Ray Tracing

Ray Casting
Ray-Surface Intersections
Barycentric Coordinates
Reflection and Transmission

[Angel, Ch 13.2-13.3] [Handout]

March 20, 2003
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/
Local vs. Global Rendering Models

- Local rendering models (graphics pipeline)
 - Object illuminations are independent
 - No light scattering between objects
 - No real shadows, reflection, transmission

- Global rendering models
 - Ray tracing (highlights, reflection, transmission)
 - Radiosity (surface interreflections)
Object Space vs. Image Space

- Graphics pipeline: for each object, render
 - Efficient pipeline architecture, on-line
 - Difficulty: object interactions
- Ray tracing: for each pixel, determine color
 - Pixel-level parallelism, off-line
 - Difficulty: efficiency, light scattering
- Radiosity: for each two surface patches, determine diffuse interreflections
 - Solving integral equations, off-line
 - Difficulty: efficiency, reflection
Forward Ray Tracing

- Rays as paths of photons in world space
- Forward ray tracing: follow photon from light sources to viewer
- Problem: many rays will not contribute to image!
Backward Ray Tracing

- Ray-casting: one ray from center of projection through each pixel in image plane
- Illumination
 1. Phong (local as before)
 2. Shadow rays
 3. Specular reflection
 4. Specular transmission
- (3) and (4) require recursion
Shadow Rays

• Determine if light “really” hits surface point
• Cast **shadow ray** from surface point to light
• If shadow ray hits opaque object, no contribution
• Improved diffuse reflection
Reflection Rays

- Calculate specular component of illumination
- Compute reflection ray (recall: backward!)
- Call ray tracer recursively to determine color
- Add contributions
- Transmission ray
 - Analogue for transparent or translucent surface
 - Use Snell’s laws for refraction
- Later:
 - Optimizations, stopping criteria
Ray Casting

- Simplest case of ray tracing
- Required as first step of recursive ray tracing
- Basic ray-casting algorithm
 - For each pixel (x,y) fire a ray from COP through (x,y)
 - For each ray & object calculate closest intersection
 - For closest intersection point p
 - Calculate surface normal
 - For each light source, calculate and add contributions

- Critical operations
 - Ray-surface intersections
 - Illumination calculation
Outline

• Ray Casting
• Ray-Surface Intersections
• Barycentric Coordinates
• Reflection and Transmission
Ray-Surface Intersections

- General implicit surfaces
- General parametric surfaces
- Specialized analysis for special surfaces
 - Spheres
 - Planes
 - Polygons
 - Quadrics
- Do not decompose objects into triangles!
- CSG (Constructive Solid Geometry)
 - Construct model from building blocks (later lecture)
Rays and Parametric Surfaces

• Ray in parametric form
 – Origin \(\mathbf{p}_0 = [x_0 \ y_0 \ z_0 \ 1]^T \)
 – Direction \(\mathbf{d} = [x_d \ y_d \ z_d \ 0]^t \)
 – Assume \(\mathbf{d} \) normalized \((x_d^2 + y_d^2 + z_d^2 = 1) \)
 – Ray \(\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{d} \ t \ \text{for} \ t > 0 \)

• Surface in parametric form
 – Point \(\mathbf{q} = g(u, v) \), possible bounds on \(u, v \)
 – Solve \(\mathbf{p} + \mathbf{d} \ t = g(u, v) \)
 – Three equations in three unknowns \((t, u, v) \)
Rays and Implicit Surfaces

• Ray in parametric form
 – Origin \(p_0 = [x_0, y_0, z_0, 1]^T \)
 – Direction \(d = [x_d, y_d, z_d, 0]^t \)
 – Assume \(d \) normalized \((x_d^2 + y_d^2 + z_d^2 = 1)\)
 – Ray \(p(t) = p_0 + d \cdot t \) for \(t > 0 \)

• Implicit surface
 – Given by \(f(q) = 0 \)
 – Consists of all points \(q \) such that \(f(q) = 0 \)
 – Substitute ray equation for \(q \): \(f(p_0 + d \cdot t) = 0 \)
 – Solve for \(t \) (univariate root finding)
 – Closed form (if possible) or numerical approximation
Ray-Sphere Intersection I

- Common and easy case
- Define sphere by
 - Center \(\mathbf{c} = [x_c \; y_c \; z_c \; 1]^T \)
 - Radius \(r \)
 - Surface \(f(\mathbf{q}) = (x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 - r^2 = 0 \)
- Plug in ray equations for \(x, y, z \):

\[
\begin{align*}
x &= x_0 + x_d t \\
y &= y_0 + y_d t \\
z &= z_0 + z_d t
\end{align*}
\]

\[
\begin{align*}
(x_0 + x_d t - x_c)^2 + (y_0 + y_d t - y_c)^2 + (z_0 + z_d t - z_c)^2 &= r^2
\end{align*}
\]
Ray-Sphere Intersection II

• Simplify to

\[a \ t^2 + b \ t + c = 0 \]

where

\[a = x_d^2 + y_d^2 + z_d^2 = 1 \quad \text{since} \quad |d| = 1 \]
\[b = 2 \ (x_d(x_0 - x_c) + y_d(y_0 - y_c) + z_d(z_0 - z_c)) \]
\[c = (x_0 - x_c)^2 + (y_0 - y_c)^2 + (z_0 - z_c)^2 - r^2 \]

• Solve to obtain \(t_0 \) and \(t_1 \)

\[t_{0,1} = \frac{-b \pm \sqrt{b^2 - 4c}}{2} \]

Check if \(t_0, t_1 > 0 \) (ray)
Return \(\min(t_0, t_1) \)
Ray-Sphere Intersection III

• For lighting, calculate unit normal

\[
n = \frac{1}{r} \begin{bmatrix} (x_i - x_c) & (y_i - y_c) & (z_i - z_c) & 0 \end{bmatrix}^T
\]

• Negate if ray originates inside the sphere!
• Note possible problems with roundoff errors
Simple Optimizations

- Factor common subexpressions
- Compute only what is necessary
 - Calculate $b^2 - 4c$, abort if negative
 - Compute normal only for closest intersection
 - Other similar optimizations [Handout]
Inverse Mapping for Texture Coords.

- How do we determine texture coordinates?
- Inverse mapping problem
- No unique solution
- Reconsider in each case
 - For different basic surfaces
 - For surface meshes
 - Still an area of research
Ray-Polygon Intersection I

- Assume planar polygon
 1. Intersect ray with plane containing polygon
 2. Check if intersection point is inside polygon

- Plane
 - Implicit form: $ax + by + cz + d = 0$
 - Unit normal: $\mathbf{n} = [a \ b \ c \ 0]^T$ with $a^2 + b^2 + c^2 = 1$

- Substitute:
 $$a(x_0 + x_d t) + b(y_0 + y_d t) + c(z_0 + z_d t) + d = 0$$

- Solve:
 $$t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d}$$
Ray-Polygon Intersection II

• Substitute t to obtain intersection point in plane
• Test if point inside polygon
• For example, use even-odd rule or winding rule
 – Easier in 2D (project) and for triangles (tesselate)
Ray-Polygon Intersection III

- Rewrite using dot product

\[
t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d} = \frac{-(n \cdot p_0 + d)}{n \cdot d}
\]

- If \(n \cdot d = 0 \), no intersection
- If \(t \leq 0 \) the intersection is behind ray origin
- Point-in-triangle testing critical for polygonal models
- Project onto planes \(x = 0, y = 0, \) or \(z = 0 \) for point-in-polygon test; can be precomputed
Ray-Quadric Intersection

- Quadric $f(p) = f(x, y, z) = 0$, where f is polynomial of order 2
- Sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder
- Closed form solution as for sphere
- Important case for modelling in ray tracing
- Combine with CSG

[see Handout]
Outline

• Ray Casting
• Ray-Surface Intersections
• Barycentric Coordinates
• Reflection and Transmission
Interpolated Shading for Ray Tracing

- Assume we know normals at vertices
- How do we compute normal of interior point?
- Need linear interpolation between 3 points
- Barycentric coordinates
- Yields same answer as scan conversion
Barycentric Coordinates in 1D

- Linear interpolation
 - \(p(t) = (1 - t)p_1 + tp_2, \ 0 \leq t \leq 1 \)
 - \(p(t) = \alpha p_1 + \beta p_2 \) where \(\alpha + \beta = 1 \)
 - \(p \) is between \(p_1 \) and \(p_2 \) iff \(0 \leq \alpha, \beta \leq 1 \)

- Geometric intuition
 - Weigh each vertex by ratio of distances from ends

- \(\alpha, \beta \) are called barycentric coordinates
Barycentric Coordinates in 2D

- Given 3 points instead of 2
- Define 3 barycentric coordinates, α, β, γ
- $p = \alpha p_1 + \beta p_2 + \gamma p_3$
- p inside triangle iff $0 \leq \alpha, \beta, \gamma \leq 1$, $\alpha + \beta + \gamma = 1$
- How do we calculate α, β, γ given p?
Barycentric Coordinates for Triangle

- Coordinates are ratios of triangle areas

\[
\alpha = \frac{\text{Area}(C_0C_1C_2)}{\text{Area}(C_0C_1C_2)}
\]

\[
\beta = \frac{\text{Area}(C_0C_1C_2)}{\text{Area}(C_0C_1C_2)}
\]

\[
\gamma = \frac{\text{Area}(C_0C_1C)}{\text{Area}(C_0C_1C_2)} = 1 - \alpha - \beta
\]
Computing Triangle Area

• In 3 dimensions
 – Use cross product
 – Parallelogram formula
 – \(\text{Area}(ABC) = (1/2)||(B - A) \times (C - A)|| \)
 – Optimization: project, use 2D formula

• In 2 dimensions
 – \(\text{Area}(x-y-proj(ABC)) = \)
 \((1/2)(((b_x - a_x)(c_y - a_y) - (c_x - a_x)(b_y - a_y))) \)
Outline

• Ray Casting
• Ray-Surface Intersections
• Barycentric Coordinates
• Reflection and Transmission
Recursive Ray Tracing

• Calculate specular component
 – Reflect ray from eye on specular surface
 – Transmit ray from eye through transparent surface
• Determine color of incoming ray by recursion
• Trace to fixed depth
• Cut off if contribution below threshold
Angle of Reflection

- Recall: incoming angle = outgoing angle
- \(r = 2(l \cdot n) n - l \)
- For incoming/outgoing ray negate \(l \)!
- Compute only for surfaces with actual reflection
- Use specular coefficient
- Add specular and diffuse components
Transmitted Light

- Index of refraction is relative speed of light
- Snell’s law
 - $\eta_l = \text{index of refraction for upper material}$
 - $\eta_t = \text{index of refraction for lower material}$

$$\frac{\sin(\theta_l)}{\sin(\theta_t)} = \frac{\eta_t}{\eta_l} = \eta$$

$$t = -\frac{1}{\eta} l - (\cos(\theta_t) - \frac{1}{\eta} \cos(\theta_l)) n$$

where $\cos(\theta_l) = l \cdot n$

and $\cos^2(\theta_t) = 1 - \frac{1}{\eta^2}(1 - l \cdot n)$

Note: negate l or t for transmission!
Translucency

- Diffuse component of transmission
- Scatter light on other side of surface
- Calculation as for diffuse reflection
- Reflection or transmission not perfect
- Use stochastic sampling
Ray Tracing Preliminary Assessment

• Global illumination method
• Image-based
• Pluses
 – Relatively accurate shadows, reflections, refractions
• Minuses
 – Slow (per pixel parallelism, not pipeline parallelism)
 – Aliasing
 – Inter-object diffuse reflections
Ray Tracing Acceleration

• Faster intersections
 – Faster ray-object intersections
 • Object bounding volume
 • Efficient intersector
 – Fewer ray-object intersections
 • Hierarchical bounding volumes (boxes, spheres)
 • Spatial data structures
 • Directional techniques

• Fewer rays
 – Adaptive tree-depth control
 – Stochastic sampling

• Generalized rays (beams, cones)
Raytracing Example I

www.povray.org
Raytracing Example II

www.povray.org
Raytracing Example II

Saito, Saturn Ring
Raytracing Example IV

www.povray.org
Summary

- Ray Casting
- Ray-Surface Intersections
- Barycentric Coordinates
- Reflection and Transmission
Preview

• Spatial data structures
• Ray tracing optimizations
• Assignment 6 out today
• Assignment 7 out after spring break