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In this lecture we describe Datalog, a decidable fragment of Horn logic.
Briefly, Datalog disallows function symbols, which means that the so-called
Herbrand universe of ground instances of predicates is finite. Datalog has
applications in databases and, more recently, in program analysis and re-
lated problems. We also sketch a promising new way to implement Datalog
via its bottom-up semantics using BDDs to represent predicates.

26.1 Stratified Negation

Datalog arises from Horn logic via two restrictions and an extension. The
most important restriction is to disallow function symbols: terms must be
variables or be drawn from a fixed set of constant symbols. The second
restriction is that any variable in the head of a clause also appears in the
body. Together these mean that all predicates are decidable via a simple
bottom-up, forward chaining semantics, since there are only finitely many
propositions that can arise. These propositions form the so-called Herbrand
universe.

If all domains of quantification are finite, we can actually drop the re-
striction on variables in clause heads, since a head such as p(x) just stands
for finitely many instances p(c1), . . . , p(cn), where c1, . . . , cn is an enumera-
tion of the elements of the domain of p.

In either case, the restriction guarantees decidability. This means it is
possible to add a sound form of constructive negation, called stratified nega-
tion. For predicates p and q we say p directly depends on q if the body of a
clause with head p(t) contains q(s). We write p ≥ q for the reflexive and
transitive closure of the direct dependency relation. If q does not depend

LECTURE NOTES DECEMBER 5, 2006



L26.2 Datalog

on p then we can decide any atom q(s) without reference to the predicate p.
This allows us to write clauses such as

p(t)← . . . ,¬q(s), . . .

without ambiguity: first we can determine the extension of q and then con-
clude ¬q(s) for ground term s if q(s) was not found to be true.

If the domains are infinite, or we want to avoid potentially explosive
expansion of schematics facts, we must slightly refine our restrictions from
before: any goal ¬q(s) should be such that s is ground when we have to
decide it, so it can be implemented by a lookup assuming that q has already
been saturated.

A Datalog program which is stratified in this sense can be saturated
by sorting the predicates into a strict partial dependency order and then
proceeding bottom-up, saturating all predicates lower in the order before
moving on to predicates in a higher stratum.

Programs that are not stratified, such as

p← ¬p.

or
p← ¬q.

q ← ¬p.

do not have such a clear semantics and are therefore disallowed. However,
many technical variations of the most basic one given above have been
considered in the literature.

26.2 Transitive Closure

A typical use of Datalog is the computation of the transitive closure of a
relation. We can also think of this as computing reachability in a directed
graph given the definition of the edge relation.

In the terminology of Datalog, the extensional data base (EDB) is given by
explicit (ground) propositions p(t). The intensional data base (IDB) is given
by Datalog rules, including possible stratified uses of negation.

In the graph reachability example, the EDB consists of propositions
edge(x, y) for nodes x and y defining the edge relation. The path relation,
which is the transitive closure of the edge relation, is defined by two rules
which constitute the IDB.

path(x, y)← edge(x, y).
path(x, y)← path(x, z), path(z, y).
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26.3 Liveness Analysis, Revisited

As another example of the use of Datalog, we revisit the earlier problem of
program analysis in a small imperative language.

l : x = op(y, z)
l : if x goto k

l : goto k

l : halt

We say a variable is live at a given program point l if its value will be read
before it is written when computation reaches l. Following McAllester, we
wrote a bottom-up logic program for liveness analysis and determined its
complexity using prefix firings as O(v·n) where v is the number of variables
and n the number of instructions in the program.

This time we take a different approach, mapping the problem to Data-
log. The idea is to extract from the program propositions in the initial EDB
of the following form:

• read(x, l). Variable x is read at line l.

• write(x, l). Variables x is written at line l.

• succ(l, k). Line k is a (potential) successor to line l.

The succ predicate depends on the control flow of the program so, for ex-
ample, conditional jump instructions have more than one successor. In ad-
dition we will define by rules (and hence in the IDB) the predicate:

• live(x, l). Variable x may be live at line l.

Like most program analyses, this is a conservative approximation: we may
conclude that a variable x is live at l, but it will never actually be read. On
the other hand, if live(x, l) is not true, then we know for sure that x can
never be live at l. This sort of information may be used by compilers in
register allocation and optimizations.

First, we describe the extraction of the EDB from the program. Every
program instruction expands into a set of assertions about the program
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lines and program variables.

l : x = op(y, z) ↔















read(y, l)
read(z, l)
write(x, l)
succ(l, l + 1)

l : if x goto k ↔







read(x, l)
succ(l, k)
succ(l, l + 1)

l : goto k ↔ succ(l, k)

l : halt ↔ none

Here we assume that the next line l+1 is computed explicitly at translation
time.

Now the whole program analysis can be defined by just two Datalog
rules.

live(w, l) ← read(w, l).
live(w, l) ← live(w, k), succ(k, l),¬write(w, l).

The program is stratified in that live depends on read, write, and succ but
not vice versa. Therefore the appeal to negation in the second clause is
legitimate.

This is an extremely succinct and elegant expression of liveness anal-
ysis. Interestingly, it also provides a practical implementation as we will
discuss in the remainder of this lecture.

26.4 Binary Decision Diagrams

There are essentially two “traditional” ways of implementing Datalog: one
is by a bottom-up logic programming engine, the other using a top-down
logic programming engine augmented with tabling in order to avoid non-
termination. Recently, a new mechanism has been proposed using binary
decision diagrams, which has been shown to be particularly effective in large
scale program analysis.

We briefly review here binary decision diagrams (BDDs). To be more
precise, we will sketch the basics of reduced ordered binary decision diagrams
(ROBDDs) which are most useful in this context for reasons we will illus-
trate below.
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BDDs provide an often compact representation for Boolean functions.
We will use this by viewing predicates as Boolean functions from the argu-
ments (coded in binary) to either 1 (when the predicate is true) or 0 (when
the predicate is false).

As an example consider the following Boolean function in two vari-
ables, x1 and x2.

xor(x1, x2) = (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

We order the variables as x1, x2 and then present a diagram in which the
variables are tested in the given order when read from top to bottom. When
a variable is false (0) we follow the dashed line downward to the next vari-
able, when it is true (1) we follow the solid line downward. When we reach
the constant 0 or 1 we have determined the value of the Boolean function
on the given argument values.
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For example, to compute xor(1, 1) we start at x1 follow the solid line to the
right and then another solid line to the left, ending at 0 so xor(1, 1) = 0.

As a second simple example consider

and(x1, x2) = x1 ∧ x2

If we make all choices explicit, in the given order of variables, we obtain
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However, the test of x2 is actually redundant, so we can simplify this to the
following reduced diagram.
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If we perform this reduction (avoiding unnecessary tests) and also share
identical sub-BDDs rather than replicating them, then we call the OBDD
reduced. Every Boolean function has a unique representation as an ROBDD
once the variable order is fixed. This is one of the properties that will prove
to be extremely important in the application of ROBDDs to Datalog.

Many operations on ROBDDs are straightforward and recursive, fol-
lowed by reduction (at least conceptually). We will see some more exam-
ples later and now just consider conjunction. Assume we have two Boolean
functions B(x1,x) and C(x1,x), where x represents the remaining vari-
ables. We notate B(0,x) = B0 and B(1,x) = B1 and similarly for C . We
perform the following recursive computation
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B0 ∧ C0 B1 ∧ C1

where the result may need to be reduced after the new BDD is formed. If
the variable is absent from one of the sides we can mentally add a redun-
dant node and then perform the operation as given above. On the leaves
we have the equations

0 ∧B = B ∧ 0 = 0

and

1 ∧B = B ∧ 1 = B
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Other Boolean operations propagate in the same way; only the actions on
the leaves are different in each case.

There are further operations which we sketch below in the example as
we need them.

26.5 Datalog via ROBDDs

When implementing Datalog via ROBDDs we represent every predicate
as a Boolean function. This is done in two steps: based on the type of
the argument, we find out how many distinct constants can appear in this
argument (say n) and then represent them with log2(n) bits. The output of
the function is always 1 or 0, depending on whether the predicate is true
(1) or false (0). In this way we can represent the initial EDB as a collection
of ROBDDs, one for each predicate.

Now we need to apply the rules in the IDB in a bottom-up manner until
we have reached saturation. We achieve this by successive approximation,
starting with the everywhere false predicate or some initial approximation
based on the EDB. Then we compute the Boolean function corresponding
to the body of each clause and combine it disjunctively with the current ap-
proximation. When the result turns out to be equal to the previous approx-
imation we stop: saturation has been achieved. Fortunately this equality is
easy to detect, since Boolean functions have unique representations.

We discuss the kind of operations required to compute the body of
each clause only by example. Essentially, they are relabeling of variables,
Boolean combinations such as conjunction and disjunction, and projection
(which becomes an existential quantification).

As compared to traditional bottom-up strategy, where each fact is repre-
sented separately, we iterate over the whole current approximation of the
predicate in each step. If the information is regular, this leads to a lot of
sharing which can indeed be observed in practice.

26.6 An Example of Liveness Analysis

Now we walk through a small example of liveness analysis in detail in or-
der to observe the BDD implementation of Datalog in action. Our program
is very simple.

l0 : w0 = w1 + w1

l1 : if w0 goto l0
l2 : halt

LECTURE NOTES DECEMBER 5, 2006



L26.8 Datalog

To make things even simpler, we ignore line l2 an analyse the liveness of
the two variables w0 and w1 at the two lines l0 and l1. This allows us to
represent both variables and program lines with a single bit each. We use 0
for l0 and 1 for l1 and similarly for the variables w0 and w1. Then the EDB
we extract from the program is

read(1, 0) we read w1 at line l0
read(0, 1) we read w0 at line l1

succ(0, 1) line l1 succeeds l0
succ(1, 0) line l0 succeeds l1 (due to the goto)

write(0, 0) we write to w0 at line l0

Represented as a BDD, these predicates of the EDB become the following
three diagrams. We write x for arguments representing variables, k for
arguments representing line numbers, and index them by their position in
the order.

read(x1, k2) succ(k1, k2)
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write(x1, k2)

GFED@ABC x1

1

��
��
��
��
��
��
��
��
��
�� 0

8
8

8
8

8

GFED@ABC k2
1

uuuuuuuuuuuuuuuu

0

�
�
�
�

0 1

LECTURE NOTES DECEMBER 5, 2006
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Now recall the IDB rules.

live(w, l) ← read(w, l).
live(w, l) ← live(w, k), succ(k, l),¬write(w, l).

We initialize live with read, and use the notation live[0](x1, k2) to indicate it
is the initial approximation of live.

live[0](x1, k2)
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This takes care of the first rule. The second rule is somewhat trickier, partly
because of the recursion and partly because there is a variable on the right-
hand side which does not occur on the left. This corresponds to an existen-
tial quantification, so to be explicit we write

live(w, l)← ∃k. live(w, k), succ(k, l),¬write(w, l).

In order to compute the conjunction live[0](w, k)∧succ(k, l) we need to rela-
bel the variables so that the second argument for live is the same as the first
argument for succ. To write the whole relabeled rule, also using logical no-
tation for conjunction to emphasize the computation we have to perform:

live(x1, k3)← ∃k2. live(x1, k2) ∧ succ(k2, k3) ∧ ¬write(x1, k3).

We now proceed to calculate the right hand side, given the fully computed
definitions of succ and write and the initial approximation live[0]. The intent
is then to take the result and combine it disjunctively with live[0].

The first conjunction has the form live(x1, k2) ∧ succ(k2, k3). Now, on
each side one of the variables is not tested. We have lined up the corre-
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sponding BDDs in order to represent this relabeling.

live[0](x1, k2) ∧ succ(k2, k3)
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Computing the conjunction according to our recursive algorithm yields the
following diagram. You are invited to carry out the computation by hand
to verify that you understand this construction.
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Now we have to conjoin the result with ¬write(x1, k3). We compute the
negation simply by flipping the terminal 0 and 1 nodes at bottom of the
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BDD, thus complementing the results of the Boolean function.

(live[0](x1, k2) ∧ succ(k2, k3)) ∧ ¬write(x1, k3)
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After the recursive computation we obtain the diagram below.
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This diagram clearly contains some significant redundancies. First we no-
tice that the test of k3 on the left branch is redundant. Once we remove
this node, the test of k2 on the left-hand side also becomes redundant. In
an efficient implementation this intermediate step would never have been
computed in the first place, applying a technique such as hash-consing and
immediately checking for cases such as the one here.
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After removing both redundant tests, we obtain

live(x1, k2) ∧ succ(k2, k3) ∧ ¬write(x1, k3)

GFED@ABC x1

0

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
� 1

88
88

88
88

88

GFED@ABC k2

1

��
��

��
��

��
��

��
��

��
��

��
��

0

�
�
�
�

GFED@ABC k3
0

u
u

u
u

u
u

u
u

1

0 1

Recall that the right-hand side is

∃k2. live(x1, k2) ∧ succ(k2, k3) ∧ ¬write(x1, k3).

It remains to account for the quantification over k2. In general, we compute
∃x1. B(x1,x) as B(0,x) ∨ B(1,x). In this example, the disjunction appears
at the second level and is easy to compute.

rhs(x1, k3) = ∃k2. live(x1, k2) ∧ succ(k2, k3) ∧ ¬write(x1, k3)
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Now we rename again, k3 to k2 and disjoin it with live[0](x1, k2) to obtain
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live[1](x1, k2).

rhs(x1, k2) ∨ live[0](x1, k2) = live[1](x1, k2)
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At this point we have gone through one iteration of the definition of live.
Doing it one more time actually does not change the definition any more
(live[2](x1, k2) = live[1](x1, k2)) so the database has reached saturation (see
Exercise 26.1).

Let us interpret the result in terms of the original program.

l0 : w0 = w1 + w1

l1 : if w0 goto l0
l2 : halt

The line from x1 to 1 says that variable w1 is live at both locations (we do
not even test the location), which we can see is correct by examining the
program. The path from x1 = 0 through k2 = 1 to 1 states that variable
w0 is live at l1, which is also correct since we read its value to determine
whether to jump to l0. Finally, the path from x1 = 0 through k2 = 0 to 0
encodes that variables w0 is not live at l0, which is also true since l0 does not
read w1, but writes to it. Turning this information into an explicit database
form, we have derived

live(w1, l0)
live(w1, l1)
live(w0, l1)
¬live(w0, l0) (implicitly)

where the last line would not be explicitly shown but follows from its ab-
sence in the saturated state.
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While this may seem very tedious even in this small example, it has in
fact shown itself to be quite efficient even for very large programs. How-
ever, a number of optimization are necessary to achieve this efficiency, as
mentioned in the papers cited below.

26.7 Prospectus

BDDs were successfully employed in model checking for finite state sys-
tems. In our setting, this would correspond to a linear forward chaining
process where only the rules are unrestricted and facts are linear and thus
subject to change on each iteration. Moreover, the states (represented as
linear contexts) would have to satisfy some additional invariants (for ex-
ample, that each proposition occurs at most once in a context).

The research on Datalog has shown that we can use BDDs effectively for
saturating forward chaining computations. We believe this can be general-
ized beyond Datalog if the forward chaining rules have a subterm property
so that the whole search space remains finite. We only have to find a binary
coding of all terms in the search space so that the BDD representation tech-
nique can be applied.

This strongly suggests that we could implement an interesting fragment
of LolliMon which would encompass both Datalog and some linear logic
programs subject to model checking, using BDDs as a uniform engine.

26.8 Historical Notes

The first use of deduction in databases is usually ascribed to a paper by
Green and Raphael [3] in 1968, which already employed a form of resolu-
tion. The connection between logic programming, logic, and databases be-
came firmly established during a workshop in Toulouse in 1977; selected
papers were subsequently published in book form [2] which contained
several seminal papers in logic programming. The name Datalog was not
coined until the 1980’s.

BDDs were first proposed by Randy Bryant [1]. Their use for imple-
menting Datalog to statically analyze large programs was proposed and
shown to be effective by John Whaley and collaborators [4], with a number
of more specialized and further papers we do not cite here. The resulting
system, bddbddb (BDD-Based Deductive DataBase) is available on Source-
Forge1.

1http://bddbddb.sourceforge.net/
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26.9 Exercises

Exercise 26.1 Show all the intermediate steps in the iteration from live[1](x1, k2)
to live[2](x1, k2) and confirm that saturation has been reached.

Exercise 26.2 Consider a 4-vertex directed graph

v0

��

v3
oo

v1
// v2

``BBBBBBBB

Represent the edge relation as a BDD and saturate the database using the two rules
for transitive closure

path(x, y)← edge(x, y).
path(x, y)← path(x, z), path(z, y).

similer to the way we developed the liveness analysis example. Note that there are
4 vertices so they must be coded with 2 bits, which means that edge and path each
have 4 boolean arguments, two bits for each vertex argument.

Exercise 26.3 Give an encoding of another program analysis problem by showing
(a) the extraction procedure to construct the initial EDB from the program, and (b)
the rules defining the EDB.
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