Global Illumination

Substructuring
Progressive Refinement
Bidirectional Reflectance Dist. Fcn.
Combining Radiosity and Ray Tracing

[Angel, Ch 13.5]

April 10, 2003
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/
Classical Radiosity Method

• Divide surfaces into patches
• Model light transfer between patches as system of linear equations
• Important assumptions (so far):
 – Reflection and emission are diffuse
 – No participating media (no fog)
 – No transmission (only opaque surfaces)
 – Radiosity is constant across each patch
 – Solve for R, G, B separately
Radiosity Equation

- For each patch i:
 \[
 B_i = E_i + \rho_i \sum_j \left(\frac{F_{ij} A_j}{A_i} \right) B_j \\
 = E_i + \rho_i \sum_j F_{ij} B_j
 \]

- **Variables**
 - $B_i = \text{radiosity (unknown)}$
 - $E_i = \text{emittance of light sources (given)}$
 - $\rho_i = \text{reflectance (given)}$
 - $F_{ij} = \text{form factor from i to j (computed)}$
 - fraction of light emitted from patch i arriving at patch j
 - $A_i = \text{area of patch i (computed)}$
Idealized Radiosity Computation

- Division into patches
- Form factor calculation
- Solution of radiosity eqn
- Radiosity Image
- Visualization
- Scene Geometry
- Reflectance Properties
- Viewing Conditions
Form Factors via Hemicubes

R. Ramamoorthi
Outline

• Substructuring
• Progressive Refinement
• Bidirectional Reflectance Distribution Function
• Combining Radiosity and Ray Tracing
Substructuring

- Radiosity assumed constant across patch
- Impact of number of patches
 - Few: fast, but very inaccurate (blocky)
 - Many: slow $O(n^2)$, but much more accurate

- Substructuring
 - Introduce elements as a substructure for patches
 - Use adaptively where radiosity varies rapidly
 - Distinguish elements and patches to avoid explosion
Elements vs. Patches

- Analyse transport from patch onto elements
- Do **not** analyze element-to-element detail
- This means
 - Compute form factors from elements to patches
 - Do **not** compute form factors from patches to elements
 - Use weighted patch to parent-of-element
 - Complexity $O(m \cdot n)$ for m elements, n patches

- Typically substructured areas
 - Near lights
 - Shadow boundaries
Outline

- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing
Matrix Radiosity Revisited

• Compute all form factors F_{ij}
• Make initial approximation to radiosity
 – Emitting elements $B_i = E_i$
 – Other elements $B_i = 0$
• Apply equation to get next approximation
 \[B'_i = E_i + \rho_i \sum_j F_{ij} B_j \]
• Iterate with new approximation
• Intuitively
 – Gather incoming light for each element i
 – Base new estimate on previous estimate
Progressive Refinement

• Shoot light instead of gathering light
• Basic algorithm
 – Initialize emitting element with $B_i = E_i$
 – Initialize others with with $B_i = 0$
 – Pick source i (start with brightest)
 – Using hemicube around source, calculate F_{ij}
 – For each $j \neq i$, approximate $B'_j = \rho_j B_i F_{ij} (A_i / A_j)$
 – Pick next source i and iterate until convergence
• Each iteration is $O(n)$
• May or may not keep F_{ij} after each iteration
Progressive Refinement Corrected

- **Problem:** double-count if source is used more than once as source
- **Solution:** compute and use *difference* from last time a patch was used as a source (ΔB_i)
 - Initialize ΔB_i, $B_i = E_i$
 - Pick source i with maximum unshot power
 - Using hemicube, calculate F_{ij} for each j
 - $\Delta R = \rho_j \Delta B_i \ F_{ij} (A_i / A_j)$
 - $B_j = B_j + \Delta R$
 - $\Delta B_j = \Delta B_j + \Delta R$
 - $\Delta B_i = 0$
Some Special Cases

- Image after we have iterated through all light sources?
 - Shadows, but no interreflections
- Can incrementally display image while iterating
 - Add ambient light at each stage for visibility
 - Ambient shading if progressively refined
- Incremental form factor computation
Radiosity Algorithms Summary

- **Matrix radiosity algorithm**
 - Pre-compute all form factors
 - Iterative solution (Gauss-Seidel)
 - Start with emission
 - Each objects gathers light from all other objects

- **Progressive refinement**
 - Pick brightest patch
 - Compute outgoing form factors
 - Shoot light from this patch to all other patches
 - Repeat for next brightest batch

- Combine substructuring and progressive refmt.
Outline

• Substructuring
• Progressive Refinement
• Bidirectional Reflectance Distribution Function
• Combining Radiosity and Ray Tracing
Bidirectional Reflectance Distribution

- General model of light reflection
- Hemispherical function
- 6-dimensional (location, 4 angles, wavelength)

\[
f(\omega_i \rightarrow \omega_r) = \frac{L_r(\omega_r)}{L_i(\omega_i) \cos \theta_i \ d\omega_i}
\]

A. Wilkie
BRDF Examples

- Measure BRDFs for different materials
Material Examples

Fig. 16. Resampled scattering diagrams of the BRDF measurements of two paints: a blue enamel (top row) and a red automotive lacquer (bottom row). The RGB color measurements are shown from left to right.
BRDF Isotropy

- Rotation invariance of BRDF
- Reduces 4 angles to 2
- Holds for a wide variety of surfaces
- Anisotropic materials
 - Brushed metal
 - Others?
- How many parameters for
 - Ideal specular?
 - Ideal diffuse?
Subsurface Light Transport

- Jensen et al. 2001

Using only BRDF vs. With subsurface light transport
Outline

• Substructuring
• Progressive Refinement
• Bidirectional Reflectance Distribution Function
• Combining Radiosity and Ray Tracing
Light Transport and Global Illumination

- Diffuse to diffuse
- Diffuse to specular
- Specular to diffuse
- Specular to specular
- Ray tracing (viewer dependent)
 - Light to diffuse
 - Specular to specular
- Radiosity (viewer independent)
 - Diffuse to diffuse
- Inherent limitations
Specular Radiosity

• Diffuse radiosity
 – Light reflected equally in all directions
 – Relationship between patches limited to form factor

• Specular radiosity
 – Retain viewer independence (unlike ray tracing)
 – Light reflected differently in different directions
 – For each source and each direction, need to calculation interaction
 – Not practical
Two-Pass Approach

- View-dependent specular is tractable
- View-independent diffuse is tractable
- First pass view independent
 - Enhanced radiosity
- Second pass is view dependent
 - Enhanced ray tracing
Pass 1: Enhanced Radiosity

• Diffuse transmission (translucent surfaces)
 – Backwards diffuse form factor

• Specular transmission
 – Extended form factor computation
 – Consider occluding translucent surfaces
 – Window form factor

• Specular reflection
 – Create “virtual” (mirror-image) environment
 – Use specular transmission technique
 – Mirror form factor
Pass 1 Result

- Account only for one specular reflection between surfaces (diffuse-specular-diffuse)
- Accurate diffuse component
- Solve enhanced radiosity equation as before
- Viewer independent solution
Pass 2: Enhanced Ray Tracing

• Classical ray tracing
 – Specular to specular light transport

• For diffuse-to-specular transport:
 – Should integrate incoming light over hemisphere
 – Approximate by using small frustum in direction of ideal reflection
 – Use radiosity of pixels calculated in Pass 1
 – Apply recursively if visible surface is specular
Two-Pass Global Illumination

• Still several approximating assumptions
• Appropriate for scenes with few specular reflecting or transmitting surfaces
• More expensive than already expensive methods
• Photon Mapping: another two-pass algorithm
Two-Pass Radiosity Example
Photon Mapping Example

Jensen 1996
Summary

• Substructuring
• Progressive Refinement
• Bidirectional Reflectance Distribution Function
• Combining Radiosity and Ray Tracing
Preview

• Tuesday: Scientific Visualization