJ) for some N, where R is an arbitrary
number of replicated processes in parallel.

Proof. By induction on the structure of D. All cases are possible for D except 1R and 'R D,
which follows by analysis of the typing rules.
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Case:

Case:

Case:

Case:

D=1Ln D'

A= (A*n:1)

U, IA = D~ Pz:C

There is () such that either P — Q, or P — Q)

for some v with s(«) € z,T', A* and s(a) € I', A*if C' = A,

or P=(R| [z < z]) forsome z € A*,or P = (R | [z < NJ),
where IR is an arbitrary number of replicated processes in parallel.
There is () such that either P — @, or P =

for some v with s(«) € 2, T, Aand s(a) € I', Aif C = A,

or P=(R| [z 4 z]) forsome x € A*,or P = (R | [z + NJ),
where R is an arbitrary number of replicated processes in parallel.

D=ILy (u. D)

A= (y:1A A%

U, lu: A; A= D'~ P z2:C

There is Q) such that either P — Q, or P = Q)

for some a with s(a) € z,T',u, A* and s(a) € [',u, A*if C' = 1A,
or P=(R| [z < z]) forsome x € A*,or P = (R | [z + NJ),
where R is an arbitrary number of replicated processes in parallel.
There is () such that either P — Q, or P = Q

for some a with s(a) € z,I', A and s(«a) € I, Aif C' = 1A,

or P=(R| [z < z]) forsome x € A*,or P = (R | [z + NJ),
where R is an arbitrary number of replicated processes in parallel.

D:®RD1D2

A= (A1,A),C=C®Ch.
U, AL = Dy~ Qo y:Ch
U: T Ay = D~ R 2:Cy
P= ()= (Q | B)

P (Vy)—z><y> Q with z € 2, ', Aand C' # ! A.
D =®L (y. Dy)

= (D*,Qf . Cl ®OQ)

Ay Crx: Cy= Dy~ Q i z:C

z(y).Q
WO withz e T, A
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by inversion

by i.h.

by i.h.

by inversion

by i.h.

by i.h.

by inversion

by inversion



Case: D = —oR D,

C=0C; — (O,
U A y:Cp= Dy~ Q20
P=z(y).Q by inversion
P YW OQwithz e 2T, Aand C £ 1A,
Case: D = —oL Dy D,

A= (Al,AQ,LEZCl —002)
U AL = Dy~ Qe y:C)
U Agyz 0 Cy = DY~ R 2:Ch

P= ( ) (Y).(Q | R) by inversion
P(Vy Qw1thx€FA

Case: D =VR(z.D')
C=Vr:71.C"
Vo IA= D ~Q::z:C
P=z(z).Q by inversion
P Q{N/x} with z € 2,T, A and C # IA.

Case: D =VLa M (z.D')

( “x:Vy:T.A)
*x A{M/y} = D' ~ Q@ :
M T
[L’(M ).Q by inversion

Qw1tthF A

A
v;
v
P

U ’U

Case: =3dR M D

dz . 7.C"
A= D' s Qo zC'{M/z}
x(M ).Q by inversion

Qwitthz,F,A

T e Q
N‘III'—JII

=

Case: D =3Lz (y.x.D’)

D

A=A x:3y: 1A

UVy: A A= D ~Q:: z2:C

P=z(y).Q by inversion
(y)Qwuthx I'Aand C # |A.
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Case:

Case:

Case:

Case:

D = coerce M
C=r1

P =z« M)
P =z + M|

D = promo x (z.D’)

U o: AV, IA = D'~ Piz:C

There is () such that either P — Q, or P = Q)

for some a with s(a) € z,; ', A* and s(a) €; T, A*if C' = A,
or P=(R| [z < z]) forsome x € A*,or P = (R | [z + NJ),
where IR is an arbitrary number of replicated processes in parallel.
There is () such that either P — Q, or P = Q)

for some o with s(«) € 2, I, Aand s(ov) € I, Aif C = A,

or P=(R| [z < z]) forsome z € A*,or P = (R | [z < NJ),
where IR is an arbitrary number of replicated processes in parallel.

D=idx
A=z:C

P =[x+ 7]
P=lx+ 7]

D = cut Dl (,CIZ’ DQ)

A = (Al, Ag)

U:T"Ay= Dy~ P x:A

U Ag,x: A= Dy~ Py 2:C
P=(vz)(P | P)

live(Py) or live(Ps)

Case (1): live(Py) and live(P2).
There is P; such that either P, — P}, or P, 2% P!

for some oy with s(ay) € 2, T, Ay and s(aq) € ¥; T, Ay if A =By,

or P, = (R |[2 > x]) for some 2’ € Ay, or P, = (R | [x + NJ),
where R is an arbitrary number of replicated processes in parallel.
There is Pj such that either P, — Pj, or P, = Py

for some oy with s(aw) € 2, ', Ay, z and s(an) € z, T, Ay if C' = |Bs,

or P, = (R | [z < z]) for some 2’ € Ay, or P, = (R | [z < NJ),
where R is an arbitrary number of replicated processes in parallel.
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by inversion
[satisfying (d)]

by inversion

by i.h.

by inversion
[satisfying (c)]

by inversion
since live(P)

by i.h.

by i.h.



Subcase (0.1): P, — P, or P, — P,
P—Q

Subcase (1.1): s(ay) # «

P33 Q= (vo)(P]| P,) witha;, €T, A

Subcase (1.2): s(az) # «
P23 Q= (vz)(P | P)) withay € 2,T", A

Subcase (1.3): s(a1) = s(as) =

Qg =

P = QwithQ = (vz)(vy)(P] | P;) or Q = (vz)(P] | P)
Subcase (1.4): P, = (R | [2' <> z]), for some 2’ € A4
v & fn(P)

R| (vz)([2' <> z] | P2) = R | Py[2'/x]

Subcase (1.5): P, = (R | [z <> z]), for some 2’ € A,
Subcase (1.5.0): z = 2’

(wz)(PL[ (R ][z ¢ 2])) = R | P{z/z}

Subcase (1.5.1): P, — P, or P, % P}

P — (vx)(P! | P) or P % (va)(P] | Py), respectively.
Subcase (1.5.2) P, = (R’ | [#’ +» x]) for some 2’ € Ay:
R | (vx)([¢' <> z] | P2) = R'| Ps[2'/x]

Subcase (1.5.3): P, = (R’ | [z + NJ)

R'| (vx)([x +» N] | P,) = R' | B[N/ x]

Subcase (1.6): P, = (R | [z < NJ)

R | (vx)(Jx <> N] | P.) = R | P;[N/x]

Subcase (1.7): P, = (R | [z + NJ)

Subcase (1.7.0): P, — P or P, > P}

P — (vx)(P] | P) or P (va)(P] | Py), respectively.
Subcase (1.7.1) P, = (R | [#’ <> z]) for some 2’ € Aq:
R'| (vx)([2' < 2| | P2) = R | B2’ /]

Subcase (1.7.2): P, = (R’ | [z + NJ)

R'| (vz)([x <> N] | P,) = R' | P5[N/x]

Case (2): not live(P;) and live(Ps)

There is P such that either P, — Py, or P, 23 P

for some ay with s(ag) € 2, T, Ay, z and s(ag) € 2, T, Ag if C = 1By,
or P, = (R | [¢/ + z]) for some 2’ € Ay, or P, = (R | [z < NJ),
where IR is an arbitrary number of replicated processes in parallel.

Subcase (2.1): P, — Py
P — Qwith Q = (vx)(Py | Py)
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[satisfying (a)]

[satisfying (b)]

[satisfying (b)]

By inversion lemma
[satisfying (a)]

by linearity of typing
[satisfying (a)]

[satisfying (a)]

[satisfying (a)]

[satisfying (a)]

[satisfying (a)]

[satisfying (a)]

[satisfying (a)]

by i.h.

[satisfying (a)]



Subcase (2.2): P, 3 P,
Subcase (2.2.1): s(az) # x

P % Q with Q = (vz)(P, | P) [satisfying (b)]
Subcase (2.2.2): s(ag) =z

A#1 By inversion lemma
b= (vg)(le(w). Ry | RY)

A=B By Lemma B.1
PP

as = (vy)z(w) By inversion lemma
P — Q with Q = (vx)(vy) (P | Py) [satisfying (a)]

Subcase (2.3): P, = (R | [z <> z]) for some 2’ € A,
Subcase (2.3.0): z = 2’

(vz)(Py| (R | [z« 2])) = R| Pi{z/z} [satisfying (a)]
Subcase (2.3.1): A=1or A="A', for some A’ by Lemma B.1
Subcase (2.3.1.1): A =1

r:1€ Ny

x#£a Assumption, if = then covered by Subcase (2.3.0)
P=(R|[2 ¢ z])with R = (vx)R | P by not live(Py)

[satisfying (d)]
Subcase (2.3.1.2): A =!A’, for some A’

P = (vy)(lz(w).R} | RY) by Lemma B.1
x#£a Assumption, if = then covered by Subcase (2.3.0)
P=wz)(R | [z < z]),with R =R | P, [satisfying (c)]
Subcase (2.4): P, = (R | [z < N])

A=1or A=A’ for some A’ by Lemma B.1
Subcase (2.3.1.1): A =1

r:1€ Ay

P = (R'| [z« NJ])with R = (vz)R | P, by not live(P;) [satisfying (d)]
Subcase (2.3.1.2): A =!A’, for some A’

P, = (vy)(lz(w).R} | RY) by Lemma B.1
P=(wz)(R | [z N]),with R =R | P, [satisfying (d)]

Case (3): live(Py) and not live(Ps)
There is P/ such that either P, — P}, or P, =% P!
for some a; with s(ay) € I', Ay, z and s(ay) € I', Ay if C' = | By,

or P, = [¢/ <> z] for some 2’ € Ay, or P, = [z < N|. by i.h.
Subcase (3.1): P, — P|
P — Q with Q = (vz)(P] | P») [satisfying (a)]

Subcase (3.1): P, & P
Subcase (3.1.1) s(ay) = x
A=1or A=!B forsome B By Lemma B.1
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Case:

Subcase (3.1.1.1) A=1

Impossible, since P, 2% P/ and s(a;) =
Subcase (3.1.1.2) A = !B for some B

Impossible, since s(«;) = x contradicts x € U; ', A;.

Subcase (3.2): P, = (R | [2/ <> z]) for some 2’ € A

' g fn(P,)

(vx)(R | [2' <> z] | P2) = R | B[2'/x]

Subcase (3.3): P, = (R | [z + NJ)
(vz)(R | [z <> N] | P2) — R | P2[N/z]

D = CUt! D1 (U DQ)

U= Dy~ Py A

Ul u: A;A = Dy~ Py 220

P = (vu)(lu(y).P | P)

live(Py)

There is P, such that either P, — P, or P, °% P,

By inversion lemma

by linearity of typing
[satisfying (a)]

[satisfying (a)]

by inversion
since live(P)

for some oy with s(aw) € u, [ A, z and s(az) € u, ;T Aif C =B,

or P, = [z <> z] for some 2’ € A, or P, = [z < N].

Subcase (1): P, — P,

P — Qwith Q = (vu)(Py | Py)

Subcase (2): P, % P,

Subcase (2.1): s(az) # u

P33 Qwith Q = (vu)(Py | Py)

where s(a2) € I'; A zand s(ay) € A C = 1B
Subcase (2.2): s(az) = u

P, (vyg(w Pz’

lu(y).P, Y (P, | lu(y).P)
P — Q with Q = (vu)(vy) (P | Wu(y).Pr | Ps)

Subcase (2.3): P, = (R | [z <> z]) for some 2’ € A

P=(R'|[2 < z]) with R = (vz)P, | R
Subcase (2.4): P, = [z + N|

P=(R'| [z ¢+ NJ|) with R/

(vu)Py | R
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by i.h.

[satisfying (a)]

[satisfying (b)]

By inversion lemma

[satisfying (a)]

[satisfying (c)]

[satisfying (d)]
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