
Chapter 7

Linear Type Theory

The distinction between logic and type theory is not always clear in the litera-
ture. From the judgmental point of view, the principal judgments of logic are
A is a proposition (A prop) and A is true (A true). This may be different for
richer logics. For example, in temporal logic we may have a basic judgment A
is true at time t. However, it appears to be a characteristic that the judgments
of logic are concerned with the study or propositions and truth.

In type theory, we elevate the concept of proof to a primary concept. In
constructive logic this is important because proofs give rise to computation
under reduction, as discussed in the chapter on linear functional programming
(Chapter 6). Therefore, our primary judgment has the form M is a proof of A
(M : A). This has the alternative interpretation M is an object of type A. So
the principal feature that distinguishes a type theory from a logic is the internal
notion of proof. But proofs are programs, so right from the outset, type theory
has an internal notion of program and computation which is lacking from logic.

The desire to internalize proofs and computation opens a rich design space for
the judgments defining type theory. We will not survey the different possibilities,
but we may map out a particular path that is appropriate for linear type theory.
We may occasionally mention alternative approaches or possibilities.

7.1 Dependent Types

The foundation of linear type theory was already laid in Section 6.1 where
we introduced a propositional linear type theory through the notion of proof
terms. We call it propositional, because the corresponding logic does not allow
quantification.

Propositions A ::= P Atoms
| A1(A2 | A1 ⊗A2 | 1 Multiplicatives

| A1NA2 | > | A1 ⊕A2 | 0 Additives
| A⊃ B | !A Exponentials

Draft of November 29, 2001

142 Linear Type Theory

We now reconsider the quantifiers, ∀x. A and ∃x. A. In the first-order linear
logic we developed, the quantifiers range over a single (unspecified) domain. We
may thus think of first-order logic as the study of quantification independently
of any particular domain. This is accomplished by not making any assumptions
about the domain of quantification. In contrast, first-order arithmetic arises if
we introduce natural numbers and allow quantifiers to range specifically over
natural numbers. This suggests to generalize the quantifiers to ∀x:τ. A and
∃x:τ. A, where τ is a type.

In type theory, we may identify types with propositions. Therefore, we may
label a quantifier with A instead of inventing a new syntactic category τ of types.
Data types, such as the natural numbers, then have to be introduced as new
types A together with their introduction and elimination rules. We postpone
the discussion of numbers and other data types to Section ??. Here, we are
most interested in understanding the nature of the quantifiers themselves once
they are typed.

Universal Quantification. Before, the introduction rule for ∀x. A required
us to prove [a/x]A for a new parameter a. This stays essentially the same,
except that we are allowed to make a typing assumption for a.

Γ, a:B; ∆ ` [a/x]A true
∀Ia

Γ; ∆ ` ∀x:B. A true

Note that the parameter a is treated in an unrestricted manner. In other words,
the object a we assume to exist is persistent, it is independent of the state. This
avoids the unpleasant situation where a proposition C may talk about an object
that no longer exists in the current state as defined via the linear hypotheses.
See Exercise ?? for an exploration of this issue.

The rule above is written as part of a logic, and not as part of a type theory.
We can obtain the corresponding type-theoretical formulation by adding proof
terms. In this case, the proof of the premise is a function that maps an object
N of type B to a proof of [N/x]A. We write this function as an ordinary λ-
abstraction. We will also now use the same name x for the parameter and the
bound variable, to remain closer to the traditions functional programming and
type theory.

Γ, x:B; ∆ `M : A
∀I

Γ; ∆ ` λx:B. M : ∀x:B. A

It is implicit here that x must be new, that is, it may not already be declared
in Γ or ∆. This can always be achieved via renaming of the bound variable x
in the proof term and the type of the conclusion. Note that the variable x may
occur in A. This represents a significant change from the propositional case,
where the variables in Γ and ∆ occur only in proof terms, but not propositions.

In the corresponding elimination rule we now need to check that the term
we use to instantiate the universal quantifier has the correct type. The proof

Draft of November 29, 2001

7.1 Dependent Types 143

term for the result is simply application.

Γ; ∆ `M : ∀x:B. A Γ; · ` N : B
∀E

Γ; ∆ `M N : [N/x]A

Because x:B may be used in an unrestricted manner in the proof of A, the proof
of B may not depend on any linear hypotheses.

The local reduction is simply β-reduction, the local expansion is η-expansion.
We write these out on the proof terms.

(λx:B. M)N −→β [N/x]M
M : ∀x:B. A −→η λx:B. M x

When viewed as a type, the universal quantifier is a dependent function type.
The word “dependent” refers to the fact that the type of the the result of the
function M : ∀x:B. A depends on the actual argument N since it is [N/x]A.
In type theory this is most often written as Πx:B. A instead of ∀x:B. A. The
dependent function type is a generalization of the ordinary function type (see
Exercise ??) and in type theory we usually view B ⊃ A as an abbreviation for
∀x:B. A for some x that does not occur free in A. This preserves the property
that there is exactly one rule for each form of term. In this section we will
also use the form B → A instead of B ⊃ A to emphasize the reading of the
propositions as types.

As a first simple example, consider a proof of ∀x:i. P (x)(P (x) for some
arbitrary type i and predicate P on objects of type i.

u
x:i; u:P (x) ` u : P (x)

(I
x:i; · ` λu:P (x). u : P (x)(P (x)

∀I
·; · ` λx:i. λ̂u:P (x). u : ∀x:i. P (x)(P (x)

This proof is very much in the tradition of first-order logic—the added expressive
power of a type theory is not exploited. We will see more examples later, after
we have introduced the existential quantifier.

Existential Quantification. There is also a dependent version of existential
quantification. For reasons similar to the existential quantifier, the witness N
for the truth of ∃x:A. B is persistent and cannot depend on linear hypotheses.

Γ; · ` N : A Γ; ∆ `M : [N/x]B
∃I

Γ; ∆ ` N !⊗∃x. B M : ∃x:A. B

Unfortunately, we need to annotate the new term constructor with most of its
type in order to guarantee uniqueness. The problem is that even if we know
N and [N/x]B, we cannot in general reconstruct B uniquely (see Exercise ??).
The notation N !⊗M is a reminder that pairs of this form are exponential, not

Draft of November 29, 2001

144 Linear Type Theory

additive. In fact, ∃x:A. B is a dependent generalization of the operator A !⊗
B defined either by introduction and eliminations or via notational definition
as (!A) ⊗ B. We have already seen the reverse, A ⊗! B in Section 5.5 and
Exercise 5.2.

The corresponding elimination is just a dependent version of the ordinary
existential elimination.

Γ; ∆ `M : ∃x:A. B Γ, x:A; ∆′, u:B ` N : C
∃E

Γ; (∆,∆′) ` letx !⊗ u = M inN : C

Here, x and u must be new with respect to Γ and ∆′. In particular, they cannot
occur in C. Also note that x is unrestricted while u is linear, as expected from
the introduction rule.

Again, we write out the local reductions on proof terms.

let x !⊗ u = M1 !⊗M2 inN −→β [M1/x][M2/u]N
M : A !⊗ B −→η let x !⊗ u = M inx !⊗ u

Here we have omitted the superscript on the !⊗ constructor for the sake of
brevity.

Type Families. In order for a dependent type to be truly dependent, we
must have occurrences of the quantified variables in the body of the type. In
the example above we had ∀x:i. P (x)(P (x). But what is the nature of P ?
Logically speaking, it is a predicate on objects of type i. Type-theoretically
speaking, it is a type family. That is, P (M) is a type for every object M of
type i. In such a type we call M the index object. It should now be clear that
well-formedness of types is not longer a trivial issue the way it has been so far.
We therefore augment our collections of judgments with a new one, A is a type
written as A : type.

Since a type such as P (x)(P (x) may depend on some parameters, we
consider a hypothetical judgment of the form

Γ; · ` A : type.

There are no linear hypotheses because it not clear what such a judgment would
mean, as hinted above. One possible answer has been given by Ishtiaq and
Pym [IP98], but we restrict ourselves here to the simpler case.

Most rules for this judgment are entirely straightforward; we show only three

Draft of November 29, 2001

7.2 Dependently Typed Data Structures 145

representative ones.

Γ; · ` A : type Γ; · ` B : type
(F

Γ; · ` A(B : type

Γ; · ` A : type Γ, x:A; · ` B : type
∀F

Γ; · ` ∀x:A. B : type

Γ; · ` A : type Γ, x:A; · ` B : type
∃F

Γ; · ` ∃x:A. B : type

Atomic types a M1 . . .Mn consist of a type family a indexed by objects M1, . . . ,Mn.
We introduce each such family with a separate formation rule. For example,

Γ; · `M : i
PF

Γ; · ` P M : type

would be the formation rule for the type family P considered above. Later it will
be convenient to collect this information in a signature instead (see Section ??).

In the next section we will see some examples of type families from functional
programming.

7.2 Dependently Typed Data Structures

One potentially important application of dependent types lies functional pro-
gramming. Here we can use certain forms of dependent types to capture data
structure invariants concisely. As we will see, there are also some obstacles to
the practical use of such type systems.

As an example we will use lists with elements of some type A, indexed by
their length. This is of practical interest because dependent types may allow us
to eliminate bounds checks statically, as demonstrated in [XP98].

Natural Numbers. First, the formation and introduction rules for natural
numbers in unary form.

natF
Γ; · ` nat : type

natI0
Γ; · ` 0 : nat

Γ; ∆ `M : nat
natI1

Γ; ∆ ` s(M) : nat

There a two destructors: one a case construct and one operator for itera-
tion. We give these in the schematic form, as new syntax constructors, and as
constants.

Draft of November 29, 2001

146 Linear Type Theory

Schematically, f is defined by cases if it satisfies

f(0) = N0

f(s(n)) = N1(n)

Here, N1(n) indicates that the object N1 may depend on n. However, this
form does not express linearity conditions. If we write it as a new language
constructor, we have (avoiding excessive syntactic sugar)

casenat(M ;N0, n. N1)

with the rule

Γ; ∆ `M : nat Γ; ∆′ ` N0 : C Γ; ∆′, n : nat ` N1 : C
natEcase

Γ; ∆,∆′ ` casenat(M ;N0, n. N1) : C

Note that the elimination is additive in character, since exactly one branch of
the case will be taken. The local reductions and expansion are simple:

casenat(0;N0, n. N1) −→L N0

casenat(s(M);N0, n. N1) −→L [M/n]N1

M : nat −→η casenat(M ; 0, n. s(n))

We could also introduce casenat as a constant with linear typing. This would
violate our orthogonality principle. However, for any given type C we can define
a “canonical” higher-order function implementing a case-like construct with the
expected operational behavior.

casenatC : nat((CN(nat(C))(C

= λ̂n:nat. λ̂c:(CN(nat(C)). casenat(n; fst c, n. snd cˆn)

Schematically, f is defined by iteration if it satisfies

f(0) = N0

f(s(n)) = N1(f(n))

Here, N1 can refer to the value of f on the predecessor, but not to n itself. As
a language constructor:

itnat(M ;N0, r. N1)

with the rule

Γ; ∆ `M : nat Γ; · ` N0 : C Γ; r:C ` N1 : C
natEit

Γ; ∆ ` itnat(M,N0, r. N1) : C

Note that N1 will be used as many times as M indicates, and can therefore not
depend on any linear variables. We therefore also do not allow the branch for 0

Draft of November 29, 2001

7.2 Dependently Typed Data Structures 147

to depend on linear variables. In this special data type this would be possible,
since each natural number contains exactly one base case (see Exercise ??).

itnat(0;N0, r. N1) −→L N0

itnat(s(M);N0, r. N1) −→L [itnat(M ;N0, r. N1)/r]N1

M : nat −→η itnat(M ; 0, r. s(r))

From this we can define a canonical higher-order function for each result type
C implementing iteration.

itnatC : nat((CN(C(C))→ C

= λ̂n:nat. λc:CN(C(C). itnat(n; fst c, r. snd cˆr)

More interesting is to define an operator for primitive recursion. Note the linear
typing, which requires that at each stage of iteration we either use the result
from the recursive call or the predecessor, but not both.

recnatC : nat((CN((natNC)(C))→ C

The definition of this recursor is subject of Exercise ??.

Lists. Next we define the data type of lists. We leave the type of elements
open, that is, list is a type constructor. In addition, lists are indexed by their
length. We therefore have the following formation rule

Γ; · ` A : type Γ; · `M : nat
listF

Γ; · ` listA(M) : type

There are two introduction rules for lists: one for the empty list (nil) and
one for a list constructor (cons). Note that we have to take care to construct the
proper index objects. In order to simplify type-checking and the description of
the operational semantics, we make the length of the list explicit as an argument
to the constructor. In practice, this argument can often be inferred and in many
cases does not need to be carried when a program is executed. We indicate this
informally by writing this dependent argument as a subscript.

listI0
Γ; · ` nilA : listA(0)

Γ; · ` N : nat Γ; ∆ ` H : A Γ; ∆′ ` L : listA(N)
listI1

Γ; ∆,∆′ ` consN H L : listA(s(N))

Again, there are two elimination constructs: one for cases and one for iter-
ation. A function for primitive recursion can be defined.

Schematically, f is defined by cases over a list l if it satisfies:

f(nil) = N0

f(consN HL) = N1(N,H, L)

Draft of November 29, 2001

148 Linear Type Theory

Here we supplied an additional argument to N1 since we cannot statically predict
the length of the list L. This also complicates the typing rule for the case
construct, in addition to the linearity conditions.

caselist(M ;N0, n. h. l. N1)

with the rule

Γ; ∆ `M : listA(N)
Γ; ∆′ ` N0 : C(0)
Γ, n:nat; ∆′, h:A, l:listA(n) ` N1 : C(s(n))

natEcase

Γ; ∆,∆′ ` itlist(M ;N0, n. h. l. N1) : C(N)

The novelty in this rule is that C is normally just a type; here it is a type family
indexed by a natural number. This is necessary so that, for example

idA : ∀n:nat. listA(n)(listA(n)
= λn:nat. λl:listA(n). caselist(M ; 0, n. h. l′. consn h l′)

type-checks. Note that here the first branch has type listA(0) and the second
branch has type listA(s(n)), where n is the length of the list l′ which stands
for the tail of l. Local reduction and expansion are straightforward, given the
intuition above.

caselist(nil;N0;n. h. l. N1) −→L N0

caselist(consN H L;N0;n. h. l. N1) −→L [N/n,H/h, L/l]N1

M : listA(N) −→η caselist(M ; nil;n. h. l. consn h l)

If we write a higher-order case function it would have type

caselistA,C : ∀m:nat. listA(m)((C(0)N(∀n:nat. A ⊗ listA(n)(C(s(n)))(C(m)

The iteration constructs for lists follows a similar idea. Schematically, f is
defined by iteration over a list if it satisfies

f(nil) = N0

f(consN H L) = N1(N,H, f(L))

As a language constructor:

itlist(M ;N0, n. h. r. N1)

with the rule

Γ; ∆ `M : listA(N)
Γ; · ` N0 : C(0)
Γ, n:nat; h:A, r:C(n) ` N1 : C(s(n))

natEit

Γ; ∆ ` itlist(M ;N0, n. h. r. N1) : C(N)

Draft of November 29, 2001

7.2 Dependently Typed Data Structures 149

Local reduction and expansion present no new ideas.

itlist(nil;N0;n. h. r. N1) −→L N0

itlist(consN HL;N0;n. h. r. N1) −→L [N/n,H/h, itlist(L;N0;n. h. r. N1)/r]N1

M : listA(N) −→η itlist(M ; nil;n. h. r. consn h r)

We can then define the following higher-order constant.

itlistA,C : ∀m:nat. listA(m)((C(0)N(∀n:nat. C(n)(C(s(n))))→ C(m)

Note that, once again, C is a type family indexed by a natural number.
We now consider some functions on lists and their types. When we append

two lists, the length of the resulting list will be the sum of the lengths of the
two lists. To express this in our language, we first program addition.

plus : nat(nat(nat

= λ̂x:nat. itnat(x; λ̂y:nat. y; r. λ̂y:nat. s(rˆy))

Note that the iteration is at type nat(nat so that r : nat(nat in the second
branch.

appendA : ∀n:nat. ∀m:nat. listA(n)(listA(m)(listA(plus nm)

= λn:nat. λm:nat. λ̂l:listA(n).

itlist(l; λ̂k:listA(m). k,

p. h. r. λ̂k:listA(m). consp h (rˆk))

This example illustrates an important property of dependent type systems:
the type of the function appendA contains a defined function (in this case plus).
This means we need to compute in the language in order to obtain the type of
an expression. For example

appendA 0 0 nilA nilA : listA(plus 0 0)

by the rules for dependent types. But the result of evaluating this expression
will be nilA which has type listA(0). Fortunately, plus 0 0 evaluates to 0. In
general, however, we will not be able to obtain the type of an expression purely
by computation, but we have to employ equality reasoning. This is because the
arguments to a function will not be known at the time of type-checking. For
example, to type-check the definition of appendA above, we obtain the type

listA(s(plus pm))

for N1 (the second branch) for two parameters p and m. The typing rules for
itnat require this branch to have type

listA(plus (s(p)) m)

since the type family C(n) = listA(plus nm) and the result of the second branch
should have type C(s(n)).

Draft of November 29, 2001

150 Linear Type Theory

Fortunately, in this case, we can obtain the first type from the second es-
sentially by some local reductions. In order for dependent type theories to be
useful for functional programming we therefore need the rule of type conversion

Γ; ∆ `M : A Γ; · ` A = B : type
conv

Γ; ∆ `M : B

where the A = B : type is a new judgment of definitional equality. At the
very least the example above suggests that if M and N can be related by a
sequence of reduction steps applied somewhere in M and N , then they should
be considered equal. If this question is decidable is not at all clear and has to
be reconsidered for each type theory in detail.

In an extensional type theory, such as the one underlying Nuprl [C+86], we
allow essentially arbitrarily complex reasoning (including induction) in order to
prove that A = B : type. This means that conversion and also type-checking in
general are undecidable—the judgment of the type theory are no longer analytic,
but synthetic. This cast some doubt on the use of this type theory as a functional
programming language.

In an intensional type theory, such as later type theories developed by Martin-
Löf [ML80, NPS90, CNSvS94], definitional equality is kept weak and thereby
decidable. The main judgment of the type theory remains analytic, which is
desirable in the design of a programming language.

However, there is also a price to pay for a weak notion of equality. It means
that sometimes we will be unable to type-check simple (and correct) functions,
because the reason for their correctness requires inductive reasoning. A simple
example might be

revA : ∀n:nat. listA(n)(listA(n)

which reverses the elements of a list. Depending on its precise formulation, we
may need to know, for example, that

n:nat, m:nat; · ` listA(plus nm) = listA(plus mn) : type

which will not be the case in an intensional type theory.
We circumvent this problem by introducing a new proposition (or type,

depending on one’s point of view) eq NM for index objects N and M of type
nat. Objects of this types are explicit proofs of equality for natural numbers
and should admit induction (which is beyond the scope of these notes). The
type of rev would then be rewritten as

revA : ∀n:nat. listA(n)(∃m:nat. ∃p:eq nm. listA(m)

In other words, in order to have decidable type-checking, we sometimes need to
make correctness proofs explicit. This is not surprising, given the experience
that correctness proofs can often be difficult.

In practical languages such as ML, it is therefore difficult to include depen-
dent types. The approach taken in [Xi98] is to restrict index objects to be drawn

Draft of November 29, 2001

7.2 Dependently Typed Data Structures 151

from a domain with a decidable equality theory. This appears to be a reasonable
compromise that can make the expressive power of dependent types available
to the programmer without sacrificing decidable and efficient type-checking.

Draft of November 29, 2001

152 Linear Type Theory

Draft of November 29, 2001

Bibliography

[ABCJ94] D. Albrecht, F. Bäuerle, J. N. Crossley, and J. S. Jeavons. Curry-
Howard terms for linear logic. In ??, editor, Logic Colloquium ’94,
pages ??–?? ??, 1994.

[Abr93] Samson Abramsky. Computational interpretations of linear logic.
Theoretical Computer Science, 111:3–57, 1993.

[ACS98] Roberto Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisim-
ulations for the asynchrounous π-calculus. Theoretical Computer
Science, 195(2):291–423, 1998.

[AK91] Hassan Äıt-Kaci. Warren’s Abstract Machine: A Tutorial Recon-
struction. MIT Press, 1991.

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in
linear logic. Journal of Logic and Computation, 2(3):197–347, 1992.

[AP91] J.-M. Andreoli and R. Pareschi. Logic programming with sequent
systems: A linear logic approach. In P. Schröder-Heister, edi-
tor, Proceedings of Workshop to Extensions of Logic Programming,
Tübingen, 1989, pages 1–30. Springer-Verlag LNAI 475, 1991.

[AS01] Klaus Aehlig and Helmut Schwichtenberg. A syntactical analysis of
non-size-increasing polynomial time computation. Submitted, 2001.
A previous version presented at LICS’00.

[Bar96] Andrew Barber. Dual intuitionistic linear logic. Technical Report
ECS-LFCS-96-347, Department of Computer Science, University of
Edinburgh, September 1996.

[Bib86] Wolfgang Bibel. A deductive solution for plan generation. New
Generation Computing, 4:115–132, 1986.

[Bie94] G. Bierman. On intuitionistic linear logic. Technical Report 346,
University of Cambridge, Computer Laboratory, August 1994. Re-
vised version of PhD thesis.

[BS92] G. Bellin and P. J. Scott. On the π-calculus and linear logic.
Manuscript, 1992.

Draft of November 29, 2001

154 BIBLIOGRAPHY

[C+86] Robert L. Constable et al. Implementing Mathematics with the
Nuprl Proof Development System. Prentice-Hall, Englewood Cliffs,
New Jersey, 1986.

[Cer95] Iliano Cervesato. Petri nets and linear logic: a case study for logic
programming. In M. Alpuente and M.I. Sessa, editors, Proceed-
ings of the Joint Conference on Declarative Programming (GULP-
PRODE’95), pages 313–318, Marina di Vietri, Italy, September
1995. Palladio Press.

[CF58] H. B. Curry and R. Feys. Combinatory Logic. North-Holland, Am-
sterdam, 1958.

[CHP00] Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient
resource management for linear logic proof search. Theoretical Com-
puter Science, 232(1–2):133–163, February 2000. Special issue on
Proof Search in Type-Theoretic Languages, D. Galmiche and D.
Pym, editors.

[Chu41] Alonzo Church. The Calculi of Lambda-Conversion. Princeton Uni-
versity Press, Princeton, New Jersey, 1941.

[CNSvS94] Thierry Coquand, Bengt Nordström, Jan M. Smith, and Björn von
Sydow. Type theory and programming. Bulletin of the European
Association for Theoretical Computer Science, 52:203–228, Febru-
ary 1994.

[Dos̆93] Kosta Dos̆en. A historical introduction to substructural logics. In
Peter Schroeder-Heister and Kosta Dos̆en, editors, Substructural
Logics, pages 1–30. Clarendon Press, Oxford, England, 1993.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 39:176–210, 405–431, 1935. Translated
under the title Investigations into Logical Deductions in [Sza69].

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[Gir93] J.-Y. Girard. On the unity of logic. Annals of Pure and Applied
Logic, 59:201–217, 1993.

[Her30] Jacques Herbrand. Recherches sur la théorie de la démonstration.
Travaux de la Société des Sciences et de Lettres de Varsovic, 33,
1930.

[HM94] Joshua Hodas and Dale Miller. Logic programming in a frag-
ment of intuitionistic linear logic. Information and Computation,
110(2):327–365, 1994. A preliminary version appeared in the Pro-
ceedings of the Sixth Annual IEEE Symposium on Logic in Com-
puter Science, pages 32–42, Amsterdam, The Netherlands, July
1991.

Draft of November 29, 2001

BIBLIOGRAPHY 155

[Hod94] Joshua S. Hodas. Logic Programming in Intuitionistic Linear Logic:
Theory, Design, and Implementation. PhD thesis, University of
Pennsylvania, Department of Computer and Information Science,
1994.

[Hof00a] Martin Hofmann. Linear types and non-size increasing polynomial
time computation. Theoretical Computer Science, 2000. To appear.
A previous version was presented at LICS’99.

[Hof00b] Martin Hofmann. A type system for bounded space and functional
in-place update. Nordic Journal of Computing, November 2000. To
appear. A previous version was presented as ESOP’00.

[How80] W. A. Howard. The formulae-as-types notion of construction. In
J. P. Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 479–
490. Academic Press, 1980. Hitherto unpublished note of 1969, re-
arranged, corrected, and annotated by Howard.

[HP97] James Harland and David Pym. Resource-distribution via boolean
constraints. In W. McCune, editor, Proceedings of the 14th Inter-
national Conference on Automated Deduction (CADE-14), pages
222–236, Townsville, Australia, July 1997. Springer-Verlag LNAI
1249.

[HT91] Kohei Honda and Mario Tokoro. An object calculus for asyn-
chronous communication. In P. America, editor, Proceedings
of the European Conference on Object-Oriented Programming
(ECOOP’91), pages 133–147, Geneva, Switzerland, July 1991.
Springer-Verlag LNCS 512.

[Hue76] Gérard Huet. Résolution d’équations dans des langages d’ordre
1, 2, . . ., ω. PhD thesis, Université Paris VII, September 1976.

[IP98] Samin Ishtiaq and David Pym. A relevant analysis of natural de-
duction. Journal of Logic and Computation, 8(6):809–838, 1998.

[Kni89] Kevin Knight. Unification: A multi-disciplinary survey. ACM Com-
puting Surveys, 2(1):93–124, March 1989.

[Lin92] P. Lincoln. Linear logic. ACM SIGACT Notices, 23(2):29–37, Spring
1992.

[Mil92] D. Miller. The π-calculus as a theory in linear logic: Preliminary
results. In E. Lamma and P. Mello, editors, Proceedings of the Work-
shop on Extensions of Logic Programming, pages 242–265. Springer-
Verlag LNCS 660, 1992.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-Calculus.
Cambridge University Press, 1999.

Draft of November 29, 2001

156 BIBLIOGRAPHY

[ML80] Per Martin-Löf. Constructive mathematics and computer program-
ming. In Logic, Methodology and Philosophy of Science VI, pages
153–175. North-Holland, 1980.

[ML94] Per Martin-Löf. Analytic and synthetic judgements in type the-
ory. In Paolo Parrini, editor, Kant and Contemporary Epistemology,
pages 87–99. Kluwer Academic Publishers, 1994.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical
Logic, 1(1):11–60, 1996.

[MM76] Alberto Martelli and Ugo Montanari. Unification in linear time
and space: A structured presentation. Internal Report B76-16, Is-
tituto di Elaborazione delle Informazione, Consiglio Nazionale delle
Ricerche, Pisa, Italy, July 1976.

[MM82] Alberto Martelli and Ugo Montanari. An efficient unification algo-
rithm. ACM Transactions on Programming Languages and Systems,
4(2):258–282, April 1982.

[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Sce-
drov. Uniform proofs as a foundation for logic programming. Annals
of Pure and Applied Logic, 51:125–157, 1991.

[MOM91] N. Mart́ı-Oliet and J. Meseguer. From Petri nets to linear logic
through categories: A survey. Journal on Foundations of Computer
Science, 2(4):297–399, December 1991.

[NPS90] B. Nordström, K. Petersson, and J.M. Smith. Programming in
Martin-Löf ’s Type Theory: An Introduction. Oxford University
Press, 1990.

[PD01] Frank Pfenning and Rowan Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science, 11:511–
540, 2001. Notes to an invited talk at the Workshop on Intuitionistic
Modal Logics and Applications (IMLA’99), Trento, Italy, July 1999.

[Pra65] Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm,
1965.

[PW78] M. S. Paterson and M. N. Wegman. Linear unification. Journal of
Computer and System Sciences, 16(2):158–167, April 1978.

[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23–41, January 1965.

[Rob71] J. A. Robinson. Computational logic: The unification computation.
Machine Intelligence, 6:63–72, 1971.

Draft of November 29, 2001

BIBLIOGRAPHY 157

[Sce93] A. Scedrov. A brief guide to linear logic. In G. Rozenberg and
A. Salomaa, editors, Current Trends in Theoretical Computer Sci-
ence, pages 377–394. World Scientific Publishing Company, 1993.
Also in Bulletin of the European Association for Theoretical Com-
puter Science, volume 41, pages 154–165.

[SHD93] Peter Schroeder-Heister and Kosta Dos̆en, editors. Substructural
Logics. Number 2 in Studies in Logic and Computation. Clarendon
Press, Oxford, England, 1993.

[Sta85] Richard Statman. Logical relations and the typed λ-calculus. In-
formation and Control, 65:85–97, 1985.

[Sza69] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen.
North-Holland Publishing Co., Amsterdam, 1969.

[Tai67] W. W. Tait. Intensional interpretation of functionals of finite type
I. Journal Of Symbolic Logic, 32:198–212, 1967.

[Tro92] A. S. Troelstra. Lectures on Linear Logic. CSLI Lecture Notes
29, Center for the Study of Language and Information, Stanford,
California, 1992.

[Tro93] A. S. Troelstra. Natural deduction for intuitionistic linear logic.
Prepublication Series for Mathematical Logic and Foundations ML-
93-09, Institute for Language, Logic and Computation, University
of Amsterdam, 1993.

[WW01] David Walker and Kevin Watkins. On linear types and regions. In
Proceedings of the International Conference on Functional Program-
ming (ICFP’01). ACM Press, September 2001.

[Xi98] Hongwei Xi. Dependent Types in Practical Programming. PhD the-
sis, Department of Mathematical Sciences, Carnegie Mellon Univer-
sity, December 1998.

[XP98] Hongwei Xi and Frank Pfenning. Eliminating array bound checking
through dependent types. In Keith D. Cooper, editor, Proceedings of
the Conference on Programming Language Design and Implementa-
tion (PLDI’98), pages 249–257, Montreal, Canada, June 1998. ACM
Press.

Draft of November 29, 2001

