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Abstract

CLF is a new logical framework with an intrinsic notion of concurrency. It is designed as
a conservative extension of the linear logical framework LLF with the synchronous connec-
tives ⊗, 1, !, and ∃ of intuitionistic linear logic, encapsulated in a monad. LLF is itself a
conservative extension of LF with the asynchronous connectives −◦, & and >.
In this report, the second of two technical reports describing CLF, we illustrate the expres-
sive power of the framework by encoding several different concurrent languages including
both the synchronous and asynchronous π-calculus, an ML-like language with futures, lazy
evaluation and concurrency primitives in the style of CML, Petri nets and finally, the secu-
rity protocol specification language MSR.
Throughout the report we assume the reader is already familiar with the formal definition of
CLF. For detailed explanation and development of the type theory, please see A Concurrent
Logical Framework I: Judgments and Properties [WCPW02].
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1 Introduction

A logical framework [Pfe01b, BM01] is a meta-language for the specification and imple-
mentation of deductive systems, which are used pervasively in logic and the theory of pro-
gramming languages. A logical framework should be as simple and uniform as possible, yet
provide intrinsic means for representing common concepts and operations in its application
domain.

The particular lineage of logical frameworks we are concerned with in this paper started
with the Automath languages [dB80] which originated the use of dependent types. It was
followed by LF [HHP93], crystallizing the judgments-as-types principle. LF is based on a
minimal type theory λΠ with only the dependent function type constructor Π. It nonetheless
directly supports concise and elegant expression of variable renaming and capture-avoiding
substitution at the level of syntax, and parametric and hypothetical judgments in deduc-
tions. Moreover, proofs are reified as objects which allows properties of or relations between
proofs to be expressed within the framework [Pfe91].

Representations of systems involving state remained cumbersome until the design of the
linear logical framework LLF [CP98] and its close relative RLF [IP98]. For example, LLF
allows an elegant representation of Mini-ML with mutable references that reifies imperative
computations as objects. LLF is a conservative extension of LF with the linear function type
A−◦ B, the additive product type A & B, and the additive unit type >. This type theory
corresponds to the largest freely generated fragment of intuitionistic linear logic [HM94,
Bar96] whose proofs admit long normal forms without any commuting conversions. This
allows a relatively simple type-directed equality-checking algorithm which is critical in the
proof of decidability of type-checking for the framework [CP98, VC00].

While LLF solved many problems associated with stateful computation, the encoding
of concurrent computations remained unsatisfactory. In this report, we demonstrate that
the limitations of LLF can be overcome by extending the framework with a monad that
incorporates the synchronous connectives ⊗, 1, !, and ∃ of intuitionistic linear logic. We
call this new framework Concurrent LF (CLF).

Readers interested in the meta-theory of CLF should read the precursor to this re-
port [WCPW02], which explains the formulation of the framework and describes its typing
judgments and properties in detail. Here, we review the syntax of CLF and state some
fundamental properties of the framework (Section 2). However, we give no explanation of
the typing rules. They are merely included as a reference (see Appendix A).

The purpose of this report is to demonstrate the expressive power of CLF through a
series of examples and, in particular, to focus on CLF’s effectiveness at encoding concurrent
programming paradigms. In Section 3, we present the essence of concurrent programming,
the π-calculus [Mil99]. We give encodings of both the synchronous and asynchronous π-
calculus and a proof of adequacy in the synchronous case. The adequacy proof for the
asynchronous case follows similar, but simpler lines.

In Section 4, we give a novel encoding of an ML-like language with a destination-passing
style operational semantics. The encoding is highly modular and we are easily able to treat
a significant fragment of a practical programming language. More specifically, we show how
to encode functions, recursion, definitions, unit type, pair type, mutable references, lazy
evaluation, futures in the style of Multi-Lisp, and concurrency primitives in the style of
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CML. Although we do not show it here, this encoding may easily be extended to include
polymorphism, unit types, sum types, union types and intersection types.

In section 5, we demonstrate our framework’s capacity for representing truly concurrent
computations [Maz95] by giving an encoding of Petri nets and proving it adequate. We
discuss both the operational semantics that identifies independent interleavings of transition
applications and the description of the behavior of a Petri net stemming from trace theory.

In section 6, we explore a promising application area, the specification and verification
of security protocols. In particular, we show how to encode MSR, a rich, strongly typed
framework for representing cryptographic protocols. Finally, we conclude with section 7.

2 The Concurrent Logical Framework CLF

In contrast to prior presentations of the logical framework LF, all terms are represented
in β-normal, η-long form—what in [HP00] are called quasi-canonical forms. The strategy
based entirely on canonical forms also simplifies adequacy proofs for representations of other
theories within CLF because such representations are always defined in terms of canonical
forms.

This new presentation also simplifies the proof that type checking is decidable. Normally,
the proof of decidability of type checking is quite involved because the type checking algo-
rithm must compare the objects that appear in types for equality. However, in our frame-
work, where all terms are β-normal, η-long, equality checking reduces to α-convertibility and
is trivially decidable. Type checking is slightly more complex because checking dependent
functions requires that we substitute terms into other types and terms. In order to maintain
the invariant that all terms are β-normal, η-long substitution must simultaneously normal-
ize objects. We call this new form of substitution canonical substitution and the reader is
encouraged to examine the first technical report in this series for details[WCPW02].

2.1 Syntax

The syntactic presentation of canonical forms is based on a distinction between normal
objects N and atomic objects R. It is convenient to make a similar distinction between
normal types A and atomic types P , and to segregate the connectives restricted to the
monad as the monadic (synchronous) types S. For kinds, there are no constants—there is
only the symbol type—so there are only normal kinds K. A normal object is a series of
introduction rules applied to atomic objects, while an atomic object is a series of natural-
deduction style elimination rules applied to a variable or constant. The only elimination
not permitted is the monad elimination rule, which is foreign to natural deduction.

In order to control the monad elimination rule, it is separated into a separate syntactic
class of expressions E, only permitted directly inside a monad introduction. Introductions
for the connectives restricted to the monad must occur immediately before the transition
from objects to expressions. While this is already guaranteed by the syntactic restrictions
on synchronous types, it is convenient to make the distinction at the level of the object
syntax as well, so there is a class of monadic (normal) objects M . Eliminations of the
connectives restricted to the monad are all invertible and are represented syntactically by
patterns p.
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We also use the symbol kind to classify the valid kinds. Throughout the presentation,
terms that differ only in the names of their bound variables are considered to be the same.
In addition, the metavariable ∆ always denotes an equivalence class of linear contexts up
to rearrangement.

K, L ::= type | Πu :A.K

A,B, C ::= A−◦B | Πu :A.B | A & B | > |
{S} | P

P ::= a | P N

S ::= S1 ⊗ S2 | 1 | ∃u :A.S | !A | A

Γ ::= · | Γ, u :A
∆ ::= · | ∆, x∧:A
Σ ::= · | Σ, a :K | Σ, c :A

N ::=
∧
λx.N | λu.N | 〈N1, N2〉 | 〈〉 | {E} | R

R ::= c | u | x | R∧N | R N | π1R | π2R

E ::= let {p} = R in E |M
M ::= M1 ⊗M2 | 1 | [N,M ] | !N | N

p ::= p1 ⊗ p2 | 1 | [u, p] | !u | x

Ψ ::= · | p∧:S, Ψ

2.2 Typing Judgments

There is a typing judgement for each syntactic category, as well as well-formedness judge-
ments for contexts Γ and signatures Σ. Each of these judgements is defined in a completely
syntax-directed manner, so termination and decidability of typing is clear. For each of the
normal syntactic categories the operational interpretation of the type-checking judgement
is that a putative type is provided, and the judgement holds if the term can be typed with
the given type. In particular, a normal term such as λx. x may have several different types.
This stands in contrast to the typical presentation of LF, where type labels are used in ab-
stractions to ensure that every term has a unique type. For the atomic syntactic categories
the situation is different: the operational meaning of the typing judgement is that it defines
a partial function from an atomic term (in a given context and signature) to its unique
type.

In all cases the typing judgement is not taken to have any particular meaning unless
the context and signature referred to in the judgement are valid. For the normal syntactic
categories, the typing judgement is meaningless unless the type referred to in the judgement
is valid as well. For the atomic syntactic categories, it will be proved that whenever a
typing is derivable and the context and signature mentioned in the typing are valid, the
type mentioned in the judgement is valid. The judgements are as follows.

Γ `Σ K ⇐ kind

Γ `Σ A⇐ type

Γ `Σ P ⇒ K

Γ `Σ S ⇐ type

Γ; ∆ `Σ N ⇐ A

Γ; ∆ `Σ R⇒ A

Γ; ∆ `Σ E ← S

Γ; ∆; Ψ `Σ E ← S

Γ; ∆ `Σ M ⇐ S

` Σ ok

`Σ Γ ok

Γ `Σ ∆ ok

Γ `Σ Ψ ok

For the complete set of typing rules associated with each judgment form, please see Ap-
pendix A. For an explanation and motivation for this type theory, please see the companion
technical report [WCPW02].
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2.3 Definitional Equality

The notion of definitional equality (=) for CLF is based on α-equivalence and the following
schema for expressions:

E1 =c E2

E1 = E2

M1 = M2

M1 =c M2

R1 = R2 E1 =c ε[E2]

(let {p} = R1 in E1) =c ε[let {p} = R2 in E2]

where, in the second rule, the concurrent context ε is a prefix of let’s terminated by a hole
(formally ε ::= | let {p} = R in ε). This rule is subject to the following side-conditions:

1. no variable bound by p is free in the conclusion;

2. no variable bound by p is bound by the context ε;

3. no variable free in R2 is bound by the context ε.

The other rules for = define congruences other all the other syntactic classes of CLF.
Definitional equality is a congruence over all syntactic classes of CLF, including =c over

expressions. In particular it is reflexive, symmetric and transitive. These properties are
shown to hold in [WCPW02].

2.4 Properties of CLF

In this section, we state some basic properties of CLF that will be needed in the proofs of
adequacy of some of our encodings. More specifically, our encodings will often use the CLF
context to represent the state of a concurrent computation. These contexts have standard
structural properties that make this representation concise and elegant. Here, we use the
notation Γ ` J (and Γ; ∆ ` J) to denote any judgment that depends upon the context Γ
(or Γ; ∆). We denote the free variables of a type using the notation FV (B).

Lemma 2.1 (Exchange).

• If Γ, x :A, y :B,Γ′ ` J and x 6∈ FV (B) then Γ, y :B, x :A, Γ′ ` J .

• If Γ, x :A, y :B,Γ′; ∆ ` J and x 6∈ FV (B) then Γ, y :B, x :A,Γ′; ∆ ` J .

Lemma 2.2 (Weakening).

• If Γ ` J then Γ, x :A ` J .

• If Γ; ∆ ` J then Γ, x :A; ∆ ` J .

Lemma 2.3 (Contraction).

• If Γ, x :A, y :A ` J then Γ, x :A ` J [x/y].

• If Γ, x :A, y :A; ∆ ` J then Γ, x :A; ∆ ` J [x/y].

Lemma 2.4 (Strengthening).

• If Γ, x :A ` J and x 6∈ FV (J) then Γ ` J .

• If Γ, x :A; ∆ ` J and x 6∈ FV (J)
⋃

FV (D) then Γ; ∆ ` J .
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3 The π-Calculus in CLF

The π-calculus [Mil99] was created to capture the essence of concurrent programming just
as the λ-calculus captures the essence of functional programming. Here we show how the
syntax and operational semantics of two variants of the π-calculus can be captured in CLF.
First, we give an encoding of the asynchronous π-calculus in which all of the operators are
interpreted as logical connectives from CLF. Next, we show how to modify this encoding to
deal with Milner’s choice operator and the more complex communication primitives of the
synchronous π-calculus. We give a proof of adequacy for the latter encoding.

Miller [Mil92] has also investigated the relationship between the π-calculus and linear
logic. He interprets π-calculus expressions directly as logical operators in classical (multiple
conclusion) linear logic as opposed to our intuitionistic logic. He gives three slightly different
translations of the synchronous π-calculus, although none of them to correspond exactly to
Milner’s calculus. In contrast, we are able to represent Milner’s calculus exactly (as well
as a number of variants including the asynchronous π-calculus) and give a detailed proof
of adequacy. On the other hand, we only encode the syntax and operational semantics
of the π-calculus whereas Miller also investigates notions of observational equivalence in a
restricted calculus in which no values are passed on channels.

The notation in this and following sections is somewhat abbreviated for readability. In
particular, we omit outermost Π-quantifiers in constant declarations in a signature. These
quantifiers can easily be reconstructed by an implementation of CLF along the lines of
Twelf [PS99]. Whenever we omit the leading Π-quantifier in the type of a dependent
function, we also omit the corresponding object at any application site for that function.
Once again, these objects can be inferred by an implementation.

We also write A ◦−B for B −◦ A and A← B for B → A if we would like to emphasize
the operational reading of a declaration: “reduce the goal of proving A to the goal of proving
B” along the lines of Lolli [HM94] or LLF [CP98].

3.1 The Asynchronous π-calculus

3.1.1 Syntax

The asynchronous π-calculus has a simple syntax consisting of processes (P ) and channels
(u, v, w).

P,Q,R ::= 0 | (P | Q) | new u P | !P | u(v).P | u〈v〉

Channels are conduits that can be used to pass values between processes. In our simple
language, the only values are channels themselves. A process may be an instruction to do
nothing (0) or an instruction to execute two processes P and Q in parallel (P | Q). The
process new u P restricts the scope of the channel u to the process P and the process !P
acts as an unlimited number of copies of P . All communication occurs via input and output
processes. The output process, u〈v〉, sends the message v on channel u. The corresponding
input process, u(w).P , substitutes the output v for w in the body of P .

Representation Following the standard LF representation methodology [HHP93], we
represent the π-calculus’s two syntactic classes with two new CLF types.
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chan : type.
expr : type.

Next, we represent the processes themselves as objects with type expr. Our representa-
tion will use higher-order abstract syntax [Pfe01b] to represent the bound variable v in the
restriction new v P and in the input process u(v).P .

0 : expr.
par : expr→ expr→ expr.
new : (chan→ expr)→ expr.
! : expr→ expr.
out : chan→ chan→ expr.
in : chan→ (chan→ expr)→ expr.

The representation function p·q maps π-calculus processes into CLF objects with type
expr.

p0q = 0

pP | Qq = par pPq pQq

pnew u Pq = new (λu. pPq)
p!Pq = rep pPq

pu〈v〉q = out u v

pu(v).Pq = in u (λv. pPq)

3.1.2 Operational Semantics

The operational semantics of the π-calculus consists of two parts. First, a structural congru-
ence relation divides the set of processes into congruence classes. The operational semantics
does not distinguish between processes in the same class. For example, running the null
process in parallel with P is equivalent to running P by itself. Similarly, !P is equivalent
to running arbitrarily many copies of P in parallel with !P . When P is equivalent to Q we
write P ≡ Q. The complete rules for structural congruence are presented below.

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) 0 | P ≡ P

0 ≡ new u 0 P | (new u Q) ≡ new u (P | Q)
∗

new u (new v P ) ≡ new v (new u P )

!P ≡ P | !P

P ≡ P

P ≡ Q

Q ≡ P

P ≡ Q Q ≡ R

P ≡ R

P ≡ P ′

P | Q ≡ P ′ | Q
P ≡ P ′

new u P ≡ new u P ′
P ≡ P ′

!P ≡ !P ′

P ≡ P ′

u(v).P ≡ u(v).P ′

8



∗ The variable u is not free in P .

A second relation, P −→ Q, describes how actual computation occurs. There is one
central rule that describes how input and output processes interact:

u(w).P | u〈v〉 −→ [v/w]P

The other rules that govern the relation P −→ Q either accommodate the structural
congruence relation or allow communication to occur within the scope of a new channel
name or in parallel with an inactive process.

P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q

P −→ P ′

new u P −→ new u P ′
P −→ P ′

P | Q −→ P ′ | Q

We extend this single-step relation to a multi-step relation P −→∗ Q through the fol-
lowing rules.

P ≡ Q

P −→∗ Q

P −→ Q Q −→∗ R

P −→∗ R

Representation At a coarse level a sequence of transitions in the π-calculus will be
represented by a sequence of nested let-expressions in CLF, terminating in a unit element.

Γ; ∆ ` (let {p1} = R1 in let {p2} = R2 in . . . 〈〉)← >

Here Γ contains declarations for channels u :chan and replicable processes r :proc P ,
while ∆ contains x∧:proc Q for all other processes active in the initial state. The goal type
> allows the computation to stop at any point, modeling the multi-step reaction relation.
The computation steps consist of the atomic object R1 consuming part of ∆ and replacing
it with new variables via the pattern p1, and so on.

More precisely, the CLF expressions consist of two alternating phases. In the first phase,
expression decomposition, a sequence of CLF let-expressions will decompose a π-calculus
expression into CLF connectives. For example, the null process 0 will be interpreted as the
CLF connective 1 and the parallel composition | will be interpreted as ⊗. The decomposed
fragments accumulate in the contexts.

In the second phase, the CLF connectives interact according to the rules of linear logic.
The decomposition is such that the resulting contexts naturally obey the correct struc-
tural congruences, at least at the shallow level. For example, the implicit associativity
and commutativity of contexts mirrors the structural congruences associated with parallel
composition.

To make these ideas precise in the framework, we begin by defining a type family for
undecomposed π-calculus expressions.

proc : expr→ type.
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Next, we specify rules for interpreting the various π-calculus instructions. For example,
the exit rule interprets the null process as the multiplicative unit 1.

exit : proc 0−◦ {1}.

The following derivation shows the action of this rule.

D
Γ; x∧:proc 0 ` exit∧x⇒ {1}

E
Γ; ∆ ` E ← >

Γ; ∆; · ` E ← >
Γ; ∆; 1∧:1 ` E ← >

Γ; ∆, x∧:proc 0 ` let {1} = exit∧x in E ← >

Notice that the pattern 1 ∧: 1 simply disappears. Hence, the null process has no effect,
as it should.

fork : proc (par P Q)−◦ {proc P⊗ proc Q}.

The fork rule interprets parallel composition as the tensor product of the two processes.
When the tensor pattern is eliminated, two assumptions x ∧: proc P , y ∧: proc Q will remain
in the context. Since CLF is insensitive to the order in which these assumptions appear in
the context, either P or Q may be interpreted next. We may, therefore, think of P and Q
as two concurrent processes waiting in parallel in the CLF context.

We interpret the process new u P using an existential type.

name : proc (new (λu.P u))−◦ {∃u :chan. proc (P u)}.

The elimination rule for existentials guarantees that a fresh name u will be added to
the CLF context when it is eliminated and hence u may only appear in P , as is required
by the π-calculus scope restriction operator.

The process rep P acts as arbitrarily many copies of P in parallel. We model this
behavior using the exponential connective.

promote : proc (rep P)−◦ {!(proc P)}.

Finally, we come to the communication primitives. Output is straightforward: It asyn-
chronously places its message on the network using an auxiliary predicate. An input u(w).P ,
on the other hand, is more complex. We interpret it as a linear function that consumes
network messages v on channel u and produces a new undecomposed process P with v
replacing w.

msg : chan→ chan→ type.

outp : proc (out U V)−◦ {msg U V}.
inp : proc (in U (λw.P w))−◦ {Πv :chan.msg U v −◦ {proc (P v)}}.
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3.1.3 Alternate Encodings

Wherever possible we have tried to encode π-calculus processes using the CLF logical op-
erators directly. This approach demonstrates the power of our framework and elucidates
the connection between the asynchronous π-calculus and linear logic. However, in sev-
eral cases there are other possible choices. For example, we might have left proc (rep P )
as an uninterpreted linear assumption and added an explicit copy rule to mirror process
replication:

copy : proc (rep P)−◦ {proc (rep P)⊗ proc P}.

We also might have chosen to leave both input and output processes uninterpreted and
to add an explicit rule for reaction.

react : proc (in U (λw.P w))−◦ proc (out U V)−◦ {proc (P V)}.

A Non-Encoding In our first attempt to encode the π-calculus, the rules for interpreting
π-calculus expressions took a slightly different form. Each rule mapped computations to
computations as follows:

exit′ : {proc 0} −◦ {1}.
fork′ : {proc (par P Q)} −◦ {proc P⊗ proc Q}.
. . .

This representation leads to too many CLF computations, some of them nonsensical.
For example, there are suddenly several different computations that interpret the process
0 | 0 including

x∧:proc (par 0 0) ` let {x1 ⊗ x2} = fork′∧{x} in

let {1} = exit′∧{x1} in

let {1} = exit′∧{x2} in 〈〉 ← >

x∧:proc (par 0 0) ` let {x1 ⊗ x2} = fork′∧{x} in

let {1} = exit′∧{let {1} = exit′∧{x2} in x1} in 〈〉 ← >

In the second computation, the argument of exit′ is itself a computation, independent
of the mainline. It was unclear what such tree-like computations might mean or how they
might relate to the operational semantics of the π-calculus. Consequently, we changed our
encoding and took great care to use monadic encapsulation to control the structure of our
proofs properly.

3.2 The Synchronous π-Calculus

The synchronous π-calculus adds two main features to the asynchronous π-calculus, syn-
chronous communication and a nondeterministic choice operator. In our next encoding, we
use the synchronous connectives of linear logic to represent parallel composition, replicated
processes and name restriction in conjunction with the asynchronous connectives of linear
logic to select and synchronize input and output processes given a series of nondeterministic
choices.
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3.2.1 Syntax

In the syntax of the synchronous π-calculus, we replace the input and output processes from
the asynchronous calculus with a nondeterministic choice of processes M . The null process
is now defined to be the empty choice. Each element of the nondeterministic choice (also
called a sum) is an action which may be silent (τ.P ), an input, or an output. Notice that
outputs (u〈v〉.P ) are considered synchronous because they wait on u until they react with
an input and only at that point proceed to execute the process P .

Process Expressions P ::= (P | Q) | new u P | !P |M
Sums M ::= 0 | c + M

Actions c ::= τ.P | u(v).P | u〈v〉.P

Representation We represent the four syntactic classes of the synchronous π-calculus
with four CLF types.

chan : type.
expr : type.
sum : type.
act : type.

The process expressions themselves are represented as objects of type expr, sums by
objects of type sum and actions by objects of type act. As before, we represent every
channel u by a corresponding unrestricted variable u :chan of the same name.

par : expr→ expr→ expr.
new : (chan→ expr)→ expr.
rep : expr→ expr.
sync : sum→ expr.

null : sum.
alt : act→ sum→ sum.

silent : expr→ act.
in : chan→ (chan→ expr)→ act.
out : chan→ chan→ expr→ act.

The representation function p·q maps process expressions into CLF objects with type
expr, pp·qq maps sums into CLF objects with type sum, and ppp·qqq maps actions into CLF
objects with type act. As in the previous encoding, it uses higher-order abstract syntax to
represent the bound variable v in the restriction new v P and in the input process u(v).P .
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pP | Qq = par pPq pQq

pnew u Pq = new (λu. pPq)
p!Pq = rep pPq

pMq = sync ppMqq

pp0qq = null

ppc + Mqq = alt pppcqqq ppMqq

pppτ.Pqqq = silent pPq

pppu(v).Pqqq = in u (λv. pPq)
pppu〈v〉.Pqqq = out u v pPq

3.2.2 Operational Semantics

To define the structural congruence relation P ≡ Q for the synchronous π-calculus, we
adopt all the rules from the asynchronous calculus except for the rules governing input and
output (whose form has changed) and augment them with the following rules for sums and
actions:

c ≡ c′

c + M ≡ c′ + M
M ≡M ′

c + M ≡ c + M ′ c1 + c2 + M ≡ c2 + c1 + M

P ≡ P ′

τ.P ≡ τ.P ′
P ≡ P ′

u(v).P ≡ u(v).P ′
P ≡ P ′

u〈v〉.P ≡ u〈v〉.P ′

The additional rules ensure that our relation is a congruence relation over sums and
actions, and moreover that the order of elements in a sum is inconsequential.

With the addition of silent actions, there are now two non-trivial reaction rules. The first
rule selects the action τ.P from a sum and continues with P , throwing away the unchosen
elements of the sum. The second rule selects an input process u(v).P from one sum and
an output process u〈w〉.Q from another. The two processes synchronize as the value w is
passed from output to input and the computation continues with [w/v]P | Q.

τ.P + M −→ P (u(v).P + M) | (u〈w〉.Q + N) −→ [w/v]P | Q

As before, the rules above may be used under a channel name binder or in parallel
with another process. The relation P −→∗ Q is the reflexive and transitive closure of the
one-step reaction relation.

Representation Once again, we define a type family for undecomposed π-calculus ex-
pressions and interpret parallel composition, name restriction and replication as before.

proc : expr→ type.

fork : proc (par P Q)−◦ {proc P⊗ proc Q}.
name : proc (new (λu.P u))−◦ {∃u :chan. proc (P u)}.
promote : proc (rep P)−◦ {!(proc P)}.
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A sum represents a non-deterministic, possibly synchronized choice. We therefore intro-
duce a new type family to represent a sum waiting to react, and a decomposition rule for
the sync coercion.

choice : sum→ type.

suspend : proc (sync M)−◦ {choice M}.

The degenerate case of a sum is the null process. As before, it has no effect and it is
interpreted as the multiplicative unit 1.

exit : choice null−◦ {1}.

The more interesting reaction rules fall into two families. The first family non-deterministically
selects a particular guarded process from a sum. It does not refer to the state and therefore
is neither linear nor monadic. Intuitively, it employs don’t-know non-determinism and could
backtrack, unlike the other rules that are written with don’t-care non-determinism in mind.

select : sum→ act→ type.

this : select (alt C M) C.
next : select M C→ select (alt C′ M) C.

The second family selects the guarded processes to react and operates on them to per-
form the actual reaction step. For an silent action we simply select a guarded process with
prefix τ from a suspended sum. For a communication, we select two matching guarded
processes from two different suspended sums.

internal : choice M−◦ select M (silent P)→ {proc P}.
external : choice M1 −◦ choice M2−◦

select M1 (in U (λw :chan.P w))→ select M2 (out U V Q)→
{proc (par (P V) Q)}.

Note that substitution [w/v]P in the reaction rule (u(v).P + M) | (u〈w〉.Q + N) −→
[w/v]P | Q is accomplished by a corresponding substitution in the framework, which takes
place when the canonical substitution of a process expression λv. . . . for P :chan → expr is
carried out. This is a minor variant of a standard technique in logical frameworks.

3.2.3 Adequacy

The representation of the syntax of the synchronous π-calculus uses higher-order abstract
syntax and other well-known strategies from the standard LF representation methodology
[HHP93]. Consequently, it should come as no surprise that our representation of the syntax
of π-calculus is adequate.

Theorem 1 (Adequacy of Representation of Syntax). Let Γ = u1 :chan, . . . , un :chan.

a) Γ; ∆ ` N ⇐ expr iff N = pPq where P may contain u1 . . . un.

b) Γ; ∆ ` N ⇐ sum iff N = ppMqq where M may contain u1 . . . un.
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c) Γ; ∆ ` N ⇐ act iff N = pppcqqq where c may contain u1 . . . un.

d) The representation function is a compositional bijection.

Proof. Standard techniques from LF representation methodology [Pfe01b].

On the other hand, our representation of concurrent computations employs a number of
new techniques and the adequacy proof is somewhat more involved. Here, we sketch of the
main components of the proof. The interested reader may examine Appendix B for further
details.

We begin by defining the CLF contexts that may arise during a concurrent computation.
Notice that the possibilities for contexts are really quite limited. They are limited to
the natural representations of channels, replicated processes, unreplicated processes (which
may be further decomposed) and sums waiting to react. If it were not for the monadic
encapsulation, we would have to deal with the possibility that the context contains partial
applications of curried rules such as internal and external. In order to deal with such partial
applications, one would have to complicate the notion of adequacy (if indeed there is a
notion of adequacy that makes sense) and consider many more possible cases during the
proof. Here, and in the rest of this section, we collapse the two parts of the context Γ
and ∆ into a single context Γ for the sake of brevity. We are still able to distinguish
unrestricted assumptions u :A from linear assumptions x∧:A by their syntax. Hence, there
is no fundamental change to the type theory.

Definition 2 (General Contexts Γ). Γ ::= . | Γ, u :chan | Γ, u :proc P | Γ, x∧:proc P |
Γ, x∧:choice M

Next, we define a relation P ←→ Γ between processes P (modulo the structural con-
gruence relation) and contexts Γ.

Definition 3 (Representation Relation). P ←→ Γ if and only if xΓy = Q and Q ≡ P
where xΓy is the inverse of the representation function p·q.

Informally, our adequacy theorem will state that related objects step to related objects.
In other words, we will show that if P ←→ Γ then P steps to Q if and only if Γ steps to
Γ′ and Q ←→ Γ′. However, in order for this statement to make any sense we will have to
define an appropriate notion of “steps to” on contexts. Unfortunately, we cannot directly
relate one CLF computation step to one step in the π-calculus since process decomposition
steps (exit, fork, new, etc.) have no π-calculus analogue.

To handle this discrepancy, we will define three relations on CLF contexts. The first,
Γ, E =⇒s Γ′, models the structural congruence relation of the π-calculus. The computation
E is a series of process decomposition steps that will break down the structure of the
context Γ and produce context Γ′. The second relation, Γ, E =⇒ Γ′, models the single-step
reduction relation. Here, E is a series of process decomposition steps followed by a single
reaction rule, either internal or external. It reflects the fact that our CLF computations are
arranged in two alternating phases. Finally, Γ, E =⇒? Γ′ is the reflexive and transitive
closure of Γ, E =⇒ Γ′. It models the multi-step reduction relation. All three relations make
use of the following primitive notion of equality on CLF contexts.
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Definition 4 (Context Equivalence). Let assumptions of the form x?A be either linear
or unrestricted assumptions.

Γ, x?A, y?B,Γ′ ≡ Γ, y?B, x?A,Γ′
x 6∈ B, y 6∈ A

Γ,Γ′ ≡ Γ, u :chan,Γ′

Γ, u :chan,Γ′ ≡ Γ,Γ′ u 6∈ Γ,Γ′ Γ ≡ Γ
Γ ≡ Γ′′ Γ′′ ≡ Γ′

Γ ≡ Γ′

We will also employ the following notation for composing computations.

Definition 5 (Composition of Computations E〈E′〉). The composition of two computa-
tions E and E′ with type >, denoted E〈E′〉, is the computation that results from substituting
E′ for the terminal 〈〉 in E.

Definition 6 (Representation of structural equivalence =⇒s). Γ1, E =⇒s Γk if

1. E = 〈〉 and Γ1 ≡ Γk, or

2. E = let {p} = R in 〈〉 and there is a normal derivation of the following form:

· · ·
· · ·

Γ2 ` E′ ← >
Γ1 ` let {p} = R in E′ ← >

and Γ2, E
′ =⇒s Γk

and R is one of the following atomic forms (where we let x range over either linear
or unrestricted variables):

exit∧x fork∧x name∧x promote∧x suspend∧x

Definition 7 (Representation of Single-Step Reduction⇒). Γ0, E〈let {p} = R in 〈〉〉 ⇒
Γ′2 iff Γ0, E =⇒s Γ1 and

· · · Γ2 ` 〈〉 ← >
Γ1 ` let {p} = R in 〈〉 ← >

and Γ2 ≡ Γ′2 and R is one of the following atomic forms (where we let x, x1, x2 range over
either linear or unrestricted variables):

external∧x N internal∧x1
∧x2 N1 N2

and N,N1, N2 ::= this | nextN

Definition 8 (Representation of multi-step reduction =⇒?). Γ1, E =⇒? Γk iff

1. Γ1, E =⇒s Γk

2. E = E1〈E2〉 and Γ1, E1 ⇒ Γ2 and Γ2, E2 =⇒? Γk.

We are now in a position to state our adequacy results for computations.
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Theorem 9 (Adequacy of Representation 1).

1. If Γ, E =⇒s Γ′ and P ←→ Γ, then P ←→ Γ′.

2. If Γ, E ⇒ Γ′ and P ←→ Γ, then P → Q and Q←→ Γ′.

3. If Γ, E =⇒? Γ′ and P ←→ Γ, then P −→∗ Q and Q←→ Γ′.

Theorem 10 (Adequacy of Representation 2).

1. If P ≡ Q and P ←→ Γ, then Q←→ Γ.

2. If P ←→ Γ and P → Q, then there exists E and Γ′ such that Γ, E ⇒ Γ′ and Q←→ Γ′.

3. If P ←→ Γ and P −→∗ Q, then there exists E and Γ′ such that Γ, E =⇒? Γ′ and
Q←→ Γ′.

The proof of Adequacy 1 is by induction on the structure of the computation E in each
case. The proof of Adequacy 2 proceeds by induction on the process relation: on P ≡ Q in
part (1 ); induction on P −→ Q in part (2 ); and induction on P −→∗ Q in part (3 ). Please
see Appendix B for details.

4 Concurrent ML in CLF

In this section we give a representation of Mini-ML in CLF with various advanced features.
This encoding shows how the concurrency features can be used for a variety of purposes,
including specifying a sequential semantics, lazy evaluation, and synchronous process com-
munication in the style of Concurrent ML [Rep99]. It also shows how representations can
exploit features of LF (dependent types) and LLF (asynchronous linear) in CLF, which
adds synchronous linear connective to LLF.

4.1 Destination-Passing Style

Our formulation of Mini-ML distinguishes between expressions and values, which is conve-
nient particularly when we come to the description concurrently. Furthermore, the repre-
sentation is intrinsically typed in the sense that only Mini-ML expressions and values that
are well-typed in Mini-ML will be well-typed in the framework. So we have a CLF type tp
for Mini-ML types, and CLF types exp T and val T for Mini-ML expressions and values of
type T, respectively. These type families are declared as follows.

tp : type.
exp : tp→ type.
val : tp→ type.

The first novelty of our representation of evaluation is the pervasive use of destination-
passing style. This is a convenient way to avoid the use of explicit continuations or evaluation
contexts which simplifies the description of concurrency. It also makes the whole description
more modular. So we have types dest T for destinations of type T . Note that initially there
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are no destinations; they are all created (as parameters) during evaluation. In that sense
they are similar to locations in Mini-ML with references [CP98], although they are not
necessarily imperative.

There are two basic type families to describe the operational semantics, eval E D which
evaluates E with destination D, and return V D which returns the value V to destination D.
The types of the expressions, values, and destinations must match. Therefore we declare:

dest : tp→ type.
eval : exp T→ dest T→ type.
return : val T→ dest T→ type.

Without effects, the behavior of eval and return is as follows. If we have the linear as-
sumption e∧:eval E D for a given expression E and destination D, then there is a computation
to r∧:return V D if and only if the evaluation of E yields V. More generally, if we have some
initial state represented as Γ; ∆ then Γ; ∆, e∧:eval E D computes to Γ′; ∆′, r∧:return V D,
where Γ′ and ∆′ model the effects of the evaluation of E and other possibly concurrent
computations.

evaluate : exp T→ val T→ type.
run : evaluate E V

◦−(Πd :dest T. eval E d−◦ {return d V ⊗>}).

4.2 Sequential Functional Programming

We now introduce a number of concepts in a completely orthogonal manner. With few
exceptions, they are organized around the corresponding types.

Values. In surface expressions, we only need to allow variables as values. This avoids
ambiguity, since we do not need to decide if a given term should be considered a value or an
expression when writing it down. However, we do not enforce this additional restriction—
this could be accomplished by introducing a separate type var T for variables of type
T. Instead, we allow every value as an expression. The corresponding coercion is value.
Evaluating an expression value V returns the value V immediately.

value : val T→ exp T.
ev value : eval (value V) D−◦ {return V D}.

Recursion. Recursion introduces no new types and no new values. It is executed simply
by unrolling the recursion. This means, for example, that fix(λu. u) is legal, but does not
terminate.

fix : (exp T→ exp T)→ exp T.
ev fix : eval (fix (λu.E u)) D−◦ {eval (E (fix (λu.E u))) D}.
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Definitions. Computation can be explicitly staged via definitions by let. Unlike ordi-
nary ML, we do not tie properties of polymorphism to definitions, but prefer explicit type
abstractions and applications. Inference or reconstruction is considered a property of the
concrete syntax, and not the internal operational semantics of ML we are specifying here.

let : exp T→ (val T→ exp S)→ exp S.
ev let : eval (let E1 (λx.E2 x)) D

−◦ {∃d1 :dest T. eval E1 d1

⊗ (ΠV1 :val T. return V1 d1 −◦ {eval (E1 V1) D})}.

Note that we use substitution instead of an explicit environment in order to bind a
variable to a value. This does not lead to re-evaluation, since there is an explicit coercion
from values to expressions. It would be straightforward to design a lower-level encoding
where the bindings of variables to values are modeled through the use of destinations.

Also note how we use a linear assumption

e ∧: ΠV1 :val T. return V1 d1 −◦ {eval (E2 V1) D}

in order to sequence Mini-ML computation explicitly: the evaluation of the body E2 of
the mllet expression can not continue until the the expression E1 has finished computing a
value V1.

The higher-order nature of the encoding could be avoided by introducing either a new
kind of intermediate expression or type family. In that case the signature looks more flat,
in the style of an abstract machine.

Natural Numbers. There is nothing particularly surprising about the representation.
We introduce both new expressions and new values. During evaluation of the case construct
we have to choose one branch or the other, but never both. This is represented naturally
by the use of an additive conjunction & in the encoding.

nat : tp.
z : exp nat.
s : exp nat→ exp nat.
case : exp nat→ exp T→ (val nat→ exp T)→ exp T.

z′ : val nat.
s′ : val nat→ val nat.

ev z : eval z D−◦ {return z′ D}.
ev s : eval (s E1) D

−◦ {∃d1 :dest nat. eval E1 d1

⊗ (ΠV1 :val nat. return V1 d1 −◦ {return (s′ V1) D})}.
ev case : eval (case E1 E2 (λx.E3 x)) D

−◦ {∃d1 :dest nat. eval E1 d1

⊗ ((return z′ d1 −◦ {eval E2 D})
& (ΠV′1 :exp nat. return (s′ V′1) d1 −◦ {eval (E3 V′1) D}))}.
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Functions. Again, the use of higher-order abstract syntax and substitution makes this
quite simple. As before, we specify explicitly that the function has to be evaluated before
the argument in an application. Concurrency or parallelism will be introduced explicitly
later.

arrow : tp→ tp→ tp.
lam : (val T2 → exp T1)→ exp (arrow T2 T1).
app : exp (arrow T2 T1)→ exp T2 → exp T1.

lam′ : (val T2 → exp T1)→ val (arrow T2 T1).
ev lam : eval (lam (λx.E1 x)) D−◦ {return (lam′ (λx.E1 x)) D}.
ev app : eval (app E1 E2) D

−◦ {∃d1 :dest (arrow T2 T1). eval E1 d1

⊗ (ΠE′1 :val T2 → exp T1. return (lam (λx.E′1 x)) d1

−◦ {∃d2 :dest T2. eval E2 d2

⊗ (ΠV2 :val T2. return V2 d2 −◦ {eval (E′1 V2) D})})}.

Pairs. Are included here for completeness.

cross : tp→ tp→ tp.
pair : exp T1 → exp T2 → exp (cross T1 T2).
fst : exp (cross T1 T2)→ exp T1.
snd : exp (cross T1 T2)→ exp T2.

pair′ : val T1 → val T2 → val (cross T1 T2).

ev pair : eval (pair E1 E2) D
−◦ {∃d1 :dest T1. eval E1 d1

⊗ (ΠV1 :val T1. return V1 d1

−◦ {∃d2 :dest T2. eval E2 d2

⊗ (ΠV2 :val T2. return V2 d2

−◦ {return (pair′ V1 V2) D})})}.
ev fst : eval (fst E1) D

−◦ {∃d1 :dest (cross T1 T2). eval E1 d1

⊗ (ΠV1 :val T1.ΠV2 :val T2. return (pair′ V1 V2) d1

−◦ {return V1 D})}.
ev snd : eval (snd E1) D

−◦ {∃d1 :dest (cross T1 T2). eval E1 d1

⊗ (ΠV1 :val T1.ΠV2 :val T2. return (pair′ V1 V2) d1

−◦ {return V2 D})}.

Unit. A unit type with one element is included here since some expressions with effects
in ML return a unit value.
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one : tp.
unit : exp one.

unit′ : val one.

ev one : eval (unit) D−◦ {return (unit′) D}.

Polymorphism, Sum Types, Void Type, Recursive Types. All of these can be
added orthogonally and straightforwardly and are omitted here.

4.3 Suspensions with Memoization

The code below shows a technique for implementing lazy evaluation in the style of Haskell.
This is slightly tricky, because the first time a suspension is accessed has be behave different
from any future time it is accessed. In order to model this we make a linear assumption
that, when consumed, makes an unrestricted assumption.

susp : tp→ tp.
delay : exp T→ exp (susp T).
force : exp (susp T)→ exp T.

thunk : dest T→ val (susp T).
read : dest T→ dest T→ type.

ev delay : eval (delay E1) D
−◦ {∃ l1 :dest T. return (thunk l1) D

⊗ (ΠD′ :dest T. read l1 D′

−◦ {∃d1 :dest T. eval E1 d1

⊗ (ΠV1 :val T. return V1 d1

−◦ {return V1 D′

⊗ !(ΠD′′ :dest T. read l1 D′′ −◦ {return V1 D′′})})})}.
ev force : eval (force E1) D

−◦ {∃d1 :dest T. eval E1 d1

⊗ (ΠL1 :dest T. return (thunk L1) d1 −◦ {read L1 D})}.

4.4 State and Concurrency

So far, we have considered a wide range of pure, sequential programming language features.
We were pleasantly surprised that our destination-passing style encoding may be extended
to include mutable references and common concurrency primitives as well.

Futures. We now come to the first parallel construct: futures in the style of MultiL-
isp [Hal85], adapted to ML. There is no new type, since a future can be of any type. A
destination D can now serve as a value (called promise D). If a promise is ever needed it
needs to be available from then on, which is why we have a new family deliver V D which
delivers value V to destination D and will be an unrestricted assumption.
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Note that evaluating future E1 immediately returns a promise, while spawning a sepa-
rate thread to compute E1. This thread cannot communicate with other processes except
through the final value it might deliver.

future : exp T→ exp T.

promise : dest T→ val T.
deliver : val T→ dest T→ type.

ev future : eval (future E1) D
−◦ {∃d1 :dest T. return (promise d1) D

⊗ eval E1 d1

⊗ (ΠV1 :exp T. return V1 d1 −◦ {!deliver V1 d1})}.

ret deliver : return V D
◦− return (promise D1) D
← deliver V D1.

In the last clause we use the reverse notation for implication in order to emphasize the
operational reading in terms of backchaining. Previously, when we were trying to prove
return V D for some given destination D, we would only succeed if it were directly present
in the state, since there were no rules concluding return V D, only the weaker {return V D}.

With futures, we can also conclude return V D if there is a promise promise D1 with the
right destination D that has delivered its answer (and therefore the unrestricted assumption
deliver V D1 is available). Because futures can be iterated, delivering the results could
require a chain of such inferences.

We find it remarkable how simple and modular the addition of futures to the prior
semantic framework turned out to be.

Mutable References. Mutable references in the style of ML are easy to add: they just
become linear hypotheses. The only novelty here is the higher-order encoding in terms
of nested assumptions; otherwise the techniques and ideas are combined from LLF and
Forum. New with respect to LLF is the destination-passing style and the representation
of eval and return as assumptions rather than goals. New with respect to Forum is the
monadic encapsulation and the presence of explicit proof terms.
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ref : tp→ tp.
newref : exp T→ exp (refT).
assign : exp (ref T)→ exp T→ exp (one).
deref : exp (ref T)→ exp T.

cell : dest T→ val (ref T).
contains : dest T→ val T→ type.

ev newref : eval (newref E1) D
−◦ {∃d1 :dest T. eval E1 d1

⊗ (ΠV1 :val T. return V1 d1

−◦ {∃c :dest T. contains c V1 ⊗ return (cell C) D})}.
ev assign : eval (assign E1 E2) D

−◦ {∃d1 :dest (ref T). eval E1 d1

⊗ (ΠC1 :dest T. return (cell C1) d1

−◦ {∃d2 :dest T. eval E2 d2

⊗ (ΠV2 :val T. return V2 d2

−◦ΠV1 :val T. contains C1 V1

−◦ {contains C1 V2 ⊗ return (unit′) D})})}.
ev deref : eval (deref E1) D

−◦ {∃d1 :dest (ref T). eval E1 d1

⊗ (ΠC1 :dest T. return (cell C1) d1

−◦ΠV1 :val T. contains C1 V1

−◦ {contains C1 V1 ⊗ return V1 D})}.

If our language contained falsehood (0) and disjunction (A ⊕ B), there would be an
alternative formulation of dereferencing that does not consume and the re-create the linear
assumption.

ev deref ′ : eval (deref E1) D
−◦ {∃d1 :dest (ref T). eval E1 d1

⊗ (ΠC1 :dest T. return (cell C1) d1

−◦ΠV1 :val T. {(contains C1 V1 −◦ {0})⊕ return V1 D})}.

Concurrency. We now give an encoding of Concurrent ML as presented in [Rep99],
omitting only negative acknowledgments. The representation can be extended to allow
negative acknowledgments without changing its basic structure, but it would obscure the
simplicity of representation.

We have two new type constructors, chan T for channels carrying values of type T, and
event T for events of type T.

chan : tp→ tp.
event : tp→ tp.

Processes are spawned with spawn E, where E is evaluated in the new process. spawn
always returns the unit value. We synchronize on an event with sync. The primitive events
are send and receive events for synchronous communication, as well as an event that is
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always enabled. In addition we have non-deterministic choice as in Milner’s synchronous
π-calculus, and wrappers that can be applied to event values. We avoid the usual ML
style representation where unevaluated expressions of type T are presented as functions
arrow one T. Instead, our semantics will simply not evaluate such expressions where appro-
priate. This leads to a more modular presentation of the language.

spawn : exp T→ exp (one).
sync : exp (event T)→ exp T.

channel : exp (chan T).

alwaysEvt : exp T→ exp (event T).
recvEvt : exp (chan T)→ exp (event T).
sendEvt : exp (chan T)→ exp T→ exp (event (one)).
choose : exp (event T)→ exp (event T)→ exp (event T).
neverEvt : exp (event T).
wrap : exp (event T1)→ (val T1 → exp T2)→ exp (event T2).

Among the new internals we find event values corresponding to the above events, plus
channels that have been allocated with channel.

ch : tp→ type.
chn : ch T→ val (chan T).

alwaysEvt′ : val T→ val (event T).
recvEvt′ : val (chan T)→ val (event T).
sendEvt′ : val (chan T)→ val T→ val (event (one)).
choose′ : val (event T)→ val (event T)→ val (event T).
neverEvt′ : val (event T).
wrap′ : val (event T1)→ (val T1 → exp T2)→ val (event T2).

Finally, we come to the operational semantics. There is a new type family, synch W D
which synchronizes the event value W. The expression returned by the synchronization will
eventually be evaluated and the resulting value returned to destination D.

We have chosen for processes that return to be explicitly “garbage collected” in the rule
for spawn. Unlike for futures, the returned value is ignored.

synch : val (event T)→ dest T→ type.

ev spawn : eval (spawn E1) D
−◦ {return (unit′) D
⊗ (∃d1 :dest. eval E1 d1

⊗ (ΠV1. return V1 d1 −◦ {1}))}.
ev sync : eval (sync E1) D

−◦ {∃d1 :dest (event T). eval E1 d1

⊗ (ΠW1 :val (event T). return W1 d1

−◦ {synch W1 D})}.
ev channel : eval (channel) D

−◦ {∃K:chT. return (chn K) D}.
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The rules for evaluating events are straightforward, since they simply evaluated the
embedded expressions as needed and return the corresponding event value.

ev alwaysEvt : eval (alwaysEvt E1) D
−◦ {∃d1 :dest T. eval E1 d1

⊗ (ΠV1 :val T. return V1 d1

−◦ {return (alwaysEvt′ V1) d1})}.
ev recvEvt : eval (recvEvt E1) D

−◦ {∃d1 :dest (chan T). eval E1 d1

⊗ (ΠK:ch T. return (chn K) d1

−◦ {return (recvEvt′ (chn K)) D})}.
ev sendEvt : eval (sendEvt E1 E2) D

−◦ {∃d1 :dest (chan T). eval E1 d1

⊗ (ΠK:ch T. return (chn K) d1

−◦ {∃d2 :dest T. eval E2 d2

⊗ (ΠV2 :val T. return V2 d2

−◦ {return (sendEvt′ (chn K) V2) D})})}.
ev choose : eval (choose E1 E2) D

−◦ {∃d1 :dest (event T). eval E1 d1

⊗ (ΠW1 :val (event T). return W1 d1

−◦ {∃d2 :dest (event T). eval E2 d2

⊗ (ΠW2 :val (event T). return W2 d2

−◦ {return (choose′ W1 W2) D})})}.
ev neverEvt : eval (neverEvt) D−◦ {return (neverEvt′) D}.
ev wrap : eval (wrap E1 (λx.E2 x)) D

−◦ {∃d1 :dest (event T1). eval E1 d1

⊗ (ΠW1 :val (event T1). return W1 d1

−◦ {return (wrap′ W1 (λx.E2 D})}.
Finally, we come to event matching as required for synchronization. We have a type

family action which extracts a primitive event value (send, receive, or always) from a given
complex event value (which may contain choices and wrappers). It also accumulates wrap-
pers, returning a “continuation” val S→ exp T for an original event of type T.

Note that action is don’t-know non-deterministic in the manner of LLF or Lolli and is
therefore written in the style of logic programming with reverse implications. Actions does
not refer to the state.

action : val (event T)→ val (event S)→ (val S→ exp T)→ type.

act T : action (alwaysEvt′ V) (alwaysEvt′ V) (λx. value x).
act ! : action (sendEvt′ (chn K) V) (sendEvt′ (chn K) V) (λx. value x).
act ? : action (rcvEvt′ (chn K)) (rcvEvt (chn K)) (λx. value x).
act ⊕1 : action (choose′ W1 W2) A (λx.E x)

← action W1 A (λx.E x).
act ⊕2 : action (choose′ W1 W2) A (λx.E x).

← action W2 A (λx.E x).
act ⇒ : action (wrap′ W (λx2.E2 x2)) A (λx1. let (E1 x1) (λx2.E2 x2))

← action W A (λx1.E1 x1).
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The action rules are invoked when one or two synch assumptions are selected. Presumable
the selection of such assumptions for concurrent evaluation is subject to fair scheduling. As
further investigation of fairness and its consequences in this context is subject to further
research and beyond the scope of this paper.

synch1 : synch W D
−◦ action W (alwaysEvt′ V) (λx.E x)
→ {eval (E V) D}.

synch2 : synch W1 D1

−◦ synch W2 D2

−◦ action W1 (sendEvt′ (chn K) V) (λx1.E1 x1)
→ action W2 (rcvEvt′ (chn K)) (λx2.E2 x2)
→ {eval (E1 unit′) D1 ⊗ eval (E2 V) D2}.

Note that we use A → B instead of A −◦ B whenever A does not require access to the
current state. In this particular signature, A −◦ B would in fact be equivalent, since no
linear assumptions could be used in the proof of A (which is of the form action W D for
some W and D.

5 Petri Nets in CLF

This sections applies CLF to encode Petri nets. We introduce preliminary multiset termi-
nology in Section 5.1 and define two popular semantics, dubbed sequential and concurrent
models, for Petri nets in Section 5.2. We give encodings for each of them in Sections 5.3
and 5.4, respectively. We conclude in Section 5.5 with some comments on how Petri nets
can be encoded in LLF.

5.1 Multisets

Given a support set S, a multiset m over S is a collection of possibly repeated elements
S. We formally define m as a function m : S → N that associates a multiplicity to every
element of S. We therefore write NS for the set of all multisets over S.

Given a multiset m over S, any a ∈ S such that m(a) ≥ 1 is called an element of m.
We denote this fact as a � m. The empty multiset, written “·” or “HI”, has no elements: it
is such that ·(a) = 0 for all a ∈ S. In analogy with the usual extensional notation for finite
sets, where we write {a1, . . . , an} for the set consisting of the elements a1, . . . , an, we will
denote a multiset with elements a1, . . . , an (possibly with replications) as Ha1, . . . , anI. We
extend this notation to the intensional construction of multisets given by the validity of a
property: Ha : p(a) s.t. a � mI is the multiset consisting of all elements of m for which the
property p holds.

The multiset-equivalent of the usual operations and relations on sets are inherited from
the natural numbers N. In particular, if m1 and m2 are two multisets with common support
S,

• the submultiset relation, denoted m1 ≤ m2, extends the “less than or equal to” relation
over N: m1 ≤ m2 if for all a ∈ S, m1(a) ≤ m2(a).
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• multiset equality is similarly lifted from the equality over N. As for sets and numbers,
m1 = m2 iff m1 ≤ m2 and m2 ≤ m1.

• the multiset union of m1 and m2 is the multiset m = m1 ] m2 such that for each
a ∈ S, we have that m(a) = m1(a) + m2(a).

• if m2 ≤ m1, then the multiset difference of m1 and m2 is the multiset m = m1 −m2

such that, for all a ∈ S, m(a) = m1(a)−m2(a).

• the cardinality of m1, denoted |m1| is given as |m1| =
∑

a∈S m1(a).

Other operations and relations are similarly defined, although we will not need them.
We will sometimes need to distinguish the different occurrences of an element a in a

multiset m. For this purpose, we define a labeled multiset as a multiset m together with a
set X and a function Λ : X → m that associates a unique label x ∈ X to each occurrence of
an element of m. We will always be in the position to choose the set X of labels in such a way
that Λ is a multiplicity-conscious bijection between X and m, i.e., HΛ(x) : x ∈ XI = m. We
will take notational advantage of this flexibility and write m to indicate some labeled version
of m. We will occasionally write m as (X:m) to make explicit the set of labels X used in
the construction of m from m. We will sometimes refer to a labeled multiset extensionally,
writing for example (x1:a1, . . . , xn:an) for a multiset Ha1, . . . , anI with labels {x1, . . . , xn}.
Labeled multisets inherit the operations and relations of their unlabeled cousins, although
we shall be careful to preserve the multiplicity-conscious nature of the defining bijection
(typically by renaming labels as necessary). Observe that, in the case of labeled multisets,
these operations reduce to their set-theoretic counterparts.

Finally, we will occasionally view a multiset m as a sequence induced by some ordering
(e.g., alphabetic on the identifiers denoting the elements of its support set). We emphasize
this reading by writing m as m. We extend both concept and notation to labeled multisets
in which case a secondary ordering over labels orders different occurrences of the same
elements.

5.2 Petri Nets

A Petri net N is a directed bi-partite multigraph (P, T,E) whose two types of nodes, P
and T , are called places and transitions, respectively [Pet62, Rei85, EW90]. The multi-
edges E link places to transitions and transitions to place; each edge carries a multiplicity.
It is convenient to take a transition-centric view of edges and define them as a function
E : T → NP ×NP that associates each transition in t ∈ T with a pair of multisets of places
that we will denote (•t, t•). The pre-condition •t of t lists the origin p of every edge that
enters t; its multiplicity is expressed by the number of occurrences of the place p in •t. The
post-condition t• of t similarly represents the edges exiting t.

A marking M for N is a labeled multiset over P . Each element x:p in M is called a token.
Our use of labels constitutes a departure, known as the “individual token philosophy” and
analyzed in [BMMS98, BM00], from the definition of markings and Petri nets commonly
found in the literature. The implications are rather subtle: labels assign an identity to
tokens inhabiting the same place, making it possible to distinguish them. Therefore, where
the more traditional “collective token approach” prescribe removing “a” token from a place,
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Figure 1: A Producer/Consumer Net

we shall say which of the possibly many token populating this place we are operating on, and
each choice is accounted for as a different operation. Our more detailed formulation has the
advantage of simplifying subsequent definitions (in particular traces) and will constitute the
bases of our CLF encoding in Section 5.3. The drawback is that it distinguishes behaviors
that the mainstream definition would identify.

Figure 1 describes a producer-consumer system Npc by means of the traditional graphical
representation for Petri nets: places are rendered as circles and transitions as squares; edge
multiplicity is annotated on top of the edges unless it is 1 or 0 (in which case the edge is
not drawn). The left cycle represents the producer, who releases one item per cycle, puts
it in the common buffer and increments the counter by one. The consumer (on the right)
extracts two items at a time from the buffer and consumes them. Figure 1 also specifies a
marking M pc1 by putting a bullet for each occurrence of a place in the appropriate circle.
Labels for these tokens cluster around the place where they occur.

A Petri net is a recipe for transforming a marking into another marking. More precisely,
each transition can be seen as a description of how to modify a fragment of a marking.
If two transitions do not try to rewrite the same portion of this marking, they can be
applied in parallel. There are several ways to formalize this basic notion into a full blown
semantics. We will examine two of them: first, the interleaving semantics expresses the
global transformation as a sequence of application of transitions, recovering concurrency
through permutations. Second, the trace semantics focuses on the dependencies (or lack
thereof) among transitions.

5.2.1 Interleaving Semantics

Given a Petri net N = (P, T,E) and a marking M = (X:M) over P , a transition t ∈ T is
enabled in M if •t ≤ M . If t is enabled at M , then an application of t to M is defined as
the judgment

M BN M ′

where the marking M ′ = (X ′:M ′) satisfies

M ′ = ((X:M)− (•x:•t)) ] (x•:t•)
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Figure 2: A Later Marking in the Producer/Consumer Net

where •x is the subset of the labels X associated with •t in M (note that it may not be
unique), and x• is a set of new labels that are associated with t•. The application of a
transition to a marking is also called an execution step or the firing of t in M .

Observe that, given N and M , the triple (t, •x, x•) identifies the application uniquely.
We say that this triple supports the above application. We will generally annotate an
execution step with the transition instance that supports it:

M BN M ′ by (t, •x, x•).

An execution of a Petri net N from a marking M0 to a marking Mn is given by the
reflexive and transitive closure of the execution step relation. It is denoted as

M0 B∗N Mn by S

where S = (t1, •x1, x1•), . . . , (tn, •xn, xn•) and for i = 1..n, we have that Mi−1BNMi by (ti, •xi, xi•).
Observe that the entire execution sequence, and in particular Mn , is completely determined
by M0 and the (possibly empty) sequence of transition applications S it is constructed from.
Whenever M0 B∗N Mn by S the marking Mn is said to be reachable from M0 .

Figure 2 shows another marking M pc2 for the producer/consumer net. It is obtained
by applying transitions t r, t p and t a to the marking M pc1 embedded in Figure 1. This
is described by the judgment:

M1 B∗N M2 by (t r, (r1), (n3, b4, p1)), (t p, (p1), (r2)), (t a, (a1, b1, b2), (c1))

Token p1:p is produced by the first transition and consumed by the second. Observe that
transition t a consumes buffer tokens b1 and b2. We could have had it consume any com-
bination of buffer tokens, including the token b4 produced by the firing of t r (the effect
would have been to force a dependency between these two rules). This degree of discrimi-
nation does not arise in settings that keep tokens anonymous. Below, we will refer to this
execution sequence as Spc.

Transition applications are completely ordered in a transition sequence. Still, some
transitions are applied to independent portions of a given marking. We will now define
concepts to highlight this form of concurrency, and prove some results for them.
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A transition sequence S = (t1, •x1, x1•), . . . , (tn, •xn, xn•) is well-labeled, if for any label
x appearing in S:

• there is at most one index i such that x ∈ xi•;

• there is at most one index j such that x ∈ •xj ;

• whenever there exist both i and j such that x ∈ xi• ∩ •xj , then i < j.

It is clear that if M B∗N M ′ by S, then S is well-labeled.
If S1 and S2 are two well-labeled transition sequences, S2 is a well-labeled exchange of S1,

written S1 ∼0 S2, if S1 = S ′, (t, •x, x•), (t′, •x′, x′•),S ′′ and S2 = S ′, (t′, •x′, x′•), (t, •x, x•),S ′′.
In our producer/consumer example, the execution sequence S ′pc = (t r, (r1), (n3, b4, p1)),
(t a, (a1, b1, b2), (c1)), (t p, (p1), (r2)) is a well-labeled exchange of Spc above, but the se-
quence S†pc = (t p, (p1), (r2)), (t r, (r1), (n3, b4, p1)), (t a, (a1, b1, b2), (c1)) is not since p1 oc-
curs in the pre-condition of the first transition and in the post-condition of the second
transition (violating the third condition).

It is clear that, if S1 ∼0 S2, then

•x ∩ x′• = •x′ ∩ x• = •x ∩ •x′ = x• ∩ x′• = ∅

since S1 and S2 are well-labeled. This condition is actually sufficient for two transitions to
constitute a well-labeled exchange.

Lemma 5.1. (Checking well-labeled exchange)
Let S ′, (t, •x, x•), (t′, •x′, x′•),S ′′ be a well-labeled transition such that •x∩x′• = •x′ ∩x• =

•x ∩ •x′ = x• ∩ x′• = ∅, then S ′, (t, •x, x•), (t′, •x′, x′•),S ′′ ∼0 S ′, (t′, •x′, x′•), (t, •x, x•),S ′′.

Proof. By induction on S ′ and then by verifying that the second sequence satisfies the
definition of well-labeled transition.

The well-labeled exchange relation is clearly symmetric. Moreover, if one of the sides
supports an execution between two markings, the other relates these same two markings,
as formalized in the following lemma.

Lemma 5.2. (Well-labeled exchange preserves execution)
If M B∗N M ′ by S1 and S1 ∼0 S2, then M B∗N M ′ by S2.

Proof. Let S1 = S ′, (t, •x, x•), (t′, •x′, x′•),S ′′ and S2 = S ′, (t′, •x′, x′•), (t, •x, x•),S ′′.
By definition, there are markings M̄ , M ∗ and M̄ ′ such that

M B∗N M̄ by S ′, M̄ BN M ∗ by (t, •x, x•), M ∗ BN M̄ ′ by (t′, •x′, x′•), M̄ ′ B∗N M ′ by S ′′

where M ∗ = (M̄ − (•x:•t))] (x•:t•) and M̄ ′ = (M ∗− (•x′:•t′))] (x′•:t′•) = (((M̄ − (•x:•t))]
(x•:t•))− (•x′:•t′)) ] (x′•:t′•).

Since S1 and S2 are well-labeled, x• ∩ •x′ = ∅, therefore, we can rewrite M̄ ′ as M̄ ′ =
(M̄ − (•x:•t)− (•x′:•t′)) ] (x•:t•) ] (x′•:t′•), or as

M̄ ′ = (((M̄ − (•x′:•t′)) ] (x′•:t′•)︸ ︷︷ ︸
M ∗∗

)− (•x:•t)) ] (x•:t•).
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Let then M ∗∗ = (M̄ − (•x′:•t′)) ] (x′•:t′•). We have then that M̄ BN M ∗∗ by (t, •x′, x′•)
and M ∗∗ BN M̄ ′ by (t′, •x, x•), from which we deduce that M B∗N M ′ by S2.

Two well-labeled transition sequences S1 and S2 are equivalent, written S1 ∼ S2, if S1

is a permutation of S2. We will sometimes write S2 = π(S1) where π is the witnessing
permutation. It is easy to show that ∼ is indeed an equivalence relation. In our recur-
ring example, the transition sequence S ′′pc = (t a, (a1, b1, b2), (c1)), (t r, (r1), (n3, b4, p1)),
(t p, (p1), (r2)) is a equivalent to Spc.

Permutations can be expressed as iterated exchanges of two adjacent elements. Sorting
algorithms such as bubble-sort are based on this property. It is therefore not surprising
that showing the equivalence of two transition sequences can be reduced to producing a
sequence of well-labeled exchanges.

Lemma 5.3. (Well-labeled equivalence maps to iterated well-labeled exchange)
If S ∼ S ′, then there are transition sequences S0, . . . ,Sn such that S = S0, S ′ = Sn,

and for i = 1..n, Si−1 ∼0 Si.

Proof. Let S = ξ1, . . . , ξk, with ξj = (tj , •xj , xj•) for j = 1..k. Then, by definition,
S ′ = ξπ(1), . . . , ξπ(k) for some permutation π. We define the distance between S and S ′ as
the tuple d(S,S ′) = (d1(S,S ′), . . . , dk(S,S ′)) where dj(S,S ′) = |j − π(j)|, for j = 1..k. We
then proceed by lexicographic induction on d(S,S ′).

If d(S,S ′) = ~0, then S = S ′ and n = 0.
Otherwise, let l be the first non-zero index in d(S,S ′). Then,

S = S̄, ξl, S̃ and S ′ = S̄,S ′, ξ′π(l)−1, ξ
′
π(l),S

∗∗

Let S ′′ = S̄,S ′, ξ′π(l), ξ
′
π(l)−1,S

∗∗. Since S and S ′ are well-labeled and equivalent, ξ′π(l)−1 and
ξ′π(l) must be independent. Thus, we have that S ′′ ∼0 S ′.

Notice that d(S,S ′′) < d(S,S ′) since dl(S,S ′′) = dl(S,S ′)− 1 (and dj(S,S ′′) is still null
for j < l). Then, by induction hypothesis, there are transition sequences S0, . . . ,Sn such
that S = S0, S ′′ = Sn, and for i = 1..n, Si−1 ∼0 Si. Then, simply add S ′′ ∼0 S ′ to this
sequence to obtain the desired result

In our producer/consumer example, we observed that Spc ∼ S ′′pc. This can be unfolded
as Spc ∼0 S ′pc ∼0 S ′′pc.

This result, together with Lemma 5.4, allows for a simple proof of the fact that ∼
preserves marking reachability.

Lemma 5.4. (Well-labeled equivalence preserves execution)
If M B∗N M ′ by S and S ∼ S ′, then M B∗N M ′ by S ′.

Proof. By lemma 5.3, there are transition sequences S0, . . . ,Sn such that S = S0, S ′ = Sn,
and for i = 1..n, Si−1 ∼0 Si. We now proceed by induction on n.

If n = 0, then S = S ′ and the desired result is trivially satisfied.
For n ≥ 1, we have a sequence of the form S0, . . . ,Sn−1,Sn. By induction hypothesis,

there is an execution M B∗N M ′′ by Sn−1 for some marking M ′′. By Lemma 5.2, M ′′ B

N M ′ by Sn. From this the desired result follows easily.
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Figure 3: A Trace in the Producer/Consumer Net

5.2.2 Trace Semantics

Given a Petri net N = (P, T,E), a trace T of N is an acyclic directed bi-partite graph
(P̄ , T̄ ,E) such that P̄ = (X:P̄ ) is a labeled multiset over P , T̄ = (Y :T̄ ) is a labeled
multiset over T , and E is a set of (single) edges E : T̄ → 2P̄ × 2P̄ . In this report, we will
assume that P̄ , T̄ and E are finite. Similarly to the case of Petri nets, we will denote the
two components of the image of a labeled transition (y:t) according to E as •(y:t) and (y:t)•,
respectively. E is subject to the following restrictions:

1. For any transition t ∈ T such that (y:t) ∈ T̄ , if •(y:t) = (X1:P̄1) and (y:t)• = (X2:P̄2)
(with P̄1, P̄2 ≤ P̄ and X1 and X2 disjoint sets of labels), then P̄1 = •t and P̄2 = t•.

2. For every (x:p) ∈ P̄ and (y1:t1), (y2:t2) ∈ T̄ ,

(a) if (x:p) ∈ •(y1:t1) and (x:p) ∈ •(y2:t2), then (y1:t1) = (y2:t2).

(b) if (x:p) ∈ (y1:t1)• and (x:p) ∈ (y2:t2)•, then (y1:t1) = (y2:t2).

The first restriction forces each occurrence of a transition t in the trace T to be consistent
with its definition in N : its incoming edges should originate from places in P̄ of the same
type and in the same number as specified in •t, and similarly for outgoing edges. The second
restriction requires a place in T to be produced at most once and to be consumed at most
once.

Given a trace T , the initial marking of T , denoted •T , is the set of labeled places in P̄
without any incoming edge: •T = {(x:p) : there is no (y:t) ∈ T̄ s.t. (x, t) ∈ •(y:t)}. The
final marking of T is similarly defined as the set of labeled places in T without any outgoing
edge. It is denoted T •.

Figure 3 shows a trace Tpc for the consumer/producer example in this section. For clarity,
we have omitted the identifiers for places and transition, relying only on mnemonic label
names. The initial marking of T consists of the places •Tpc = {n1, n2, r1, a1, c1, b1, b2, b3}
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while its final marking is Tpc• = {n1, n2, n3, b4, r2, a1, c2, b3}. These two sets of tokens
correspond to the markings displayed in Figures 1 and 2, respectively. This trace consists
of three transition instances: (t r1:t r), (t a1:t a) and (t p1:t p).

5.2.3 Equivalence

We now show that the two presentations of the semantics of a Petri net are equivalent from
the point of view of reachability: whenever there is an execution sequence between two
markings, they are the initial and final marking of some trace, and for every trace there is
an execution sequence between its initial and final marking. Besides of being of interesting
by itself, this fact will help us encode the notion of traces in CLF. The above intuition is
formalized in the following property.

Property 5.5. (Equivalence of interleaving and trace semantics)
Let N = (P, T,E) be a Petri net.

1. Given markings M and M ′ over N such that M B∗N M ′ by S, then there is a trace
T over N such that •T = M and T • = M ′.

2. Given a trace T over N , then there is a valid execution sequence S such that •T B
∗
N T • by S.

Proof.

1. The proof proceeds by induction on the sequence S = (t1, •x1, x1•), . . . , (tn, •xn, xn•)
of execution steps that define the construction of M B∗N M ′ by S.

If S is empty, then M ′ = M . Then the triple T = (M , ∅, ∅) satisfies the definition
of a trace, and moreover •T = T • = M .

Assume now that S = S∗, (t, •x, x•). Then, there is a marking M ∗ such that M B
∗
N M ∗ by S∗, and M ∗ BN M ′ by (t, •x, x•). By induction hypothesis there is a trace
T ∗ = (P̄∗, T̄∗,E∗) such that •T ∗ = M and T ∗• = M ∗. By definition of execution
step, M ′ = (M ∗ − (•x:•t)) ] (x•:t•). We then define T ′ = (P̄ ′, T̄ ′,E′) as follows:

• P̄ ′ = P̄∗ ∪ (x•:t•).

• T̄ ′ = T̄∗ ∪ {(y:t)}, for some new label y.

• E′ = E∗ ∪ {(y:t) 7→ ((•x:•t), (x•:t•))}.

Observe that •(y:t) = (•x:•t) and (y:t)• = (x•:t•).

We shall prove that T ′ is indeed a trace. Condition (1) follows by construction.
Condition (2-a) is satisfied since •(y:t) ⊆ T ∗•. Finally, condition (2-b) holds since the
labels in x• are new.

In order to conclude this case of the proof, we observe that •T ′ = M since the
construction of T ′ from T ∗ did not involve the introduction of any incoming edge to
a place, and that T ′• = M ′ because the set of places without an outgoing edge has
been upgraded to exclude (•x:•t) and extended with (x•t•), which is exactly how M ′

has been produced
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2. Since traces are acyclic, their nodes and edges naturally define a partial order upon
which to base a proof by induction. Therefore, we will proceed by induction on the
structure of T .

Our base case captures traces without any transition nodes. Therefore T = (P̄ , ∅, ∅),
for some labeled multiset of places P̄ . Then •T = T • = P̄ . Our statement is proved
by taking S to be the empty sequence of transitions.

Assume now that T = (P̄ , T̄ ,E) contains at least one transition node (ŷ:t̂). Then,
there is at least one node (y:t) such that (y:t)• ⊆ T •. In order to show this, construct
the sequence σ of transition nodes as follows: initialize σ to (ŷ:t̂). Let (y′:t′) be the
last element in σ.

(a) If (y′:t′)• ⊆ T •, then (y′:t′) is the desired transition (y:t).

(b) Otherwise, there is a labeled place (x:p) and a labeled transition (y′′:t′′) such
that (y′:t′)• 3 (x:p) ∈ •(y′′:t′′). In this case, extend σ with (y′′:t′′) and repeat.

Since T is acyclic (and finite), this procedure can make use of (b) only a finite number
of times before falling back on (a).

Let therefore (y:t) ∈ T̄ be one of the transition nodes in T such that (y:t)• ⊆ T •. We
define the trace T ′ = (P̄ ′, T̄ ′,E′) as follows:

• P̄ ′ = P̄ \ (y:t)•.

• T̄ ′ = T̄ \ {(y:t)}.
• E′ = E \ {(y:t) 7→ (•(y:t), (y:t)•)}.

It is a simple exercise to verify that T ′ is a trace. Moreover, •T = •T ′ and T • =
(T •′ \ •(y:t)) ∪ (y:t)•.

By induction hypothesis, there is a transition sequence S ′ such that •T ′B∗N T •′ by S ′.
Let then •(y:t) = (•x:•t) and (y:t)• = (x•:t•). Then, the desired transition sequence S
is defined as S ′, (t, •x, x•).

This concludes the sketch of this proof.

This proof outlines a method for building a trace out of an execution sequence. It is
worth making it more explicit. The trace associated with a transition sequence S and a
marking M , denoted TM (S), is defined as follows:

TM (·) = (M , ∅, ∅)
TM (S, (t, •x, x•)) = (P̄ ∪ (x•:t•),

T̄ ∪ {(y:t)},
E ∪ {(y:t) 7→ ((•x:•t), (x•:t•))})

where TM (S) = (P̄ , T̄ ,E)
and y is a new label

Applying this definition to the producer/consumer net, it is easy to check that TM pc1(Spc)
is a trace that differ from Tpc only by the the name of labels not occurring in M pc1.

Indirectly, this definition provides a constructive method for extending a trace T with
respect to a Petri net N : identify a transition t in N such that T • = (•x:•t), P̄ ′; add the

34



transition node (y:t) (for some new label y) and place nodes (x•:t•) for some new labels x•;
add edges from (•x:•t) to (y:t) and from (y:t) to (x•:t•).

The above proof also outlines a method for flattening a trace T into an execution se-
quence S: repeatedly pull out a labeled transition with only initial places in its precondition
until all transitions in T have been processed in this way. The following definition general-
izes this technique by describing the set of transition sequences S(T ) that can be extracted
in this way from a trace T .

(·) ∈ S((P̄ , ∅, ∅))
S, (t, •x, x•) ∈ S(T ) if T = (P̄ ∪ (y:t)•, T̄ ∪ {(y:t)},E ∪ {(y:t) 7→ (•(y:t), (y:t)•)})

and (y:t)• ⊆ T •

and •(y:t) = (•x:•t)
and (y:t)• = (x•:t•)
and S ∈ S((P̄ , T̄ ,E))

S ∈ S(T ) is called a transition sequence underlying the trace T . In the producer/consumer
example, it is easy to check that S(Tpc) = {Spc,S ′pc,S ′′pc}.

The Equivalence Property 5.5 can then be specialized to these constructions. The proofs
of the following two corollaries can be excised from the proof of this property.

Corollary 5.6. (From transition sequences to traces)
If M B∗N M ′ by S, then TM (S) is a trace. Moreover, M = •(TM (S)) and M ′ =

(TM (S))•.

Corollary 5.7. (From traces to transition sequences)
If T is a trace, then for every S ∈ S(T ) and •T B∗N T • by S.

It is easy to shows that the two above constructions are essentially inverse of each other.

Lemma 5.8. (S( ) and T ( ) are each other’s inverse)
Let N be a Petri net.

1. If T is a trace and S ∈ S(T ), then TM (S) is isomorphic to T for M = •T .

2. If M B∗N M ′ by S, then S ∈ S(TM (S)).

Proof.

1. This part of the proof proceeds by induction on the structure of S. Assume first that
S = ·, then T = (P̄ , ∅, ∅) and •T = P̄ . By definition, we have that TP̄ (·) = (P̄ , ∅, ∅),
which is clearly isomorphic to T .

Assume now that S = S ′, (t, •x, x•). Then, it must be the case that

T = (P̄ ∪ (y:t)•, T̄ ∪ {(y:t)},E ∪ {(y:t) 7→ (•(y:t), (y:t)•)})

with (y:t)• ⊆ T •, •(y:t) = (•x:•t), (y:t)• = (x•:t•) and S ∈ S(T ′) where T ′ = (P̄ , T̄ ,E).

By induction hypothesis, TM ′(S ′) is isomorphic to T ′ where M ′ = •T ′. Let then
M = •T ; we have that M ′ = M − (•(y:t) ∩M ). Let TM ′(S ′) = (P̄ ′, T̄ ′,E′).
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By construction, we have that

TM (S) = TM (S ′, (t, •x, x•)) = (P̄ ′∪(x•:t•), T̄ ′∪{(y′:t)},E′∪{(y′:t) 7→ ((•x:•t), (x•:t•))}).

We can then extend the isomorphism between TM ′(S ′) and T ′ to TM (S) and T by
relating the added places with identical labels, relating the added transitions labeled
y and y′ respectively, and relating the added edges in E and E′ respectively.

2. The proof proceeds by induction on the structure of S. The case in which S = · is
trivial. The inductive case, in which S = S ′, (t, •x, x•) is handled similarly to the proof
of the first part of this lemma: we unfold TM (S), deduce by induction hypothesis that
S ′ ∈ S(TM ′(S ′)) for M ′ = M − (•(y:t) ∩M ), and then show that S ∈ S(TM (S)).

This concludes the proof of this lemma.

We will now show that traces are in one-to-one correspondence with the equivalence
classes induced by the ∼ relation over the set of well-labeled transition sequences. We
begin by showing that whenever a trace can be linearized into two sequences then they
are equivalent. First a technical lemma: whenever the places on the incoming edges of a
transition belong to the initial marking, this transition can shifted to the left of its current
position.

Lemma 5.9. (Left permutability of initial transitions)
Let T be a trace. If (S, ξ,S ′) ∈ S(T ) for ξ = (t, •x, x•), and •x ⊆ •T , then (ξ,S,S ′) ∈

S(T ) and (S, ξ,S ′) ∼ (ξ,S,S ′).

Proof. The proof proceeds by induction on the structure of S. The result holds trivially
if S = ·. If S = S ′′, ξ′′, we show by induction on S ′ that (S ′′, ξ, ξ′′,S ′) ∈ S(T ), which
allows us to appeal to the main induction hypothesis to show that (ξ,S,S ′) ∈ S(T ) and
(S, ξ,S ′) ∼ (ξ,S,S ′).

This property is used in the proof of the anticipated lemma linking transition sequences
underlying the same trace.

Lemma 5.10. (Transition sequences underlying the same trace are equivalent)
If T is a trace and S1,S2 ∈ S(T ), then S1 ∼ S2.

Proof. Let T = (P̄ , T̄ ,E). We proceed by induction on the size of T̄ . If T̄ = ∅, then it
must be the case that S1 = S2 = ·, which clearly satisfies the desired relation.

Assume then that S1 = ξ1,S ′1 and S2 = ξ2,S ′2. If ξ1 = ξ2, then S ′1 ∼ S ′2 by induction
hypothesis since S ′1 and S ′2 must be defined on the same subtrace of T . From this, we easily
obtain the desired result.

Otherwise, S1 = ξ1,S ′1, ξ2,S ′′1 and S2 = ξ2,S ′2, ξ1,S ′′2 . By lemma 5.9, we can conclude
that (ξ2, ξ1,S ′1,S ′′1 ), (ξ1, ξ2,S ′2,S ′′2 ) ∈ S(T ) and moreover S1 ∼ (ξ2, ξ1,S ′1,S ′′1 ) and S2 ∼
(ξ1, ξ2,S ′2,S ′′2 ). It is easy to show that (S ′1,S ′′1 ) and (S ′2,S ′′2 ) are defined on the same subtrace
of T . Therefore, by induction hypothesis, (S ′1,S ′′1 ) ∼ (S ′2,S ′′2 ) from which we deduce that
(ξ2, ξ1,S ′1,S ′′1 ) ∼ (ξ1, ξ2,S ′2,S ′′2 ) and therefore S1 ∼ S2 by the transitivity of ∼.

We now prove the reverse inclusion by showing that equivalent execution sequences pro-
duce isomorphic traces. We will rely on the following lemma about well-labeled exchanges.
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Lemma 5.11. (Trace isomorphism for well-labeled exchanges)
Given traces S1 and S2 such that M B∗N M ′ by Si (for i = 1, 2), if S1 ∼0 S2 then TM (S1)

is isomorphic to TM (S1).

Proof. By definition, S1 = (S, ξ, ξ′,S ′) and S2 = (S, ξ′, ξ,S ′) with ξ = (t, •x, x•) and
ξ′ = (t′, •x′, x′•). The proof proceeds by induction on S ′.

First, assume that S ′ = ·. We expand TM (S) as (P̄ , T̄ ,E). Then, by definition

TM (S, ξ, ξ′) = (P̄ ∪ (x•:t•) ∪ (x′•:t′•),
T̄ ∪ {(y1:t), (y′1:t

′)},
E ∪ {(y1:t) 7→ ((•x:•t), (x•:t•)), (y′1:t

′) 7→ ((•x′:•t′), (x′•:t′•))})

and

TM (S, ξ′, ξ) = (P̄ ∪ (x′•:t′•) ∪ (x•:t•),
T̄ ∪ {(y′2:t′), (y2:t)},
E ∪ {(y′2:t′) 7→ ((•x′:•t′), (x′•:t′•)), (y2:t) 7→ ((•x:•t), (x•:t•))}).

Observe that TM (S, ξ, ξ′) and TM (S, ξ′, ξ) differ only by the name of the variables y1, y
′
1

versus y2, y
′
2. They are therefore clearly isomorphic.

The inductive case, in which S ′ = (S ′′, ξ), follows trivially by construction.

This property extends naturally to equivalent well-labeled traces.

Lemma 5.12. (Trace isomorphism for equivalent transition sequences)
Given traces S1 and S2 such that M B∗N M ′ by Si (for i = 1, 2), if S1 ∼ S2 then TM (S1)

is isomorphic to TM (S1).

Proof. By Lemma 5.3, there are transition sequences S ′0, . . . ,S ′n such that S1 = S ′0, S2 =
S ′n, and for i = 1..n, S ′i−1 ∼0 S ′i. Moreover, by an iterated application of Lemma 5.2, we
have that M B∗N M ′ by S ′i for i = 1..n.

Given these observations, the main part of this proof proceeds by induction over n, using
Lemma 5.11 in the inductive case.

5.3 Sequential CLF Representation

We write poq for the CLF representation of object entity o. Different entities have different
representations. Whenever the same entity has several representations (for example sets of
labels), we distinguish them as poq(i) where i is a progressive number. In some occasions,
we write poqo′ for the encoding of an object o parameterized by (the representation of)
another object o′.

5.3.1 Representation of Petri nets

Let N = (P, T,E) be a Petri net. We define the CLF representation of N , written pNq, as
follows:

pNq = pPq, pEq
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where pPq is in turn defined as:

p∅q = place : type,
tok : place→ type

pP ∪ {p}q = pPq, p : place

and pEq is given by the following definitions:

p∅q = ·
pE ∪ {t 7→ (•t, t•)}q = pEq, t : p•tqC where C = { pt•q }

The encodings pt•q and p•tqC are respectively defined as:

pHIq = 1 pHIqC = C

pt• ] HpIq = pt•q ⊗ tok p p•t ] HpIqC = p•tq(tok p−◦C)

where we recall that the notation m indicates that the multiset m is viewed as a sequence
with respect to some canonical order.

The application of these definition to the producer/consumer example from Figure 1
produces the following CLF signature:

place : type.
tok : place→ type.

r : place.
p : place.

n : place.
b : place.

c : place.
a : place.

t p : tok p−◦ {1⊗ tok r}.
t r : tok r −◦ {1⊗ tok p⊗ tok b⊗ tok n}.
t a : tok b−◦ tok b−◦ tok a−◦ {1⊗ tok c}.
t c : tok c−◦ {1⊗ tok a}.

It should be observed how the encoding of the pre- and post-conditions of a transition
are not symmetric: the former is modeled as iterated linear implications while the latter as
an asynchronous formula inside a monad. It would be tempting to represent both using the
monadic encoding, which is akin to the way Petri nets are traditionally rendered in linear
logic [Cer95, MOM91, GG90]. For example, transition t a would be represented as

t a : {1⊗ tok b⊗ tok b⊗ tok a} −◦ {1⊗ tok c}.

While this is not incorrect, the behavior of this declaration is not what we would expect:
it is applicable not only in a linear context containing two declarations of type tok b and one
of type tok a, but also to any context that can be transformed (possibly by the application
of other rules) into a context with these characteristics. In summary, our representation
forces the execution of individual rules, while the alternative encoding allows its execution
to be preceded by an arbitrary computation.
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5.3.2 Representation of Markings

A marking M has two representations: one is simply a linear context consisting of all the
places in M indexed by their label. We write it pM q(1).

p∅q(1) = ·
pM ∪ (x, p)q(1) = pM q(1), x :̂ tok p

For example, the representation pM pc1q(1) of the producer/consumer net marking M pc1 in
Figure 1 is given by:

r1
∧: tok r.

a1
∧: tok a.

n1
∧: tok n.

n2
∧: tok n.

b1
∧: tok b.

b2
∧: tok b.

b3
∧: tok b.

The second representation of a marking M consists of a pair whose first component
is obtained by tensoring all the labels in M . The second component is the tensor of the
representation of the places in M . We denote this encoding as pM q(2), which we will often
expand as (pM q(2′), pM q(2′′)). The two components are positionally synchronized with
respect to M : we achieve this by referring to the canonical ordering of this multiset, which
we denoted M .

p∅q(2) = (1, 1)
pM ∪ (x, p)q(2) = (pM q(2′) ⊗ x, pM q(2′′) ⊗ tok p)

This second representation function yields the following pair when applied to the second
marking M pc2 for the producer/consumer net (displayed in Figure 2):

pM pc2q(2) = ( 1 ⊗ r2 ⊗ c1 ⊗ n1 ⊗ n2 ⊗ n3 ⊗ b3 ⊗ b4,
1 ⊗ tok r ⊗ tok c ⊗ tok n ⊗ tok n ⊗ tok n ⊗ tok b ⊗ tok b)

It should be observed that this representation, and in particular the presence of labels, is
a direct implementation of the “individual token approach” to Petri nets [BMMS98, BM00].
This derives from the fact that CLF, like most logical frameworks, forces every assumption
to have a unique name. An extension of CLF with proof irrelevance [Pfe01a] would avoid
this artificiality, allowing a direct representation of the “collective token philosophy”. We
intend to investigate this possibility as future work.

5.3.3 Representation of Execution Sequences

Let M and M ′ be markings and S = pM ′q(2′). Given the execution sequence S such that
M B∗N M ′ by S, we denote the representation of S with respect to S as pSqS . It is defined
as follows:

p·qS = S
p(t, •x, x•),SqS = let px•q = p•xqt in pSqS

where the encodings px•q and p•xqR of the sets of variables •x and x• are defined as follows,
respectively:

p∅q = 1 p∅qR = R
px• ∪ {x}q = px•q ⊗ x p•x ∪ {x}qR = p•xqRˆx
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We shall require that these encodings be positionally synchronized with ptq so that the
labels in p•xqt match the places in the consequent of ptq and the labels in px•q are in the
same order as the corresponding place representation in the antecedent of ptq.

On the basis of these definitions, the CLF representation of the execution sequence Spc

with respect to pM pc2q(2′) given in Section 5.2.1 for the producer/consumer example has
the following form:

pSpcqpM pc2q(2′)
= let 1⊗ n3 ⊗ b4 ⊗ p1 = t r∧r1 in

let 1⊗ r2 = t p∧p1 in
let 1⊗ c1 = t a∧a1

∧b1
∧b2 in

1⊗ r2 ⊗ c1 ⊗ n1 ⊗ n2 ⊗ n3 ⊗ b3 ⊗ b4

5.3.4 Adequacy Theorems

We will now show that our encoding correctly captures the definition of Petri nets given
in Section 5.2. More precisely, we will concentrate on the relation between transition se-
quences and canonical expressions derivable in our setting. We will first verify that the
encoding of a transition sequence between two markings is a typable expression relative to
the representation of these two markings.

Lemma 5.13. (Soundness of the sequential representation of Petri nets)
Let N be a Petri net and M ,M ′ be two markings over N . If M B∗N M ′ by S, then

there is a derivation E of

·; pM q(1) `pNq pSqpM ′q(2′) ← pM ′q(2′′)

Proof. The proof proceeds by induction over S. If S is the empty execution sequence,
then M = M ′. Since pM q(2) is positionally synchronized, it is easy to prove that the
judgment

·; pM q(1) `pNq pM q(2′) ← pM q(2′′)

is derivable.
Assume now that S = (t, •x, x•),S ′. Then, by definition of execution sequence,

M BN M ′′ by (t, •x, x•) and M ′′ B∗N M ′ by S ′

for some marking M ′′. We then have that M ′′ = (M − (•x:•t)) ] (x•:t•).
By induction hypothesis, there is a derivation E ′ of

·; pM ′′q(1) `pNq pS ′qpM ′q(2′) ← pM ′q(2′′)

Observe that

pM ′′q(1) = ∆, p(x•:t•)q(1) where ∆ is s.t. pM q(1) = ∆, p(•x:•t)q(1)

Now, pSqpM ′q(2′)
= p(t, •x, x•),S ′qpM ′q(2′)

= let px•q = p•xqt in pS ′qpM ′q(2′)
. Thanks to

our synchronization assumptions on the definition of px•q and p•xqt, it is easy to show that
there is a CLF derivation R of ·; p(•x:•t)q(1) `pNq p•xqt ⇒ {pt•q}. Once we observe that the
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pattern abbreviation px•q : pt•q expands to p(x•:t•)q(1), we simply use rule {}E to construct
the desired derivation of ·; pM q(1) `pNq pSqpM ′q(2′′) ← pM ′q(2′′).

Although proving the adequacy of this encoding when execution sequences are extended
from the left is relatively easy, as shown in the above proof, handling the dual extension is
complicated and requires a procedure akin to cut-elimination for a sequent formulation of
CLF.

It is easy to validate the above lemma on our running example: the following judgment
is derivable

·; pM pc1q
(1) `pNpcq pSq

pM pc2q(2′)

pc ← pM pc2q
(2′′)

We now show the complementary result: any well-typed CLF expression relative to two
markings is the encoding of some transition sequence between them.

Lemma 5.14. (Completeness of the sequential representation of Petri nets)
Let N be a Petri net and M ,M ′ be two markings over N . If E :: ·; pM q(1) `pNq E ←

pM ′q(2′′), then there is an execution sequence S such that

M B∗N M ′ by S

and pSqpM ′q(2′) ≡ E.

Proof. The proof proceeds by induction on the structure of E . By inversion, there are
two cases to examine.

1. Let us first consider the situation where E has rule ⇐← as its last inference:

E =

E ′

·; pM q(1) `pNq M ⇐ pM ′q(2′′)

⇐←
·; pM q(1) `pNq M ← pM ′q(2′′)

where E = M .

We prove by induction on the structure of pM ′q(2′′) that if ·;∆ `pNq M ⇐ pM ′q(2′′),
then ∆ ≡ pM ′q(1) and that M ≡ p·qpM q(2′)

. If M ′ = ∅, then pM ′q(2′′) ≡ 1. By
inversion on rule 1I, we deduce that M ≡ 1 and pM ′q(1) ≡ ·, which is exactly what
we are looking for.

Assume now that M ′ = M ∗, (x:p) so that pM ′q(2′′) = pM ∗q(2′′) ⊗ tok p. Then, by
inversion on rule ⊗I, we can rewrite E ′ as

E ′1
·;∆1 `pNq M1 ⇐ pM ∗q(2′′)

E ′2
·;∆2 `pNq M2 ⇐ tok p

⊗I

·;∆1,∆2 `pNq M1 ⊗M2 ⇐ pM ∗q(2′′) ⊗ tok p

By induction hypothesis on E1, ∆1 ≡ pM ∗q(1) and M ≡ p·qpM ∗q(2′)
. We only need to

show that ∆2 ≡ x:tok p and M2 ≡ x. Since all positive occurrences of atomic types
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of the form tok p appear within a monad in pNq, only rule x is applicable, which
precisely satisfies our requirements.

The result we just proved allows us to deduce that M = M ′ in E . Therefore, it must
be the case that S = ·, so that pSqpM ′q(2′) ≡M .

2. Assume now that the last rule applied in E is

E1
·;∆1 `pNq R⇒ {S}

E2
·;∆2; p :̂S `pNq E′ ← pM ′q(2′)

{}E
·;∆1,∆2 `pNq let {p} = R in E′ ← pM ′q(2′′)

where pM q(1) ≡ (∆1,∆2) and E ≡ (let {p} = R in E′).

By inspection over pNq, a type of the form {S} appears only in the declaration ptq
for some transition t, and it cannot be constructed. Therefore, it must be the case
that S ≡ pt•q. We then prove by induction over •t that ∆1 ≡ (•x:•t) for appropriate
variables •x, and that R ≡ p•xqt.

By inversion on E2, the right premise of E reduces to ·;∆2, (x•:t•) `pNq E′ ← pM ′q(2′′)

for appropriate variables x•. The context ∆2, (x•:t•) corresponds therefore to the rep-
resentation of a marking M ∗ such that M ∗ = (M − (•x:•t)) ] (x•:t•). By induc-
tion hypothesis, there is a transition sequence S ′ such that M ∗ B∗N M ′ by S ′ and

pS ′qpM ′q(2′) ≡ E′.

If we now define S = (t, •x, x•),S ′, we obtain that M B∗N M ′ by S and pSqpM ′q(2′) ≡ E

This concludes our proof.

We can finally put these two results together in the following adequacy theorem for our
sequential CLF representation of Petri nets.

Theorem 5.15. (Adequacy of the sequential representation of Petri nets)
Let N be a Petri net and M ,M ′ be two markings over N . There is a bijection between

execution sequences S such that
M B∗N M ′ by S

and terms E such that the judgment

·; pM q(1) `pNq E ← pM ′q(2′′)

is derivable in CLF.

Proof. This is a simple corollary of Lemmas 5.13 and 5.14.

5.4 Concurrent CLF Representation

Another way to express the behavior of a Petri net in CLF is to give a representation of
traces and show its adequacy. Rather than presenting a direct encoding of these objects,
we will exploit the meta-theory that we have developed in Section 5.2 to relate traces and
transition sequences. We will indirectly represent a trace through one of its underlying
transition sequences, in such a way that the definitional equality of CLF make the choice
of the actual representative irrelevant.
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5.4.1 Representation of Traces

We will keep the encoding of Petri nets and markings unchanged from Section 5.3. Recall
that a trace T over a Petri net N relates the initial marking •T of T to its final marking
T •. We will rely on the encodings p•T q(1) and pT •q(2) = (pT •q(2′), pT •q(2′′)) defined in
Section 5.3.2.

We denote the representation of a trace T as pT q. It is defined as pSqS for an arbitrary
execution sequence S ∈ S(T ), where S = pT •q(2′) as defined in Section 5.3. Therefore,
the representation pTpcq of the producer/consumer net shown in Figure 3 can be defined
as pSpcqS where S = pTpc•q(2′). The attentive reader may object that a different pick S ′ of
the transition sequence chosen from S(T ) will yield a different CLF expression, so that the
encoding of a trace T is not well-defined. While we acknowledge this observation, we will
show that the representations of any two transition sequences in S(T ) are equal modulo
=c, and will therefore be indistinguishable as CLF objects.

We know by Lemma 5.10 that if two transition sequences S and S ′ underly the same trace
T , then they are equivalent modulo ∼. We will therefore prove that the CLF encoding of
two such traces are equal modulo =c. In order to show this result, we will need the following
lemma that states that this property holds of well-labeled exchanges.

Lemma 5.16. (Well-labeled exchanges have equal CLF representations)
Let S and S ′ be two executions sequences and M a marking over a Petri net N . If

S ∼0 S ′, then pSqpM q(2′)
=c pS ′qpM q(2′)

.

Proof. Let S = S̄, ξ, ξ′,S ′ and S ′ = S̄, ξ′, ξ,S ′ with ξ = (t, •x, x•) and ξ′ = (t′, •x′, x′•).
By definition, pξ, ξ′, S̄ ′qpM q(2′)

= let px•q = p•x]qt in (let px′•q = p•x′qt′ in Ē) and
pξ′, ξ, S̄ ′qpM q(2′)

= let px′•q = p•x′qt′ in (let px•q = p•xqt in Ē) where Ē = pS̄ ′qpM q(2′)
.

Since S and S ′ are well-labeled, we have that •x∩x′• = ∅ and •x′∩x• = ∅. By definition
of execution sequence, we clearly have that x• ∩ x′• = ∅. Therefore, pξ, ξ′, S̄ ′qpM q(2′)

and
pξ′, ξ, S̄ ′qpM q(2′)

satisfy the constraints to applying the let-rule for definitional equality and

let px•q = p•x]qt in (let px′•q = p•x′qt′ in Ē) =c let px′•q = p•x′qt′ in (let px•q = p•xqt in Ē).

where the witnessing concurrent context is ε = let px′•q = p•x′qt′ in .
Since =c is a congruence, a simple inductive argument shows that pSqpM q(2′)

=c pS ′qpM q(2′)
.

The similar result for well-labeled equivalent transitions sequences then follows imme-
diately.

Lemma 5.17. (Well-labeled equivalent transition sequences have equal CLF representa-
tions)

Let S and S ′ be two executions sequences and M a marking over a Petri net N . If
S ∼ S ′, then pSqpM q(2′)

=c pS ′qpM q(2′)
.

Proof. By Lemma 5.3, there are transition sequences S0, . . . ,Sn such that S = S0, S ′ =
Sn, and for i = 1..n, Si−1 ∼0 Si.
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By the above Lemma 5.16, pSi−1qpM q(2′)
=c pSiqpM q(2′)

for i = 1..n. Therefore, by the
transitivity of =c, pSqpM q(2′)

=c pS ′qpM q(2′)
.

We can now patch together the various parts of our argument to show that the repre-
sentation of a trace is indeed well-defined.

Corollary 5.18. (Representation of traces is well-defined)
Let T be a trace over a Petri net N . Then pT q is well-defined modulo =c.

Proof. By Lemma 5.10, if S1,S2 ∈ S(T ), then S1 ∼ S2. By Lemma 5.17, for any M ,
pS2qpM q(2′)

=c pS2qpM q(2′)
, in particular for M = •T .

Knowing that every transition sequence underlying a trace T is mapped to equal CLF
expressions (modulo =c) is however not sufficient: there may be CLF objects that are equal
modulo =c to the representation of T , but that are not the encoding of any transition
sequence underlying it. We will now show that this option cannot materialize. In order
to do so, we will prove that any such object must be the representation of some trace
underlying T , and therefore of a member of S(T ).

Lemma 5.19. (Completeness of the representation for well-labeled equivalent transition
sequences)

Let S be a well-labeled executions sequences and M a marking over a Petri net N .
If pSqpM q(2′)

=c E, then there is an execution sequence S ′ such that S ∼ S ′ and E ≡
pS ′qpM q(2′)

.

Proof. We proceed by induction on a derivation E of the judgment pSqpM q(2′)
=c E. We

need to distinguish two cases.

1. We first examine the situation where E is a monadic object M . Therefore,

E =

E ′

pSqpM q(2′)
= M

pSqpM q(2′)
=c M

By definition, pSqpM q(2′)
is a monadic object if and only if S = ·, and furthermore

this term reduces to pM q(2′).

A simple induction on the number of elements in M shows that M must be identical
to pM q(2′), hence M ≡ pM q(2′).

2. The second option requires that both sides of =c be proper expressions. In order for
this to be possible, it must be the case that S = (t, •x, x•), Ŝ for some transition t,
so that pSqpM q(2′)

= let px•q = p•xqt in pŜqpM q(2′)
. The last rule applied in E has

therefore the form:

E =

E ′

p•xqt = R

E ′′

pŜqpM q(2′)
=c ε[Ê]

let px•q = p•xqt in pŜqpM q(2′)
=c ε[let px•q = R in Ê]
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where E = ε[let px•q = R in Ê] for some concurrent context ε, atomic object R and
expression Ê.

By reasoning steps similar to the first part of this proof, we can deduce that R ≡ p•xqt.
By induction hypothesis on E ′′, we also have that Ŝ ∼ Ŝ ′ and ε[Ê] ≡ pŜ ′qpM q(2′)

.
By induction on ε, we can partition Ŝ ′ into two subsequences Ŝ ′ε and Ŝ ′

Ê
such that

Ŝ ′ = Ŝ ′ε, Ŝ ′Ê , and Ê ≡ pŜ ′
Ê
qpM q(2′)

and ε encodes Ŝ ′ε (with some abuse of notation, we

may write ε ≡ pŜ ′εq ).

By the definition of p q , it is clear that ε[let px•q = p•xqt in Ê] ≡ pŜε, (t, •x, x•), Ŝ ′
Ê
qpM q(2′)

.

Therefore, we only need to prove that S ∼ (Ŝε, (t, •x, x•), Ŝ ′
Ê
) (remember that S =

(t, •x, x•), Ŝ). By definition of execution sequence equivalence, this reduces to showing
that (Ŝε, (t, •x, x•), Ŝ ′

Ê
) is well-labeled.

A sequence is well-labeled if every label in it occurs at most once in a pre-condition
or post-condition, and whenever it occurs in both, the transition mentioning it in its
post-condition is to the left of the transition having it in its pre-conditions. The first
requirement holds of (Ŝε, (t, •x, x•), Ŝ ′

Ê
) since S is well-labeled and contains exactly

the same transition witnesses. The second requirement derives from the constraints
associated with the above rule. In particular, in order for this rule to be applicable, it
must be the case that •x∩BV(ε) = ∅. Now, by definition, BV(ε) collects all the post-
conditions occurring in Ŝ ′ε. Therefore (Ŝε, (t, •x, x•), Ŝ ′

Ê
) is a well-labeled permutation

of t S and therefore S ∼ (Ŝε, (t, •x, x•), Ŝ ′
Ê
).

This concludes our proof.

We now chain our findings together by showing that pT q does not contain extraneous
expressions.

Corollary 5.20. (Completeness of the representation for traces)
Let T be a trace over a Petri net N . If E =c pT q, then E ≡ pT q.

Proof. By definition, pT q ≡ pSqS with S ∈ S(T ) and S ≡ p•T q(2′). By Lemma 5.19,
E ≡ pS ′qS for some S ′ such that S ∼ S ′. By Lemma 5.12, S ∈ S(T ) and so E ≡ pT q.

5.4.2 Adequacy Theorems

The results we just unveiled give us simple means for proving the adequacy of the concurrent
representation of Petri nets. We start with the soundness property: the encoding of a trace
is a well-typed expression relative to the representation of its initial and final marking.

Lemma 5.21. (Soundness of the concurrent representation of Petri nets)
If T be a trace over a Petri net N , then there is a derivation E of

·; p•T q(1) `pNq pT q ← pT •q(2′′).
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Proof. By Corollary 5.7, for any derivation sequence S ∈ S(T ) we have that •T B∗NT • by S.
By the Adequacy Lemma 5.13, we have that there is a derivation E of

·; p•T q(1) `pNq pSqS ← pT •q(2′′)

where S ≡ pT •q(2′). By the definition of pT q, this is exactly the derivation we want.

Moreover, any canonical expression relative to the encoding of the initial and final
marking of a valid trace is the representation of this trace.

Lemma 5.22. (Completeness of the concurrent representation of Petri nets)
Let N be a Petri net and M ,M ′ be two markings over N . If E :: ·; pM q(1) `pNq E ←

pM ′q(2′′), then there is a trace T such that M = •T , M ′ = T •, and E ≡ pT q.

Proof. By the Adequacy Lemma 5.14, there is an execution sequence S such that M B
∗
N M ′ by S and E ≡ pSqpM ′q(2′)

.
Let T = TM (S). By Corollary 5.6, T is a trace and •T = M and T • = M ′.

We bring these two results together in the following adequacy theorem.

Theorem 5.23. (Adequacy of the concurrent representation of Petri nets)
Let N be a Petri net. There is a bijection between traces T over and terms E such that

the judgment
·; p•T q(1) `pNq E ← pT •q(2′′)

is derivable in CLF.

Proof. This is a simple corollary of Lemmas 5.21 and 5.22.

5.5 Petri Nets in LLF

In this section, we will present an encoding of our example, the producer/consumer Petri
net given in Figure 1, in LLF and compare it to the CLF representations obtained earlier.
This formalization is based on [Cer95]. We remind the reader that LLF is the sublanguage
of CLF that only allows Π, −◦, & and > as type constructors and correspondingly limits
the language of terms.

We will keep the representation of the antecedent of a transition unchanged with respect
to our previous CLF encoding, but we need to apply deep alterations to the representation of
the consequent since LLF does not embed any connective akin to ⊗. With linear implication
as the only multiplicative connective at our disposal, we are forced to formalize transitions
in a continuation-passing style: we introduce a control atom, that we call baton, that the
representation of a transition acquires when it is fired and passes on to the next transition
when it is done (like in a relay race).

The application of this idea to our example yields the LLF signature pNpcq below, where
we have occasionally written a type A −◦ B as B ◦− A as is often done in (linear) logic
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programming:

p : type.
r : type.
n : type.
b : type.
a : type.
c : type.
baton : type.

t p : baton ◦− p
◦− (r −◦ baton).

t p : baton ◦− r
◦− (p −◦

n −◦
b −◦ baton).

t a : baton ◦− a
◦− b
◦− b
◦− (r −◦ baton).

t c : baton ◦− c
◦− (a−◦ baton).

The behavior of CLF’s ⊗ is implicitly recovered, in part, in the above encoding since right-
nested linear implications can be curried: A−◦B−◦C is logically equivalent to A⊗B−◦C.
Writing our example in this way would however take us outside of LLF.

The initial marking M pc1 in Figure 1 can simply be flattened into the linear context of
LLF (below, left). The treatment of the final marking M pc2 (see Figure 2) is however not
as immediate: we represent it as if it were a transition (stop) that consumes all the tokens
in the marking, and moreover that can be used at most once (below, right).

r1 :̂ r.
n1 :̂ n.
n2 :̂ n.
b1 :̂ b.
b2 :̂ b.
b3 :̂ b.
a1 :̂ a.

stop :̂ baton ◦− r
◦− n
◦− n
◦− n
◦− b
◦− b
◦− c

We call the LLF encodings of these two markings pM pc1q and pM pc2q, respectively.
Given this encoding, there is a one-to-one correspondence between firing sequences S

such that M pc1 B∗Npc
M pc2 by S and LLF proof-terms M such that

·; pM pc1q, pM pc2q `LLF
pNpcq M : baton

is derivable.

The main difference between the CLF and the LLF representations of Petri nets is the
threading of transition firing that we have implemented in the latter by means of the con-
trol atom baton. This encoding is inherently sequential. The permutability of independent
transitions can only be established as a meta-theoretic relation between two proof-terms, a
process that we have found to be overwhelming in general. The CLF representation does
not force a control thread on the encoding of transitions. This, coupled with the equational
theory of this new formalism, enables an implicit and faithful rendering of the permutability
of independent Petri net transitions. Therefore, we claim that LLF is a stateful but inher-
ently sequential language, while CLF natively supports a form of concurrency that seems
to be extremely general.

A minor difference between the two encodings concerns the representation of markings,
especially the final marking of an execution sequence. In LLF, we are bound to enter it as
a special use-once rule. CLF supports a more direct encoding as a synchronous type in the
right-hand side of the typing judgment. Altogether, we find the CLF representation more
direct than what we could produce using LLF.
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6 Specification of Security Protocol

Since their inception in the early 1960’s [Pet62], Petri nets have been the object of many
extensions aimed at increasing the abstraction level of a specification, at making them
more expressive, and at using their modeling power for specific applications. In this sec-
tion, we will analyze one such extension, the security protocol specification framework
MSR [CDL+99, Cer01b, Cer01a] and describe a CLF encoding for it.

Rather than the amorphous objects seen in Section 5, MSR’s tokens are facts, i.e., typed
first-order ground atomic formulas over a term language of cryptographic messages. Tran-
sitions (called rules in MSR) become parametric in the inner structure of facts: variables
can be matched at application time with the data carried by a fact, allowing in this way
the same rule to apply in situations that differ by the value of some fields. Systems of this
sort are known as colored Petri nets [Jen97]; they are also very closely related to various
languages based on multiset rewriting such as GAMMA [BL93] (MSR actually stand for
MultiSet Rewriting). MSR extends this model with a sophisticate type system and the
possibility of creating fresh data dynamically. Moreover, it applies it to the specific domain
of security protocols.

We describe relevant aspects of the syntax and operational behavior of MSR in Sec-
tion 6.1. Then we will show in Section 6.2 how the basic CLF encoding for Petri nets is
adapted to accommodate the many extensions present in MSR.

6.1 The Security Protocol Specification Language MSR

A security protocol describes the message exchange taking place between two or more
agents, or principals, who wish to perform tasks such as establishing a secure channel to
communicate confidential data, verifying each other’s identity, etc. Messages are assumed
to be sent over a public network, such as the Internet, and therefore run the risk of being
intercepted and even fabricated by attackers. Cryptography is used to achieve virtual
private channels over this public medium.

There has been a recent surge in formalisms for specifying security protocols, together
with methods for proving their correctness. One such language is the Spi calculus [AG99],
which specializes the π-calculus with dedicated cryptographic constructs. It can be ex-
pressed in CLF through a simple adaptation of the encoding presented in Section 3. In
this section, we will sketch a CLF encoding for another protocol specification language:
MSR [CDL+99, Cer01b], a distant cousin of Petri nets.

MSR is a flexible framework for expressing security protocol and the linguistic infras-
tructure they rely on. Rather than describing the meta-language in its generality, we will
concentrate on an instance tailored for the description of a specific protocol, the Needham-
Schroeder public key protocol that we will use as an extended example. We will actually
throw in a handful of additional constructs so that the reader can appreciate the expressive
power of this formalism. More precisely, we introduce the syntax of MSR in Section 6.1.1,
apply it to an example in Section 6.1.2, and conclude with the operational semantics of this
language in Section 6.1.3.
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6.1.1 Syntax

We start by defining the syntax of messages, which constitute the term language of the
instance of MSR we are considering in this document. Atomic messages consist of principal
names, cryptographic keys, and nonces (short-lived data used for authentication purposes).
They are formally given by the following grammar:

Atomic messages: a ::= A (Principal)
| k (Key)
| n (Nonce)

With just a few exceptions, we will use the displayed identifiers, possibly adorned with
subscripts or superscripts, to refer to objects of the associated syntactic class. For example,
the symbol n3 will generally identify a nonce. As an additional convention, we will use a
serifed font (e.g., n3) to denote constants while reserving a generic font (e.g., n3) to denote
objects that either are or may be variables (introduced shortly).

Messages are either constants, variables, the concatenation of two terms, or the result
of encrypting a term with a key. We display syntax for encryption with both symmetric
and asymmetric keys, although we will be using only the latter.

Messages: t ::= a (Atomic messages)
| x (Variables)
| t1 t2 (Concatenation)
| {t}k (Symmetric-key encryption)
| {{t}}k (Asymmetric-key encryption)

It should be observed that these declaration cast a layer of symbolic abstraction over the
bit-strings that implement the messages of a security protocol. This approach, which can
be found in almost all security protocol specifications and analysis environments, is known
as the Dolev-Yao abstraction [NS78, DY83].

An elementary term is either a constant or a variable:

Elementary terms e ::= a (Constants)
| x (Variables)

Predicates may take multiple arguments. Consequently, we introduce syntax for tuples
of messages:

Message tuples ~t ::= · (Empty tuple)
| t, ~t (Tuple extension)

In MSR, every object has a type drawn from the theory of dependent types with sub-
sorting [Cer01a]. In this paper, we will use the following layout:

Types: τ ::= principal (Principals)
| nonce (Nonces)
| shK A B (Shared keys)
| pubK A (Public keys)
| privK k (Private keys)
| msg (Messages)
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The types “principal” and “nonce” classify principals and nonces, respectively. The next
three productions allow distinguishing between shared keys, public keys and private keys.
Dependent types offer a simple and flexible way to express the relations that hold between
keys and their owner or other keys. A key “k” shared between principals “A” and “B” will
have type “shK A B”. Here, the type of the key depends on the specific principals “A” and
“B”. Similarly, a constant “k” is given type “pubK A” to indicate that it is a public key
belonging to “A”. We use dependent types again to express the relation between a public
key and its inverse. Continuing with the last example, the inverse of “k” will have type
“privK k”.

We use the type msg to classify generic messages. We reconcile nonces, keys, and
principal identifiers with the messages they are routinely part of by imposing a subsorting
relation between types, formalized by the judgment “τ :: τ ′” (τ is a subsort of τ ′). In this
paper, each of the types discussed above, with the exception of private keys, is an subtype
of msg:

principal :: msg nonce :: msg shK A B :: msg pubK A :: msg

We use dependent Cartesian products to assign a type to message tuples:

Type tuples ~τ ::= · (Empty tuple)
| Σx:τ. ~τ (Type tuple extension)

Whenever the variable x does not occur in ~τ , we will abbreviate Σx:τ. ~τ as τ × ~τ .

We next give the syntax for MSR rules. At the core of a rule one can find a left-
hand side and a right-hand side, described shortly. This nucleus is enclosed in a layer of
universal quantifications that assign a type to every variable mentioned in the rule (with a
few exceptions — see below):

Rule: r ::= lhs → rhs (Rule core)
| ∀x : τ. r (Parameter closure)

The left-hand side or antecedent of a rule is a possibly empty multiset of predicates. In this
paper, we will consider only two forms: the network predicate, N(t), models messages in
transit in the network, while the role state predicates L(~e ) is used to pass control (through
the predicate symbol L) and data (by means of the elementary terms ~e ) from one rule to
the next:

Predicate sequences: lhs ::= · (Empty predicate sequence)
| lhs, N(t) (Extension with a network predicate)
| lhs, L(~e) (Extension with a role state predicate)

The right-hand side or consequent of a rule is a multiset of predicates as well, but it
can be preceded by a sequence of existential declarations which mark data that should be
generated freshly (typically nonces and short-term keys):

Right-Hand sides: rhs ::= lhs (Sequence of message predicates)
| ∃x : τ. rhs (Fresh data generation)
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In the past, crypto-protocols have often been presented as the temporal sequence of
messages being transmitted during a “normal” run. Recent proposals champion a view that
places the involved parties in the foreground. A protocol is then a collection of independent
roles that communicate by exchanging messages, without any reference to runs of any kind.
A role has an owner, the principal that executes it, and specifies the sequence of messages
that he/she will send, possibly in response to receiving messages of some expected form.
The actions undertaken by a principal executing a role are expressed as collection of rules,
together with declarations for all the role state predicates they rely upon.

Rule collections: ρ ::= · (Empty role)
| ∃L : ~τ . ρ (Role state predicate parameter declaration)
| r, ρ (Extension with a rule)

The weak form of quantification over role state predicates prevents two executions of the
same role to interfere with each other by using the same role state predicate name.

Finally, all the roles constituting a protocol are collected in a protocol theory. Roles
come in two flavors: generic roles can be executed by any principal, while anchored roles
are bound to one specific agent (typically a server or the intruder):

Protocol theories: P ::= · (Empty protocol theory)
| P, ρ∀A (Extension with a generic role)
| P, ρA (Extension with an anchored role)

6.1.2 Example

We will now make the above definitions concrete by applying them to the specification of
an actual security protocol. The server-less variant of the Needham-Schroeder public-key
protocol [NS78] is a two-party crypto-protocol aimed at authenticating the initiator A to
the responder B (but not necessarily vice versa). It is expressed below as the expected run
in the “usual notation”.

1. A → B: {{nA A}}kB

2. B → A: {{nA nB}}kA

3. A → B: {{nB}}kB

In the first line, the initiator A encrypts a message consisting of a fresh piece of information,
or nonce, nA and her own identity with the public key kB of the responder B, and sends it
(ideally to B). The second line describes the action that B undertakes upon receiving and
interpreting this message: he creates a nonce nB of its own, combines it with A’s nonce nA,
encrypts the outcome with A’s public key kA, and sends the resulting message out. Upon
receiving this message in the third line, A accesses nB and sends it back encrypted with
kB. The run is completed when B receives this message.

We will now express each role in turn in the syntax of MSR. For space reasons, we typeset
homogeneous constituents, namely the universal variable declarations and the predicate
sequences in the antecedent and consequent, in columns within each rule; we also rely on
some minor abbreviation.
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The initiator’s actions are represented by the following two-rule role:

∃L : ΣB:principal. pubK B × nonce.

∀B : principal.
∀kB : pubK B.

· → ∃nA : nonce.
N({{nA A}}kB

)
L(B, kB, nA)

∀B : principal.
∀kB : pubK B
∀kA : pubK A.
∀k′A : privK kA.
∀nA, nB : nonce.

N({{nA nB}}kA
)

L(B, kB, nA)
→ N({{nB}}kB

)



∀A

Clearly, any principal can engage in this protocol as an initiator (or a responder). Our
encoding is therefore structured as a generic role. Let A be its postulated owner. The first
rule formalizes the first line of the “usual notation” description of this protocol from A’s
point of view. It has an empty antecedent since initiation is unconditional in this protocol
fragment. Its right-hand side uses an existential quantifier to mark the nonce nA as fresh.
The consequent contains the transmitted message and the role state predicate L(B, kB, nA),
necessary to enable the second rule of this protocol. The arguments of this predicate record
variables used in the second rule.

The second rule encodes the last two lines of the “usual notation” description. It is
applicable only if the initiator has executed the first rule (enforced by the presence of the
role state predicate) and she receives a message of the appropriate form. Its consequent
sends the last message of the protocol.

MSR provides a specific type for each variable appearing in these rules. The equivalent
“usual notation” specification relies instead on natural language and conventions to convey
this same information, with clear potential for ambiguity.

The responder is encoded as the generic role below, whose owner we have mnemonically
called B. The first rule of this role collapses the two topmost lines of the “usual notation”
specification of this protocol fragment from the receiver’s point of view. The second rule
captures the reception and successful interpretation of the last message in the protocol by
B: this step is often overlooked. This rule has no consequent.

∃L : principal× nonce.

∀kB : pubK B.
∀k′B : privK kB.
∀A : principal.
∀kA : pubK A
∀nA : nonce.

N({{nA A}}kB
) → ∃nB : nonce.

N({{nA nB}}kA
)

L(A,nB)

∀kB : pubK B.
∀k′B : privK kB.
∀A : principal.
∀nB : nonce.

N({{nB}}kB
)

L(A,nB)
→ ·



∀B
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6.1.3 Semantics

MSR supports two static checks and one dynamic behavior model, which altogether form
the semantics of this formalism.

• The first static check is obviously type-checking, whose definition [Cer01a] is a sim-
ple adaptation of traditional schemes for dependently-typed languages. We will not
display the typing rules of MSR in this paper, and we will implicitly encode their
verification as type-checking for CLF terms.

• A more domain-specific test is data access specification, or DAS . It defines which
data a given principal is allowed to access to construct or interpret messages. For
example, it is admissible for an agent to look up the name and public key of any
other principal, but it should be allowed to access only its own private key. Similarly,
an agent cannot guess nonces, but is allowed to retrieve nonces it has memorized or
received in a network message. We will completely ignore DAS in this paper, although
it has very insightful properties and it will be very interesting to study them within
CLF.

• Finally, MSR rules can be seen as a sophisticate form of Petri net transition: after
instantiation, they rewrite the facts (tokens) in their antecedent (pre-conditions) to
the facts (tokens) in their consequent (post-conditions). In this section, we will give
a detailed account of this dynamic behavior.

At the core of the MSR equivalent of the Petri net notion of marking is a state. In
line with the earlier interpretation of facts as overgrown tokens, a state is unsurprisingly a
multiset of fully instantiated facts. We have the following grammatical productions:

States: S ::= · (Empty state)
| S, N(t) (Extension with a network predicate)
| S, L(~t ) (Extension with a role state predicate)

Observe that the role state predicates symbol themselves must be constants, while rules
earlier required variable predicate names.

Because of the peculiarities of MSR, state do not provide a snapshot of execution in the
same way as markings did in the case of Petri nets. Since the right-hand side of a rule can
produce new symbols, it is important to keep an accurate account of what constants are in
use at each instant of the execution. As usual, this is done by means of a signature:

Signatures Σ ::= · (Empty signature)
| Σ, a : τ (Atomic message declaration)
| Σ, L : ~τ (Local state predicate declaration)

One more ingredient is needed: MSR rules are clustered into roles which specify the
sequence of actions that a principal should perform, possibly in response to the reception
of messages. Several instances of a given role, possibly stopped at different rules, can be
present at any moment during execution. We record the role instances currently in use,
the point at which each is stopped, and the principals who are executing them in an active
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role set. These objects are finite collections of active roles, i.e., partially instantiated rule
collections, each labelled with a principal name. The following grammar captures their
macroscopic structure:

Active role sets: R ::= · (Empty active role set)
| R, ρA (Extension with an instantiated role)

With the above definitions, we define a configuration as a triple C = [S]R
Σ consisting of

a state S, a signature Σ, and an active role set R. Configurations are transformed by the
application of MSR rules, and therefore correspond to the Petri net notion of marking.

Given a protocol P, we describe the fact that execution transforms a configuration C
into another configuration C ′ by means of the one-step firing judgment “P . C −→ C ′”.
It is implemented by the next six rules that fall into three classes. We should be able to:
first, make a role from P available for execution; second, perform instantiations and apply
a rule; and third, skip rules.

We first examine how to extend the current active role set R with a role taken from the
protocol specification P. As defined in Section 6.1.1, P can contain both anchored roles ρA

and generic roles ρ∀A. This yields the following two rules, respectively:

ex arole

(P, ρA) . [S]R
Σ −→ [S]R,ρA

Σ

ex grole

(P, ρ∀A) . [S]R
Σ,A:principal,Σ′ −→ [S]R,([A/A]ρ)A

Σ,A:principal,Σ′

Anchored roles can simply be copied to the current active role sets, while the owner of a
generic role must be instantiated first to a principal. Here and below, we write [o/x]o′ for
the capture-free substitution of object o for x in object o′.

Once a role has been activated, chances are that it contains role state predicate pa-
rameter declarations that require to be instantiated with actual constants before any of
the embedded rules can be applied. This is done by the following rule where the newly
generated constant L is added to the signature of the target configuration.

ex rsp

P . [S]R,(∃L:~τ. ρ)A

Σ −→ [S]R,([L/L]ρ)A

(Σ,L:~τ)

An exposed rule r can participate in an atomic execution step in two ways: we can
either skip it (discussed below), or we can apply it to the current configuration. The latter
option is implemented by the inference rule below, which makes use of the rule application
judgment “r. [S]Σ � [S′]Σ′” (described shortly) to construct the state S′ and the signature
Σ′ resulting from the application.

r . [S]Σ � [S′]Σ′
ex rule

P . [S]R,(r,ρ)A

Σ −→ [S′]R,(ρ)A

Σ′

The next two inference figures discard a rule (to implement non-deterministic behaviors)
and remove active roles that have been completely executed, respectively.

ex skp

P . [S]R,(r,ρ)A

Σ −→ [S]R,(ρ)A

Σ

ex dot

P . [S]R,(·)A
Σ −→ [S]R

Σ
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When successful, the application of a rule r to a state S in the signature Σ produces
an updated state S′ in the extended signature Σ′. This operation is defined by the rule
application judgment “r.[S]Σ � [S′]Σ′”. It is implemented by the following two rules, which
respectively instantiate a universally quantified variable and perform the actual transition
specified by the core of this rule:

Σ ` t : τ [t/x]r . [S]Σ � [S′]Σ′
ex all

(∀x : τ. r) . [S]Σ � [S′]Σ′

(rhs)Σ � (lhs ′)Σ′
ex core

(lhs → rhs) . [S, lhs]Σ � [S, lhs ′]Σ′

Rule ex all relies on the type-checking judgment Σ ` t : τ to generate a message of the
appropriate type. Rule ex core identifies the left-hand side lhs in the current state and
replaces it with a substate lhs ′ derived from the consequent rhs by means of the right-hand
side instantiation judgment “(rhs)Σ � (lhs ′)Σ′” discussed next.

The right-hand side instantiation judgment instantiates every existentially quantified
variable in a consequent rhs with a fresh constant of the appropriate type before returning
the embedded predicate sequence:

([a/x]rhs)(Σ,a:τ) � (lhs)Σ′

ex nnc

(∃x : τ. rhs)Σ � (lhs)Σ′

ex seq

(lhs)Σ � (lhs)Σ

The one-step firing judgment we just described corresponds to the application of a Petri
net transition relative to a given marking. This operation can be used as the basis of either
an interleaving semantics akin to what we described in Section 5.2.1, or of a trace semantics
which extends the construction in 5.2.2. The former is defined, as expected, as the reflexive
and transitive closure of the one-step execution judgment and will be denoted “P . C −→(∗)

C ′”. The definition of the latter is a simple, but rather long extension of the analogous
concept for Petri nets: we will not formalize it in this document. The interested reader
can find formal definitions relative to an earlier version of MSR in [CDL+00]. This same
reference present a detailed analysis of the relation between these two form of semantics,
and ultimately a proof of their equivalence.

6.2 CLF Encoding

We will now build on the encoding of Petri nets presented in Section 5. We describe the
CLF representation of messages, rules and ultimately protocol theories in Section 6.2.1. We
make these definition concrete in Section 6.2.2 by applying them to our on-going example.
Finally, in Section 6.2.3, we state the adequacy theorems for this encoding, although we do
not present proofs.

6.2.1 MSR

We will now describe the CLF representation of the various constituents of the MSR instance
discussed in Section 6.1. We start with messages.
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For the sake of simplicity, we will map MSR types directly to types in CLF. The
grammar for the object types (left) yields the signature fragment displayed at right:

τ ::= principal
| nonce
| shK A B
| pubK A
| privK k
| msg


=



principal : type.
nonce : type.
shK : principal→ principal→ type.
pubK : principal→ type.
privK : ΠA :principal. pubK A→ type.
msg : type.

With this definition, type-checking in MSR will be emulated by the analogous check in CLF.
A more detailed study of the type system of our object language (to prove type preservation
results, or to talk about ill-typed messages, for example) would require a different encoding
which represents MSR types as CLF objects.

The above definition does not reflect the presence of a subtyping relation in MSR. Since
CLF does not natively support subtyping, we will emulate it by introducing a number
of type coercion symbols that mediate between objects standing for principals, etc., and
messages (of type msg). It should be noted that while this technical device is adequate
for the simple instance of MSR considered in this document, it would not work in more
general settings, in particular in situations where a sort has more than one supertype. A
more complex encoding would then be required.

principal :: msg
nonce :: msg
shK A B :: msg
pubK A :: msg

 =


p2m : principal→ msg.
n2m : nonce→ msg.
sk2m : shK A B → msg.
pk2m : pubK A→ msg.

Here, the arguments A and B are implicitly Π-quantified at the head of the appropriate
declarations. We assume that implicit arguments can be reconstructed, as is normally the
case in LF.

Before displaying the encoding of messages, we need to introduce CLF constants that
stand for their constructors. We will use the following declarations to represent concatena-
tion, shared-key encryption (although not used in our example), and public-key encryption.

+ : msg→ msg→ msg. (infix)
sEnc : shK A B → msg→ msg.
pEnc : pubK A→ msg→ msg.

With these definitions, we have the following encoding of messages:

(Principals) pAq = p2m A
(Nonce) pnq = n2m n

(Shared keys) pkq = sk2m k
(Public keys) pkq = pk2m k

(Concatenation) pt1 t2q = pt1q + pt2q
(Symmetric-key encryption) p{t}kq = sEnc k ptq

(Asymmetric-key encryption) p{{t}}kq = pEnc k ptq
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Here, we assume we can tell shared keys from public keys, which is immediate with the help
of a typing derivation.

We complete the presentation of the CLF constants needed for MSR with the follow-
ing declarations for the network predicate and some infrastructure supporting role state
predicates:

net : msg→ type.
rspArg : type.
rsp : rspArg→ type.

MSR facts are represented as CLF dependent types. For example, the network predicate
N(nB) is encoded as the type net (n2m nB). Role state predicates are however generated
dynamically, but CLF does support not any form of quantification over type symbols. We
resolve this issue by introducing the type rspArg: an MSR declaration L:~τ for a role-state
predicate L will be represented by a CLF declaration for an object L that will take arguments
as specified in τ , but whose target type will be rspArg. Thus, any occurrence of a fact L(~t )
in a role will be encoded as the CLF type rsp (Lp~t q) as described below.

Let Σmsr be the signature obtain by collecting all of the above declarations.

We now move to the representation of the higher syntactic level of an MSR specification.
We start with rules and their component. The encoding prq of a rule r is given as follows:

plhs → rhsq = plhsq{prhsq}

p∀x : τ. rq = Πx :τ. prq

The core of a rule is the object of the same representation technique seen in Section 5.3.1 for
Petri net transitions. As formalized below, the antecedent will be rendered as a sequence
of linear implications while the consequent is mapped to the monadic encapsulation of an
asynchronous CLF formula. The outer layer of universal quantifiers is simply emulated by
dependent types.

As anticipated, we unfold the left-hand side of a rule as a (possibly empty) sequence of
linear implications:

p·qR = R

pN(t), lhsqR = plhsq(net ptq −◦R)

pL(~t ), lhsqR = plhsqrsp p~t qL −◦R)

Here, R is a CLF expression representing the right-hand side of the rule. Role state pred-
icates are encoded by applying each argument to the name of this predicate (we applied a
similar technique in Section 5.3.3 to represent the application of a transition in an execution
sequence) and feeding the result as an index to the type family rsp:

p·qM = M

pt,~t qN = p~t qM t

The facts in the right-hand side of a rule are tensored together while the existential
quantifiers are mapped to the analogous constructs of CLF.

p∃x : τ. rhsq = ∃x : τ. prhsq
p·q = 1
pN(t), rhsq = net ptq ⊗ rhs
pL(~t ), rhsq = rsp p~t qL ⊗ rhs
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For the sake of brevity, we made this encoding slightly more general than necessary by allow-
ing occurrences of the data generation construct embedded within a sequence of predicates.
Clearly, this can easily be fixed.

A rule collection is encoded by tensoring together the representation of the individual
rules that constitute it, while the role-state predicate declarations are mapped to existential
constructions in CLF:

p·q = 1
p∃L : ~τ . ρq = ∃L : p~τq. pρq
pr, ρq = prq ⊗ pρq

The type tuple ~τ in this definition is curried as a iterated dependent types with rspArg as
the target type:

p·q = rspArg
pΣx:τ. ~τq = Πx :τ. p~τq

Finally, a protocol theory is rendered in CLF by giving one declaration for each con-
stituent role. Anchored role are represented by means of a monad containing the encoding
of the corresponding rule collection. The representation of generic roles differs only by an
additional quantification over its owner. In both cases, we assign a name to each role. This
list of declarations is preceded by the common definitions for an MSR specification collected
in Σmsr.

p·q = Σmsr

pP, ρ∀Aq = pPq, idρ : ΠA :principal. { pρq }
pP, ρAq = pPq, idρ : { pρq }

6.2.2 Example

We now apply the representation function outlined in the previous section to our running
example: the Needham-Schroeder public key protocol. The initiator role is represented by
the following declaration:

nspk init : ΠA :principal.
{ ∃L : ΠB :principal. pubK B → nonce→ rspArg

. ΠB :principal. ΠkB :pubK B.
{ ∃nA : nonce

. net (pEnc kB ((n2m nA) + (p2m A)))
⊗ rsp (L B kB nA)
⊗ 1 }

⊗ ΠB :principal. ΠkB :pubK B.
ΠkA :pubK A. Πk′A :privK kA.
ΠnA :nonce. ΠnB :nonce.

net (pEnc kA ((n2m nA) + (n2m nB)))
−◦ rsp (L B kB nA)
−◦ { net (pEnc kB (n2m nB)) }

⊗ 1 }
⊗ 1
}
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We invite the reader to compare this CLF declaration to the MSR role it represents (in
Section 6.1.2). With the exception of a few details discussed in a moment, this translation
is very direct. We have however the following discrepancies:

• MSR’s subtyping is mapped to coercions in CLF. While this is acceptable in this ex-
ample, this encoding would not be adequate for more sophisticated situations. Treat-
ing these cases would require either a more complex encoding, or the investigation of
extensions to CLF.

• A role state predicate L(~t ) is represented indirectly as the constant symbol rsp applied
to a dynamically generated function symbol L that takes the representation of ~t as
arguments. While CLF forces our hand on this, we believe that the definition of MSR
could be seamlessly adapted to reflect a similar behavior.

• Rule consequents and roles are terminated by an omnipresent 1. We could have given
a slightly more tedious encoding which removes unnecessary 1’s.

The encoding of the responder is analogous and the object of similar remarks:

nspk resp : ΠB :principal.
{ ∃L : principal→ principal→ nonce→ rspArg

. ΠkB :pubK B. Πk′B :privK kB.
ΠA :principal. ΠkA :pubK A.
ΠnA :nonce.

net (pEnc kB ((n2m nA) + (p2m A)))
−◦ { ∃nB : nonce

. net (pEnc kA ((n2m nA) + (n2m nB)))
⊗ rsp (L A nB)
⊗ 1 }

⊗ ΠA :principal.
ΠkB :pubK B. Πk′B :privK kB.
ΠnB :nonce.

net (pEnc kB (n2m nB))
−◦ rsp (L A nB)
−◦ { 1 }

⊗ 1
}

6.2.3 Adequacy Results

In order to discuss the adequacy of the representation of MSR just presented, we need to
define the representation of the execution judgment P . C −→(∗) C ′ of this language.
Similarly to the case of Petri net markings, the two sides of this judgment will be have
distinct representation: the antecedent C will be encoded as a context, while the consequent
C ′ as a synchronous CLF formula. The protocol theory P becomes the signature of the
corresponding CLF judgment.

59



We start by giving the representation of configuration on the left-hand side of the multi-
step execution judgment. We map the signature part to a sequence of declarations in the
unrestricted CLF context, while the state and the active role components are translated as
a set of linear declarations:

p[S]R
Σq(1) = pΣq(1)︸ ︷︷ ︸

Γ

; (pRq(1), pSq(1))︸ ︷︷ ︸
∆

The encoding of a signature on the left-hand side simply discharges its constituents as
unrestricted context declarations:

p·q(1) = ·
pΣ, a : τq(1) = pΣq(1), a : τ

pΣ, L : ~τq(1) = pΣq(1), L : p~τq

Recall that MSR types are mapped to CLF types. The encoding of type tuples p~τq was
given earlier.

Each element in a state S is rendered as a linear declaration in CLF. Clearly, we need
to prefix each declaration with a distinct variable name (which we generically call x here).
The encoding of the individual elements was given in Section 6.2.1.

p·q(1) = ·
pS, N(t)q(1) = pSq(1), x :̂ net ptq
pS, Ll(~t )q(1) = pSq(1), x :̂ rsp p~t qL

The left-hand encoding of active roles is similar:

p·q(1) = ·
pR, ρAq(1) = pRq(1), z :̂ pρq

We now turn to configurations C ′ = [S′]R′
Σ′ that appear on the right-hand side of the

MSR execution judgment. Intuitively, we want to represent C as a synchronous CLF formula
obtained by tensoring the encodings of the components of the state S′ and the active role set
R′, prefixed by existential quantifications over the signature Σ′. This is however inadequate
unless C ′ is reached from a configuration with an empty signature. In general, we must
omit a prefix Σ of the signature, corresponding to the constants available at the beginning
of the considered execution sequence. The encoding of C ′ is therefore relative to Σ. This
intuition is formalized as follows, where Σ′ has been expanded as Σ,Σ′′:

p[S′]R′
Σ,Σ′′q

(2′′)
|Σ = pΣ′′q(2′′)

(pR′q(2′′)⊗pS′q(2′′))

We anticipated that the encoding of the state and active role set components of a
configuration is obtained by tensoring the representation of their constituents. This is
formalized as follows:

p·q(2′′) = 1
pS, N(t)q(2′′) = pSq(2′′) ⊗ net ptq
pS, Ll(~t )q(2′′) = pSq(2′′) ⊗ rsp p~t qL

p·q(2′′) = 1
pR, ρAq(2′′) = pRq(2′′) ⊗ pρq
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The result of this operation is prefixed by a sequence of existential quantifiers guided by
the signature fragment under examination:

p·q(2′′)
S = S

pΣ′, a : τq(2′′)
S = pΣ′q(2′′)

∃a:τ. S

pΣ′, L:~τq(2′′)
S = pΣ′q(2′′)

∃L:p~τq. S

With the help of these definition, we propose the following statement for the adequacy
of our representation of MSR. While we have not formally proved it, we expect that a proof
can be achieved by using the proof of adequacy for Petri nets given in Section 5.3.4 as a
mold, and refining it to accommodate the idiosyncrasies of MSR.

Expected Result 6.1. (Adequacy of the representation of MSR execution in CLF)
Let P be a protocol theory and C and C ′ two configurations with C = [S]R

Σ. There is a
bijection between derivations of the MSR multi-step execution judgment

P . C −→(∗) C ′

and terms E such that the judgment

pCq(1) `pPq E ← pC ′q(2′′)
|Σ

is derivable in CLF.

The structure of the term E mentioned in this result is similar to what we obtained in the
case of Petri nets. Rule applications are mapped to let expressions exactly like transition in
Section 5.3.4. The presence of existential quantifiers account however for a richer encoding.
Finally, the manipulation of roles is another source of let terms.

7 Conclusions

CLF extends the expressive power of the LF family of logical frameworks by permitting
natural and adequate encodings of a large class of concurrent systems. This technical
report evaluates this new formalism on four case studies which all embed different models
of concurrency: the π-calculus, Concurrent ML with futures à la Multilisp, Petri nets, and
the multiset rewriting based security protocol specification language MSR. One of the next
tests for the framework will be the development of techniques that allow us to state and
prove properties of computations in CLF and to explore formal encodings of the metatheory
of our applications.
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A Syntax and judgments of CLF

A.1 Syntax

Definition 11 (Type constructors).

A,B, C ::= A−◦B | Πx :A.B | A & B | > | {S} | P Asynchronous types

P ::= a | P N Atomic type constructors

S ::= S1 ⊗ S2 | 1 | ∃x :A.S | A Synchronous types

Definition 12 (Kinds).

K, L ::= type | Πx :A.K Kinds

Definition 13 (Objects).

N ::=
∧
λx.N | λx.N | 〈N1, N2〉 | 〈〉 | {E} | R Normal objects

R ::= c | x | R∧N | R N | π1R | π2R Atomic objects

E ::= let {p} = R in E |M Expressions

M ::= M1 ⊗M2 | 1 | [N,M ] | N Monadic objects

p ::= p1 ⊗ p2 | 1 | [x, p] | x Patterns

A.2 Equality

Definition 14 (Concurrent contexts).

ε ::= | let {p} = R in ε Concurrent contexts

Definition 15 (Equality).

E1 =c E2 [Concurrent equality]

M1 = M2

M1 =c M2

R1 = R2 E1 =c ε[E2]
(let {p} = R1 in E1) =c ε[let {p} = R2 in E2]

*

E1 = E2 [Expression equality]

E1 =c E2

E1 = E2

N1 = N2 R1 = R2 M1 = M2 P1 = P2 [Other equalities]

(All congruences.)

The rule marked (*) is subject to the side condition that no variable bound by p be free
in the conclusion or bound by the context ε, and that no variable free in R2 be bound by
the context ε.
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A.3 Instantiation

Definition 16 (Instantiation).

treduceA(x.R) ≡ B [Type reduction]

treduceA(x. x) ≡ A

treduceA(x.R N) ≡ C if treduceA(x.R) ≡ Πy :B.C

treduceA(x.R∧N) ≡ C if treduceA(x.R) ≡ B −◦ C

treduceA(x. π1R) ≡ B1 if treduceA(x.R) ≡ B1 & B2

treduceA(x. π2R) ≡ B2 if treduceA(x.R) ≡ B1 & B2

reduceA(x.R,N0) ≡ N ′ [Reduction]

reduceA(x. x, N0) ≡ N0

reduceA(x. R N,N0) ≡ inst nB(y. N ′, inst nA(x. N,N0))
if treduceA(x.R) ≡ Πy :B.C and reduceA(x.R,N0) ≡ λy.N ′

reduceA(x. R∧N,N0) ≡ inst nB(y. N ′, inst nA(x.N,N0))

if treduceA(x.R) ≡ B −◦ C and reduceA(x.R,N0) ≡
∧
λy.N ′

reduceA(x. π1R,N0) ≡ N ′1 if reduceA(x.R,N0) ≡ 〈N ′1, N ′2〉
reduceA(x. π2R,N0) ≡ N ′2 if reduceA(x.R,N0) ≡ 〈N ′1, N ′2〉

inst rA(x.R,N0) ≡ R′ [Atomic object instantiation]

inst rA(x. c,N0) ≡ c

inst rA(x. y, N0) ≡ y if y is not x

inst rA(x.R N,N0) ≡ (inst rA(x.R,N0)) (inst nA(x. N,N0))
inst rA(x.R∧N,N0) ≡ (inst rA(x. R,N0))∧(inst rA(x. N,N0))
inst rA(x. π1R,N0) ≡ π1(inst rA(x.R,N0))
inst rA(x. π2R,N0) ≡ π2(inst rA(x.R,N0))

inst nA(x.N,N0) ≡ N ′ [Normal object instantiation]

inst nA(x. λy. N,N0) ≡ λy. inst nA(x.N,N0) if y /∈ FV(N0)

inst nA(x.
∧
λy.N,N0) ≡

∧
λy. inst nA(x.N,N0) if y /∈ FV(N0)

inst nA(x. 〈N1, N2〉, N0) ≡ 〈inst nA(x. N1, N0), inst nA(x.N2, N0)〉
inst nA(x. 〈〉, N0) ≡ 〈〉
inst nA(x. {E}, N0) ≡ {inst eA(x.E,N0)}
inst nA(x.R,N0) ≡ inst rA(x.R,N0) if head(R) is not x

inst nA(x.R,N0) ≡ reduceA(x.R,N0) if treduceA(x.R) ≡ P

63



inst mA(x.M,N0) ≡M ′ [Monadic object instantiation]

inst mA(x.M1 ⊗M2, N0) ≡ inst mA(x.M1, N0)⊗ inst mA(x.M2, N0)
inst mA(x. 1, N0) ≡ 1
inst mA(x. [N,M ], N0) ≡ [inst nA(x.N,N0), inst mA(x. M,N0)]
inst mA(x.N,N0) ≡ inst nA(x. N,N0)

inst eA(x.E,N0) ≡ E′ [Expression instantiation]

inst eA(x. let {p} = R in E,N0) ≡ (let {p} = inst rA(x. R,N0) in inst eA(x.E,N0))
if head(R) is not x,
and FV(p) ∩ FV(N0) is empty

inst eA(x. let {p} = R in E,N0) ≡ match eS(p. inst eA(x.E,N0), E′)
if treduceA(x.R) ≡ {S}, reduceA(x.R,N0) ≡ {E′},
and FV(p) ∩ FV(N0) is empty

inst eA(x.M,N0) ≡ inst mA(x.M,N0)

match mS(p. E, M0) ≡ E′ [Match monadic object]

match mS1⊗S2(p1 ⊗ p2. E, M1 ⊗M2) ≡ match mS2(p2.match mS1(p1. E, M1),M2)
if FV(p2) ∩ FV(M1) is empty

match m1(1. E, 1) ≡ E

match m∃x :A.S([x, p]. E, [N,M ]) ≡ match mS(p. inst eA(x.E,N),M)
if FV(p) ∩ FV(N) is empty

match mA(x.E,N) ≡ inst eA(x.E,N)

match eS(p. E, E0) ≡ E′ [Match expression]

match eS(p. E, let {p0} = R0 in E0) ≡ let {p0} = R0 in match eS(p. E, E0)
if FV(p0) ∩ FV(E) and FV(p) ∩ FV(E0) are empty

match eS(p. E, M0) ≡ match mS(p. E, M0)

inst pA(x. P,N0) ≡ P ′ [Atomic type constructor instantiation]
inst aA(x.A,N0) ≡ A′ [Type instantiation]
inst sA(x. S, N0) ≡ S′ [Synchronous type instantiation]
inst kA(x.K, N0) ≡ K ′ [Kind instantiation]

(Analogous.)

A.4 Expansion

Definition 17 (Expansion).
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expandA(R) ≡ N [Expansion]

expandP (R) ≡ R

expandA−◦B(R) ≡
∧
λx. expandB(R∧(expandA(x))) if x /∈ FV(R)

expandΠx :A.B(R) ≡ λx. expandB(R (expandA(x))) if x /∈ FV(R)
expandA&B(R) ≡ 〈expandA(π1R), expandB(π2R)〉
expand>(R) ≡ 〈〉
expand{S}(R) ≡ (let {p} = R in pexpandS(p))

pexpandS(p) ≡M [Pattern expansion]

pexpandS1⊗S2
(p1 ⊗ p2) ≡ pexpandS1

(p1)⊗ pexpandS2
(p2)

pexpand1(1) ≡ 1
pexpand∃x :A.S([x, p]) ≡ [expandA(x), pexpandS(p)]
pexpandA(x) ≡ expandA(x)

A.5 Typing

Definition 18 (Signatures and contexts).

Σ ::= · | Σ, a :K | Σ, c :A Signatures

Γ ::= · | Γ, x :A Unrestricted contexts

∆ ::= · | ∆, x∧:A Linear contexts

Ψ ::= · | p∧:S, Ψ Pattern contexts

Definition 19 (Typing).

` Σ ok [Signature validity]

` · ok
` Σ ok · `Σ K ⇐ kind

` Σ, a :K ok

` Σ ok · `Σ A⇐ type

` Σ, c :A ok

`Σ Γ ok [Context validity]

`Σ · ok

`Σ Γ ok Γ `Σ A⇐ type

`Σ Γ, x :A ok

Γ `Σ ∆ ok [Linear context validity]

Γ `Σ · ok

Γ `Σ ∆ ok Γ `Σ A⇐ type

Γ `Σ ∆, x∧:A ok

Γ `Σ Ψ ok [Pattern context validity]

Γ `Σ · ok

Γ `Σ S ⇐ type Γ `Σ Ψ ok

Γ `Σ p∧:S, Ψ ok
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Γ `Σ K ⇐ kind [Kind checking]

Γ ` type⇐ kind
typeKF

Γ ` A⇐ type Γ, x :A ` K ⇐ kind

Γ ` Πx :A.K ⇐ kind
ΠKF

Γ `Σ A⇐ type [Type checking]

Γ ` A⇐ type Γ, x :A ` B ⇐ type

Γ ` Πx :A.B ⇐ type
ΠF

Γ ` P ⇒ type

Γ ` P ⇐ type
⇒type⇐

Γ ` A⇐ type Γ ` B ⇐ type

Γ ` A−◦B ⇐ type
−◦F

Γ ` A⇐ type Γ ` B ⇐ type

Γ ` A & B ⇐ type
&F Γ ` > ⇐ type

>F

Γ ` S ⇐ type

Γ ` {S} ⇐ type
{}F

Γ `Σ S ⇐ type [Synchronous type checking]

Γ ` S1 ⇐ type Γ ` S2 ⇐ type

Γ ` S1 ⊗ S2 ⇐ type
⊗F Γ ` 1⇐ type

1F

Γ ` A⇐ type Γ, x :A ` S ⇐ type

Γ ` ∃x :A.S ⇐ type
∃F

Γ `Σ P ⇒ K [Atomic type constructor inference]

Γ ` a⇒ Σ(a)
a

Γ ` P ⇒ Πx :A.K Γ; · ` N ⇐ A

Γ ` P N ⇒ inst kA(x.K, N) ΠKE

Γ `Σ N ⇐ A [Normal object checking]

Γ, x :A; ∆ ` N ⇐ B

Γ; ∆ ` λx.N ⇐ Πx :A.B
ΠI

Γ; ∆ ` R⇒ P ′ P ′ = P

Γ; ∆ ` R⇐ P
⇒⇐

Γ; ∆, x∧:A ` N ⇐ B

Γ; ∆ `
∧
λx.N ⇐ A−◦B

−◦I

Γ; ∆ ` N1 ⇐ A Γ; ∆ ` N2 ⇐ B

Γ; ∆ ` 〈N1, N2〉 ⇐ A & B
&I Γ; ∆ ` 〈〉 ⇐ > >I

Γ; ∆ ` E ← S

Γ; ∆ ` {E} ⇐ {S} {}I

Γ `Σ R⇒ A [Atomic object inference]

Γ; · ` c⇒ Σ(c)
c

Γ; · ` x⇒ Γ(x)
x

Γ; ∆ ` R⇒ Πx :A.B Γ; · ` N ⇐ A

Γ; ∆ ` R N ⇒ inst aA(x.B,N) ΠE

Γ; x∧:A ` x⇒ A
x

Γ; ∆1 ` R⇒ A−◦B Γ; ∆2 ` N ⇐ A

Γ; ∆1,∆2 ` R∧N ⇒ B
−◦E

Γ; ∆ ` R⇒ A & B

Γ; ∆ ` π1R⇒ A
&E1

Γ; ∆ ` R⇒ A & B

Γ; ∆ ` π2R⇒ B
&E2
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Γ; ∆ `Σ E ← S [Expression checking]

Γ; ∆1 ` R⇒ {S0} Γ; ∆2; p∧:S0 ` E ← S

Γ; ∆1,∆2 ` (let {p} = R in E)← S
{}E

Γ; ∆ `M ⇐ S

Γ; ∆ `M ← S
⇐←

Γ; ∆; Ψ `Σ E ← S [Pattern expansion]

Γ; ∆ ` E ← S

Γ; ∆; · ` E ← S
←←

Γ; ∆; p1
∧:S1, p2

∧:S2,Ψ ` E ← S

Γ; ∆; p1 ⊗ p2
∧:S1 ⊗ S2,Ψ ` E ← S

⊗L
Γ; ∆; Ψ ` E ← S

Γ; ∆; 1∧:1,Ψ ` E ← S
1L

Γ, x :A; ∆; p∧:S0,Ψ ` E ← S

Γ; ∆; [x, p]∧:∃x :A.S0,Ψ ` E ← S
∃L

Γ; ∆, x∧:A; Ψ ` E ← S

Γ; ∆; x∧:A,Ψ ` E ← S
AL

Γ; ∆ `Σ M ⇐ S [Monadic object checking]

Γ; ∆1 `M1 ⇐ S1 Γ; ∆2 `M2 ⇐ S2

Γ; ∆1,∆2 `M1 ⊗M2 ⇐ S1 ⊗ S2
⊗I Γ; · ` 1⇐ 1 1I

Γ; · ` N ⇐ A Γ; ∆ `M ⇐ inst sA(x. S, N)
Γ; ∆ ` [N,M ]⇐ ∃x :A.S

∃I

B Adequacy of the Synchronous π-calculus

For the sake of brevity, we combine unrestricted (Γ) and linear (∆) contexts into a single
context Γ throughout this appendix. We also omit leading π-quantifiers and the corre-
sponding applications.

B.1 Syntax and Semantics

B.1.1 Syntax

Process Expressions P ::= (P |Q) | new u P | !P | M
Sums M ::= 0 | c + M

Actions c ::= τ.P | u(v).P | ū<v>.P
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B.1.2 Structural Equivalence

P ≡ P | 0 str1 P | Q ≡ Q | P str2 P | (Q | R) ≡ (P | Q) | R str3 0 ≡ new u 0
str4

new u (P | Q) ≡ P | (new u Q) str5 (if u 6∈ P )
new u new v P ≡ new v new u P

str6

P ≡ P
str7

P ≡ Q

Q ≡ P
str8

P ≡ R R ≡ Q

P ≡ Q
str9

P ≡ P ′

P | Q ≡ P ′ | Q str10
P ≡ P ′

new u P ≡ new u P ′
str11 !P ≡ !P | P str12

P ≡ P ′

!P ≡ !P ′
str13

M ≡M ′

c + M ≡ c + M ′ str14
c ≡ c′

c + M ≡ c′ + M
str15

c1 + c2 + M ≡ c2 + c1 + M
str16

P ≡ P ′

τ.P ≡ τ.P ′
str17

P ≡ P ′

u(v).P ≡ u(v).P ′
str18

P ≡ P ′

u〈v〉.P ≡ u〈v〉.P ′ str19

B.1.3 Reduction

τ.P + M −→ P
red1 (u(y).P + M1) | (u〈v〉.Q + M2) −→ P [v/y] | Q red2

P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q
red3

P −→ P ′

new u P −→ new u P ′
red4

P −→ P ′

P | Q −→ P ′ | Q red5

B.1.4 Multi-Step Reduction

P ≡ Q

P −→∗ Q
red6

P −→∗ R R −→ Q

P −→∗ Q
red7

B.1.5 Normal Processes

To simplify our adequacy proof, we borrow the idea of a process in standard form (which
we call a normal process) from Milner.

Definition 20. (Normal Process F )
F ::= new u1 . . . un !P1 | . . . | !Pm |M1 | . . . |Mk

Definition 21. (Normal Reduction →−)
Normal reductions have either of the following forms:

• new u1 . . . un !P1 | . . . | !Pm |M1 | . . . |Mk | τ.P
→−

new u1 . . . un !P1 | . . . | !Pm |M1 | . . . |Mk | P
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• new u1 . . . un !P1 | . . . | !Pm |M1 | . . . |Mk | u(w).P + M ′
1 | u〈v〉.Q + M ′

2

→−

new u1 . . . un !P1 | . . . | !Pm |M1 | . . . |Mk | P [v/w] | Q
Lemma 22.

If P → Q, then there exists an F such that P ≡ F and F →− Q′ and Q′ ≡ Q.

Proof. By induction on the derivation P → Q.

B.2 The Encoding

B.2.1 Syntactic Classes

chan : type.
expr : type.
sum : type.
act : type.

B.2.2 Pi-Calculus Terms

par : expr→ expr→ expr.
new : (chan→ expr)→ expr.
rep : expr→ expr.
sync : sum→ expr.
null : sum.

alt : act→ sum→ sum.
silent : expr→ act.

in : chan→ (chan→ expr)→ act.
out : chan→ chan→ expr→ act.

proc : expr→ type.

B.2.3 Representation of syntax

pP | Qq = par pPq pQq

pnew u Pq = new (λu. pPq)
p!Pq = rep pPq

pMq = sync ppMqq

pp0qq = null

ppc + Mqq = alt pppcqqq ppMqq

pppτ.Pqqq = silent pPq

pppu(v).Pqqq = in u (λv. pPq)
pppu〈v〉.Pqqq = out u v pPq
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In the proof of adequacy of reduction, we will find it useful to refer to the following
inverse representation function.

Definition 23. (Inverse representation function x y)

x·y = 0

xu :chan,Γy = new u :chan xΓy

xu :proc P,Γy = !(xPy) | xΓy

xx∧proc P,Γy = xPy | xΓy

xx∧choice M,Γy = xMy | xΓy

xpar P Qy = xPy | xQy

xnew (λu :chan. P )y = new u (xPy)
xrep Py = !(xPy)

xsync My = xMy

xnully = 0

xalt c My = xcy + xMy

xsilent Py = τ.(xPy)
xin u (λv :chan. P )y = u(v).(xPy)

xout u v Py = u〈v〉.(xPy)

B.2.4 Adequacy of Syntax

Lemma 24. (Adequacy of the Representation of Syntax)
Let Γ = u1 :chan, . . . , un :chan.

a. Γ ` N ⇐ act iff N = pcq where c may contain u1 . . . un.

b. Γ ` N ⇐ sum iff N = pMq where M may contain u1 . . . un.

c. Γ ` N ⇐ expr iff N = pPq where P may contain u1 . . . un.

d. p q is a compositional bijection.

Proof. Standard techniques from LF representation methodology.
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B.2.5 Reduction rules

fork : proc (par P Q)−◦ {proc P⊗ proc Q}.
name : proc (new (λu.P u))−◦ {∃u :chan. proc (P u)}.
promote : proc (rep P)−◦ {!(proc P)}.

choice : sum→ type.

suspend : proc (sync M)−◦ {choice M}.

exit : choice null−◦ {1}.

select : sum→ act→ type.

this : select (alt C M) C.
next : select M C→ select (alt C′ M) C.

internal : choice M−◦ select M (silent P)→ proc P.
external : choice M1 −◦ choice M2−◦

select M1 (in U (λw :chan.P w))→ select M2 (out U V Q)→
{proc (par (P V) Q)}.

From this point forward, assume all CLF terms, computations, judgments and deriva-
tions are checked with respect to the signature given above.

B.2.6 Representation of Reduction

Definition 25. (General Contexts Γ)
The following sorts of context may arise during a computation in CLF.

Γ ::= . | Γ, u :chan | Γ, u :proc P | Γ, x∧proc P | Γ, x∧choice M

Definition 26. (Representation Relation ←→)
P ←→ Γ if and only if xΓy = Q and Q ≡ P

Definition 27. (Context Equivalence Γ ≡ Γ′)
Let assumptions of the form x?A be either linear or unrestricted assumptions.

Γ, x?A, y?B,Γ′ ≡ Γ, y?B, x?A,Γ′ eq1 (x 6∈ B, y 6∈ A)

Γ,Γ′ ≡ Γ, u :chan,Γ′ eq2 (u 6∈ Γ,Γ′) Γ, u :chan,Γ′ ≡ Γ,Γ′ eq3 (u 6∈ Γ,Γ′)

Γ ≡ Γ
eq4

Γ ≡ Γ′′ Γ′′ ≡ Γ′

Γ ≡ Γ′
eq5

Definition 28. (Composition of Computations E〈E′〉)
We define the composition of two computations E and E′ with type >, denoted E〈E′〉,

as the computation that results from substituting E′ for the terminal 〈〉 in E.

Definition 29. (Representation of Structural Equivalence =⇒s)
Γ1, E =⇒s Γk if
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1. E = 〈〉 and Γ1 ≡ Γk, or

2. E = let {p} = R in 〈〉 and there is a normal derivation of the following form:

· · ·
· · ·

Γ1 ` let {p} = R in E′ :− >
Γ2 ` E′ :− >

and Γ2, E
′ =⇒s Γk and R is one of the following atomic forms (where we let x range

over either linear or unrestricted variables):

exit∧x fork∧x name∧x promote∧x suspend∧x

Definition 30. (Representation of the Single-Step Reduction ⇒)
Γ0, E〈let {p} = R in 〈〉〉 ⇒ Γ′2 iff Γ0, E =⇒s Γ1 and

· · · Γ1 ` let {p} = R in 〈〉 :− >
Γ2 ` 〈〉 :− >

and Γ2 ≡ Γ′2 and R is one of the following atomic forms (where we let x, x1, x2 range over
either linear or unrestricted variables):

external∧x N internal∧x1
∧x2 N1 N2

and N,N1, N2 ::= this | next N

Definition 31. (Representation of the Multi-Step Reduction =⇒?)
Γ1, E =⇒? Γk iff

1. Γ1, E =⇒s Γk

2. E = E1〈E2〉 and Γ1, E1 ⇒ Γ2 and Γ2, E2 =⇒? Γk

B.2.7 Properties of Context Equivalence

The following simple properties of contexts and context equivalence will be useful in our
proofs of adequacy. In particular, Lemma 35 states that the same structural, single-step
and multi-step reductions may occur under any equivalent context.

Lemma 32. (Context Equivalence Is Symmetric)
If Γ ≡ Γ′, then Γ′ ≡ Γ.

Proof. By induction on the derivation Γ ≡ Γ′.

Lemma 33.
If Γ, u :chan,Γ′ ` E :− > and u 6∈ Γ′, then u 6∈ E.

Proof. By induction on the structure of the normal proofs.
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Lemma 34. (Frame Lemma, part 1)
If Γ ≡ Γ′, then Γ,Γ′′ ≡ Γ′,Γ′′.

Proof. By induction on structure the derivation Γ ≡ Γ′.

Lemma 35.

a. If Γ ` E :− > and Γ ≡ Γ′, then Γ′ ` E :− >.

b. If Γ, E =⇒s Γ2 and Γ ≡ Γ′, then Γ′, E =⇒s Γ2.

c. If Γ, E ⇒ Γ2 and Γ ≡ Γ′, then Γ′, E ⇒ Γ2.

d. If Γ, E =⇒? Γ2 and Γ ≡ Γ′, then Γ′, E =⇒? Γ2.

Proof.

a. By induction on the derivation Γ ≡ Γ′.

Case eq1: By exchange property of framework.

Case eq2: By unrestricted weakening property of framework.

Case eq3: By Lemma 33 and strengthening of unused unrestricted assumptions.

Case eq4: Trivial.

Case eq5: : By induction hypothesis.

b,c,d. Corollaries of part (a).

B.2.8 Reactive Processes

Rules red3, red4 and red5 allow reduction to occur deep within the structure of a process.
The following grammar defines the places where reduction may occur. Lemma 37 formalizes
the intuition that reduction may occur in any of these places.

Definition 36. (Processes with a Hole H)
H ::= [] | (H | P ) | (P | H) | new u :chanH
We substitute a process Q for the hole [] using the notation H[Q].

Lemma 37.

a. x(Γ,Γ′)y = H[xΓ′y] for sum processes with a hole H.

b. If P ≡ Q, then H[P ] ≡ H[Q].

c. If P → Q, then H[P ]→ H[Q].

d. If P −→∗ Q, then H[P ] −→∗ H[Q].
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e. If x(Γ,Γ′)y = H[xΓ′y], then x(Γ,Γ′′)y = H[xΓ′′y].

Proof.

a. By induction on the structure of Γ.

b. By induction on the structure of H.

c. By induction on the structure of H.

d. By induction on the derivation P −→∗ Q. The base case relies on part (b). The
inductive case relies on part (c).

e. By induction on the structure of Γ.

A process is reactive if it appears in a position allows it to take part in the next step in
a computation. In other words, a process is reactive if it appears under “|”, “new ”, or “!”,
but not if it is prefixed by an input or output action

Definition 38. (Reactive Processes (1))
Y ::= [] | (Y | P ) | (P | Y ) | new u Y | !Y

Definition 39. (Reactive Processes (2))
Z ::= H[Y1 | Y2]

We use the notation Y [M ] for the process formed by filling the hole in Y with M . We
use the notation Z[M1,M2] for a process formed by filling the holes in Z with M1 and M2

(the hole Y1 is filled by M1 and the hole Y2 is filled by M2).

Definition 40. (M in P )
M in P iff P = Y [M ′] and M ′ ≡M

Definition 41. (M1,M2 in P )
M1,M2 in P iff M1 ≡M ′

1 and M2 ≡M ′
2 and

1. P = Z[M ′
1,M

′
2]

2. P = Z[M ′
2,M

′
1] or

3. P = H[!Q] and M ′
1 in Q and M ′

2 in Q

Definition 42. (M in Γ)
M in Γ iff

1. Γ = (Γ1, u :proc P,Γ2) and M in xPy

2. Γ = (Γ1, x
∧proc P,Γ2) and M in xPy, or

3. Γ = (Γ1, x
∧choice M ′,Γ2) and M in xM ′y

74



Definition 43. (M1,M2 in Γ)
M1,M2 in Γ iff

1. Γ = (Γ1, u :proc P,Γ2) and M1 in xPy and M2 in xPy

2. Γ = (Γ1, x
∧proc P,Γ2) and M1,M2 in xPy

3. Γ = (Γ1,Γ2) and M1 in Γ1 and M2 in Γ2, or

4. Γ = (Γ1,Γ2) and M2 in Γ1 and M1 in Γ2

Lemma 44.

a. If M in P and P ≡ Q, then M in Q.

b. If M1,M2 in P and P ≡ Q, then M1,M2 in Q.

Proof. In both parts, by induction on the structure of the derivation of P ≡ Q.

Lemma 45.

a. If M in xΓy, then M in Γ.

b. If M1,M2 in xΓy, then M1,M2 in Γ.

Proof. By induction on the structure of Γ.

Lemma 46.

a. If M in Γ, then Γ, E =⇒s Γ′, x∧choice M ′ and xM ′y ≡M .

b. If M1,M2 in Γ, then Γ, E =⇒s (Γ′′, x∧choice M ′
1, y
∧choice M ′

2) and xM ′
1y ≡ M1 and

xM ′
2y ≡M2.

Proof.

a. By induction on the nesting depth of M in Γ where the nesting depth of an arbitrary
M in a context Γ (depth(M ; Γ)) is defined as follows:

depth(M ; Γ1, x
∧choice M ′,Γ2) = 0 (if xM ′y ≡M)

depth(M ; Γ1, u :proc P,Γ2) = depth(M ; P ) + 1
depth(M ; Γ1, x

∧proc P,Γ2) = depth(M ; P ) + 1
depth(M ; sync M ′) = 1 (if xM ′y ≡M)

depth(M ; par P1 P2) = min(depth(M ; P1), depth(M ; P2)) + 1
depth(M ; new (u :chanP )) = depth(M ; P ) + 1

depth(M ; rep P ) = depth(M ; P ) + 1
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b. By induction on depth(M1; Γ) + depth(M2; Γ).

Lemma 47.
If Γ ` p(c1 + . . . + cn + 0)q ⇐ sum, then for all i, 1 ≤ i ≤ n, there exists N such that

Γ ` N ⇐ (select p(c1 + . . . + cn + 0)q pciq).

Proof. By induction on i.

Case i = 1:

p(c1 + . . . + cn + 0)q = alt pc1q p(c2 + . . . + cn + 0)q (by definition of p q)
Γ ` this⇐ select (alt pc1q p(c2 + . . . + cn + 0)q) pc1q (by type of this, well-formedness

of p(c1 + . . . + cn + 0)q in Γ)

Hence N = this.

Case i = k:

Γ ` N ′ ⇐ select p(c2 + . . . + cn + 0)q pckq (by induction)
Γ ` (next N ′)⇐ select (alt pc1q p(c2 + . . . + cn + 0)q) pckq (by type of next, well-formedness

of the sequence)

Hence N = next N ′.

Lemma 48.

a. If Γ ` N ⇐ (select M (silent P )), then xMy → xPy

b. If Γ ` N1 ⇐ (select M1 (in u v.P )) and if Γ ` N2 ⇐ (select M2 (out u w.Q)), then
x(M1 |M2)y → x(P [w/v] | Q)y.

Proof.

a. By induction on the form of N

xMy = c1 + . . . + cn + τ.xPy + M ′

≡ τ.xPy + c1 + . . . + cn + M ′ (by str14, str16)
−→ xPy (by red1)

Hence, xMy −→ xPy.

b. By induction on the structure of the normal proof N1,

xM1y = c1 + . . . + cn + u(v).xPy + M ′

≡ u(v).xPy + c1 + . . . + cn + M ′ (by str14, str16).

By induction on the structure of normal proof N2,

xM2y = c′1 + . . . + c′m + u〈w〉.xQy + M ′′

≡ u〈w〉.xQy + c′1 + . . . + c′m + M ′′ (by str14, str16).

By red2, xM1y | xM2y → x(P [w/v] | Q)y .
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Lemma 49.

a. If M1 ≡ c + M2, then M1 = c1 + . . . + cn + 0 and c ≡ ci for some i.

b. If c ≡ τ.P , then c = τ.P ′ and P ≡ P ′.

c. If c ≡ u(v).P , then c = u(v).P ′ and P ≡ P ′.

d. If c ≡ u〈v〉.P , then c = u〈v〉.P ′ and P ≡ P ′.

Proof. (a, b, c, d) by induction on the structural equivalence relation in the premise.

Lemma 50.

a. If Γ, E =⇒s Γ′ and Γ′, E′ =⇒s Γ′′, then Γ, E〈E′〉 =⇒s Γ′′.

b. If Γ, E =⇒s Γ′ and Γ′, E′ ⇒ Γ′′, then Γ, E〈E′〉 ⇒ Γ′′.

Proof.

a. By induction on the structure of E. Uses Lemma 35(b) in the base case.

b. Corollary of part (a).

B.2.9 Adequacy of Reductions

In this section, we state and prove our final adequacy results for structural equivalence,
single-step and multi-step reductions.

Lemma 51.

a. If Γ ≡ Γ′, then xΓy ≡ xΓ′y.

b. If Γ, E =⇒s Γ′, then xΓy ≡ xΓ′y.

Proof.

a. By induction on the derivation of context equivalence.

Case eq1: Given: Γ, x?A, y?B,Γ′ ≡ Γ, y?B, x?A, Γ′ (x 6∈ B, y 6∈ A)
Let X, Y range over assumptions of the following forms:
u :proc P x∧proc P x∧choice M

Let U , W range over assumptions of the form u :chan

There are 4 subcases:
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x(Γ, X, Y, Γ′)y = H[Q | R | xΓ′y] (By definition of x y, Lemma 37(a))
= H[R | Q | xΓ′y] (By str2, str10, then Lemma 37(b))
= x(Γ, Y,X, Γ′)y (By definition of x y, Lemma 37(a))

x(Γ, U, W, Γ′)y: As above except we use equivalence rule str6.
x(Γ, U, X,Γ′)y: As above except we use equivalence rule str5.
x(Γ, X, U,Γ′)y: As above except we use equivalence rules str5 and str8.

Case eq2: As above except we use equivalence rule str4.

Case eq3: As above except we use equivalence rules str4 and str8.

Case eq4: Trivial.

Case eq5: By induction and then rule str9.

b. By induction on the structure of the proofs E given via the definition =⇒s.

Corollary 52.
If Γ, E =⇒s Γ′ and P ←→ Γ, then P ←→ Γ′.

Proof. Corollary of Lemma 51(b).

Theorem 53. (Adequacy 1)

a. If Γ, E =⇒s Γ′ and P ←→ Γ, then P ←→ Γ′.

b. If Γ, E ⇒ Γ′ and P ←→ Γ, then P → Q and Q←→ Γ′.

c. If Γ, E =⇒? Γ′ and P ←→ Γ, then P −→∗ Q and Q←→ Γ′.

d. E is a normal proof iff there exists Γ and Γ′ such that Γ, E =⇒? Γ′.

Proof.

a. P ≡ xΓy (by definition of ←→)
xΓy ≡ xΓ′y (by Lemma 51(b))
P ←→ xΓ′y (by Transitivity of ≡ and definition of ←→)

b. By definition, Γ, E〈let {p} = R in 〈〉〉 ⇒ Γ′ iff

· · · Γ1 ` let {p} = R in 〈〉 :− >
Γ2 ` 〈〉 :− >

and Γ2 ≡ Γ′ [6] and either of the following two cases apply
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N = external∧x N ′. Then,
P ←→ Γ (by assumption)
P ←→ Γ1 [1] (by adequacy 1a)
Γ1 ≡ Γ′′, x∧choice M1 [2] (by CLF typing)
Γ2 ≡ Γ′′, x∧proc P ′ [3] (by CLF typing)
Γ′′1 ` N ′ ⇐ (select M1 (silent P ′)) [4] (by CLF typing)
xM1y −→ xP ′y [6] (by [4], L. 13a)
P ≡ x(Γ′′, x∧choice M1)y (by [1,2], def of ←→)

= H[xM1y] (by Lemma 37(a))
−→ H[xP ′y] (by [5], Lemma 37(c))
= x(Γ′′, x∧proc P ′)y (by Lemma 37(e))
≡ xΓ2y (by [3], Lemma 51(a))
≡ xΓ′y (by [6], Lemma 51(a))

Hence, P → xΓ′y and by definition xΓ′y ←→ Γ′.

N = internal∧x1
∧x2 N1 N2. Then,

P ←→ Γ (by assumption)
P ←→ Γ1 (by Adequacy 1a)
Γ1 ≡ Γ′′, x∧choice M1, y

∧choice M2 (by CLF typing)
Γ2 ≡ Γ′′, x∧proc (P ′[w/v] | Q) (by CLF typing)
and Γ′1 ` N1 ⇐ select M1 (u(v).P ′) [1] (by CLF typing)
and Γ′1 ` N2 ⇐ select M2 (u〈w〉.Q) [2] (by CLF typing)
xM1y | xM2y −→ x(P ′[w/v] | Q)y [3] (by [1,2], Lemma 48(b))
P ≡ x(Γ′′, x∧choice M1, y

∧choice M2)y (by definition of ←→)
= H[xM1y | xM2y] (by def of 5a)
−→ H[x(P ′[w/v] | Q)y] (by [3], Lemma 5c)
= x(Γ′′, x∧proc (P ′[w/v] | Q))y (by Lemma 37(e))
≡ xΓ2y (by Lemma 51(a))
≡ xΓ′y (by Lemma 51(a))

Hence, P −→ xΓ′y and xΓ′y ←→ Γ′ by definition.

c. By induction on the derivation Γ, E =⇒? Γ′.

d. If direction, by induction on the derivation Γ, E =⇒? Γ′. Only if direction, by induc-
tion on the structure of normal proofs.

Theorem 54. (Adequacy 2)

a. If P ≡ Q and P ←→ Γ, then Q←→ Γ.

b. If P ←→ Γ and P −→ Q, then there exists E and Γ′ such that Γ, E ⇒ Γ′ and
Q←→ Γ′.

c. If P ←→ Γ and P −→∗ Q, then there exists E and Γ′ such that Γ, E =⇒? Γ′ and
Q←→ Γ′.
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Proof.

a. Trivial by the definition of Γ←→ P and transitivity of ≡.

b. By Lemma 22, there exists an F such that P ≡ F and F →− Q′ and Q′ ≡ Q. By
definition of ←→ and transitivity of ≡, our obligation reduces to proving:

If F ≡ xΓy and F →− Q′, then there exists E and Γ′ such that Γ, E ⇒ Γ′ and
Q′ ≡ xΓ′y.

Case 1: F = new u1 . . . un !P1 | . . . | !Pm |M1 | . . . |Mk | τ.P + M

Q′ = new u1 . . . un !P1 | . . . | !Pm |M1 | . . . |Mk | P (By definition of →−)
τ.P + M in xΓy (By Lemma 44 and F ≡ xΓy)
τ.P + M in Γ (By Lemma 45)
Γ, E =⇒s Γ1, x

∧choice M ′
1 and

τ.P + M ≡ xM ′
1y (By Lemma 46)

xM ′
1y = c1 + . . . + cn + 0 and

ci = τ.P ′ and
P ≡ P ′ (By Lemma 49(a,b))
Γ ` N1 ⇐ select M ′

1 τ.pP ′q (By Lemma 47)
Γ1, x

∧choice M ′
1 `

let {z∧proc (pP ′q)} = internal∧xN1 in 〈〉 ⇒ Γ1, z
∧proc (pP ′q) (By CLF typing)

Hence, by definition of ⇒, Γ, E〈let {z∧proc (pP ′q)} = external∧xN1 in 〈〉〉 ⇒
Γ1, z

∧proc (pP ′q).
Q←→ Γ1, z

∧proc (pP ′q)

Case 2: F = new u1 . . . un !P1 | . . . | !Pm |M1 | . . . |Mk | c1 + M ′
1 | c2 + M ′

2

where c1 = u(v).P and c2 = u〈w〉.Q′′.
Q′ = new u1 . . . un !P1 | . . . | !Pm |M1 | . . . |Mk | P (v) | Q′′ (By definition of →−)
c1 + M ′

1, c2 + M ′
2 in xΓy (By Lemma 44 and F ≡ xΓy)

c1 + M ′
1, c2 + M ′

2 in Γ (By Lemma 45)
Γ, E =⇒s Γ1, x

∧choice M ′′
1 , y∧choice M ′′

2 and
c1 + M ′

1 ≡ xM ′′
1 y and

c2 + M ′
2 ≡ xM ′′

2 y (By Lemma 46)
xN1y = d1 + . . . + dn + 0 and
di = u(v).P ′ and
P ≡ P ′ (By Lemma 49(a,c))
xN2y = d1 + . . . + dm + 0 and
dj = u〈v〉.Q′′′ and
Q′′ ≡ Q′′′ (By Lemma 49(a,d))
Γ ` N1 ⇐ select M ′′

1 di (By Lemma 47)
Γ ` N2 ⇐ select M ′′

2 dj (By Lemma 47)
Γ1, x

∧choice M ′′
1 , y∧choice M ′′

2 ,
let {z∧proc (P ′(v) | Q′′′)} = external∧x∧yN1N2 in 〈〉
⇒ Γ1, z

∧proc (P ′(v) | Q′′′) (By CLF typing)
Hence, by definition of⇒, Γ, E〈let {z∧proc (P (v) | Q′′)} = external∧x∧yN1N2 in 〈〉〉 ⇒
Γ1, z

∧proc (P (v)′ | Q′′′)
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Q←→ Γ1, z
∧proc (P (v)′ | Q′′′).

By induction on the structure of the derivation P −→∗ Q and appeal to part (b).
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