15-462 Computer Graphics I
Lecture 22

Non-Photorealistic Rendering

Pen-and-Ink Illustrations
Painterly Rendering
Cartoon Shading
Technical Illustrations

Acknowledgment: Steve Lin

April 17, 2003
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/
Goals of Computer Graphics

- Traditional: Photorealism
- Sometimes, we want more
 - Cartoons
 - Artistic expression in paint, pen-and-ink
 - Technical illustrations
 - Scientific visualization [Lecture 20]
Non-Photorealistic Rendering

“A means of creating imagery that does not aspire to realism” - Stuart Green
Some NPR Categories

• Pen-and-Ink illustration
 – Techniques: cross-hatching, outlines, line art, etc.
• Painterly rendering
 – Styles: impressionist, expressionist, pointilist, etc.
• Cartoons
 – Effects: cartoon shading, distortion, etc.
• Technical illustrations
 – Characteristics: Matte shading, edge lines, etc.
• Scientific visualization
 – Methods: splatting, hedgehogs, etc.
Emergence of NPR

2D Paint (Pixel Oriented)
Bitmap paint systems

2D Paint (Brush Oriented)
User intervention

2D/2.5D Paint Post-Processing
Automatically generated from augmented images

3D Renderers
Automatically generated based on 3D data

3D Photorealistic Renderers
Traditional Computer Graphics
Outline

• Pen-and-Ink Illustrations
• Painterly Rendering
• Cartoon Shading
• Technical Illustrations
Pen-and-Ink Illustrations

• **Strokes**
 – Curved lines of varying thickness and density

• **Texture**
 – Character conveyed by collection of strokes

• **Tone**
 – Perceived gray level across image or segment

• **Outline**
 – Boundary lines that disambiguate structure
Pen-and-Ink Examples

Winkenbach and Salesin 1994
Rendering Polygonal Surfaces

3D Model → Visible Polygons → Procedural Stroke Texture → Stroke Clipping → Outline Drawing

Lighting → Visible Polygons

Camera

How much 3D information do we preserve?
Strokes and Stroke Textures

• Stroke generated by moving along straight path
• Stroke perturbed by
 – Waviness function (straightness)
 – Pressure function (thickness)
• Collected in stroke textures
 – Tone dependent
 – Resolution dependent
 – Orientation dependent
• How automatic are stroke textures
Stroke Texture Examples

Winkenbach and Salesin 1994
Prioritized Stroke Textures

• Technique for limiting human intervention
• Collection of strokes with associated priority
• When rendering
 – First draw highest priority only
 – If too light, draw next highest priority, etc.
 – Stop if proper tone is achieved
• Procedural stroke textures
• Support scaling
• Also applies to non-procedural stroke textures
Stroke Texture Operations

Scaling

Changing Viewing Direction (Anisotropic)
Indication

• Selective addition of detail
• Difficult to automate
• User places detail segments interactively
Indication Example

With indication

Without indication

Bold strokes indicate detail segments
Outlines

• Boundary or interior outlines
• Accented outlines for shadowing and relief
• Dependence on viewing direction
• Suggest shadow direction
Rendering Parametric Surfaces

- Stroke orientation and density
 - Place strokes along isoparameter lines
 - Choose density for desired tone
 - tone = width / spacing
Stroke Width

- Adjust stroke width retain uniform tone

Winkenbach and Salesin 1996
Parametric Surface Example

- Constant-density hatching
- Longer smoother strokes for glass
- Smooth shading with single light
- Environment mapping
- Update reflection coefficient

Standard rendering techniques are still important!
Parametric Surface Example

Winkenbach and Salesin 1996
Orientable Textures

- **Inputs**
 - Grayscale image to specify desired tone
 - Direction field
 - Stroke character

- **Output**
 - Stroke shaded image

Salisbury et al. 1997
Orientable Stroke Texture Example

Salisbury et al. 1997
Outline

• Pen-and-Ink Illustrations
• Painterly Rendering
• Cartoon Shading
• Technical Illustrations
Painterly Rendering

- Physical simulation
 - User applies brushstrokes
 - Computer simulates media

- Automatic painting
 - User provides input image or 3D model
 - User specifies painting parameters
 - Computer generates all strokes

- Subject to controversy
Physical Simulation Example

Curtis et al. 1997, *Computer Generated Watercolor*
Computer-Generated Watercolor

- Complex physical phenomena for artistic effect
- Build simple approximations
- Paper generation as random height field

- Simulated effects
Fluid Dynamic Simulation

- Use water velocity, viscosity, drag, pressure, pigment concentration, paper gradient
- Paper saturation and capacity

- Discretize and use cellular automata
Interactive Painting

User input

Simulation in progress

Finished painting
Automatic Painting Example

Hertzmann 1997
Automatic Painting from Images

- Start from color image: no 3D information
- Paint in resolution-based layers
 - Blur to current resolution
 - Select brush based on current resolution
 - Find area of largest error compared to real image
 - Place stroke
 - Increase resolution and repeat
- Layers are painted coarse-to-fine
- Styles controled by parameters
Layered Painting

Blurring

Adding detail with smaller strokes
Brush Strokes

• Start at point of maximal error
 – Calculate difference between original image and image painted so far

• Direction perpendicular to gradient
 – Stroke tends to follow equally shaded area

• Stopping criteria
 – Difference between brush color and original image color exceeds threshold
 – Maximal stroke length reached
Longer Brush Strokes

• For longer, curved brush strokes
 – Repeat straight line algorithm
 – Stop, again on length or difference threshold
• Use anti-aliased cubic B-spline
Painting Styles

• Style determined by parameters
 – Approximation threshold
 – Brush sizes
 – Curvature filter
 – Blur factor
 – Minimum and maximum stroke lengths
 – Opacity
 – Grid size
 – Color jitter

• Encapsulate parameter settings as style
Some Styles

• “Impressionist”
 – No random color, \(4 \leq \text{stroke length} \leq 16 \)
 – Brush sizes 8, 4, 2; approximation threshold 100

• “Expressionist”
 – Random factor 0.5, \(10 \leq \text{stroke length} \leq 16 \)
 – Brush sizes 8, 4, 2; approximation threshold 50

• “Pointilist”
 – Random factor \(~0.75, 0 \leq \text{stroke length} \leq 0\)
 – Brush sizes 4, 2; approximation threshold 100

• Not convincing to artists
Style Examples

Source image

“Impressionist”

“Expressionist”

“Pointillist”
Outline

• Pen-and-Ink Illustrations
• Painterly Rendering
• Cartoon Shading
• Technical Illustrations
Cartoon Shading

• Shading model in 2D cartoon
 – Use material color and shadow color
 – Present lighting cues, shape, and context

• Stylistic

• Used in many animated movies

• Developing real-time techniques for games
Cartoon Shading as Texture Map

- Apply shading as 1D texture map
Shading Variations

- Gouraud: Flat shading
- 1 texel
- 2 texels: Shadow
- 8 texels: Shadow + highlight
Outline

• Pen-and-Ink Illustrations
• Painterly Rendering
• Cartoon Shading
• Technical Illustrations
Technical Illustrations

• Level of abstraction
 – Accent important 3D properties
 – Dimish or eliminate extraneous details

• Do not represent reality

Ruppel 1995
Conventions in Technical Illustrations

• Black edge lines
• Cool to warm shading colors
• Single light source; shadows rarely used
Technical Illustration Example

- Phong shading
- Metal shading (anisotropic)
- Edge lines
- Tone shading (cool to warm shift)
The Future

• Smart graphics
 – Design from the user’s perspective
 – HCI, AI, Perception

• Artistic graphics
 – More tools for the creative artist
 – New styles and ideas
Movies

• Baxter et al, *DAB: Interactive Haptic Painting with 3D Virtual Brushes*, SIGGRAPH’01
• Kowalski et al., *Art-based Rendering of Fur, Grass and Trees*, SIGGRAPH’99
Summary

• Beyond photorealism
 – Artistic appeal
 – Technical explanation and illustration
 – Scientific visualization

• Use all traditional computer graphics tools

• Employ them in novel ways

• Have fun!
Preview

- Assignment 7 due next Thursday
- Assignment 8 out today, due in 2 weeks
- No late days on Assignment 8
- Tuesday: TBA
- Thursday: Advanced Global Illumination
- Tuesday: Guest Lecture/Games [Kuffner]
- Thursday: Final Review