Clipping

Line Clipping
Polygon Clipping
Clipping in Three Dimensions
[Angel 8.3-8.7]

March 11, 2003
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/
The Graphics Pipeline, Revisited

- Must eliminate objects outside viewing frustum
- Tied in with projections
 - **Clipping**: object space (eye coordinates)
 - **Scissoring**: image space (pixels in frame buffer)
- Introduce **clipping** in stages
 - 2D (for simplicity)
 - 3D (as in OpenGL)
- In a later lecture: **scissoring**
Transformations and Projections

- Sequence applied in many implementations
 1. Object coordinates to
 2. Eye coordinates to
 3. Clip coordinates to
 4. Normalized device coordinates to
 5. Screen coordinates
Clipping Against a Frustum

• General case of frustum (truncated pyramid)

• Clipping is tricky because of frustum shape
Perspective Normalization

• Solution:
 – Implement perspective projection by perspective normalization and orthographic projection
 – Perspective normalization is a homogeneous tfm.

See [Angel Ch. 5.8]
The Normalized Frustum

- OpenGL uses \(-1 \leq x, y, z \leq 1\) (others possible)
- Clip against resulting cube
- Clipping against programmer-specified planes is different and more expensive
- Often a useful programming device
The Viewport Transformation

- Transformation sequence again:
 1. **Camera**: From object coordinates to eye coords
 2. **Perspective normalization**: to clip coordinates
 3. **Clipping**
 4. **Perspective division**: to normalized device coords.
 5. **Orthographic projection** (setting $z_p = 0$)
 6. **Viewport transformation**: to screen coordinates

- Viewport transformation can distort
- Often in OpenGL: resize callback
Line-Segment Clipping

• General: 3D object against cube
• Simpler case:
 – In 2D: line against square or rectangle
 – Before scan conversion (rasterization)
 – Later: polygon clipping
• Several practical algorithms
 – Avoid expensive line-rectangle intersections
 – Cohen-Sutherland Clipping
 – Liang-Barsky Clipping
 – Many more [see Foley et al.]
Clipping Against Rectangle

- **Line-segment clipping**: modify endpoints of lines to lie within clipping rectangle
- Could calculate intersections of line (segments) with clipping rectangle (expensive)
Cohen-Sutherland Clipping

• Clipping rectangle as intersection of 4 half-planes

\[\text{interior} = \bigcap \begin{align*}
 x > \text{xmin} \\
 x < \text{xmax} \\
 \text{y} < \text{ymax} \\
 \text{y} > \text{ymin}
\end{align*} \]

• Encode results of four half-plane tests
• Generalizes to 3 dimensions (6 half-planes)
Outcodes

• Divide space into 9 regions
• 4-bit outcode determined by comparisons

\[
\begin{align*}
\text{o}_1 &= \text{outcode}(x_1, y_1) \text{ and } \text{o}_2 = \text{outcode}(x_2, y_2) \\
\text{b}_0 &= y > y_{\text{max}} \\
\text{b}_1 &= y < y_{\text{min}} \\
\text{b}_2 &= x > x_{\text{max}} \\
\text{b}_3 &= x < x_{\text{min}}
\end{align*}
\]
Cases for Outcodes

- Outcomes: accept, reject, subdivide

\[\begin{align*}
0_1 = 0_2 = 0000 & : \text{accept} \\
0_1 \& 0_2 \neq 0000 & : \text{reject} \\
0_1 = 0000, \ 0_2 \neq 0000 & : \text{subdiv} \\
0_1 \neq 0000, \ 0_2 = 0000 & : \text{subdiv} \\
0_1 \& 0_2 = 0000 & : \text{subdiv}
\end{align*} \]
Cohen-Sutherland Subdivision

• Pick outside endpoint \((o \neq 0000)\)
• Pick a crossed edge \((o = b_0b_1b_2b_3 \text{ and } b_k \neq 0)\)
• Compute intersection of this line and this edge
• Replace endpoint with intersection point
• Restart with new line segment
 – Outcodes of second point are unchanged
• Must converge (roundoff errors?)
Liang-Barsky Clipping

- Starting point is parametric form
 \[p(\alpha) = (1 - \alpha)p_1 + \alpha p_2, \quad 0 \leq \alpha \leq 1 \]
 \[x(\alpha) = (1 - \alpha)x_1 + \alpha x_2 \]
 \[y(\alpha) = (1 - \alpha)y_1 + \alpha y_2 \]

- Compute four intersections with extended clipping rectangle
- Will see that this can be avoided
Ordering of intersection points

- Order the intersection points
- Figure (a): $1 > \alpha_4 > \alpha_3 > \alpha_2 > \alpha_1 > 0$
- Figure (b): $1 > \alpha_4 > \alpha_2 > \alpha_3 > \alpha_1 > 0$
Liang-Barsky Efficiency Improvements

• Efficiency improvement 1:
 – Compute intersections one by one
 – Often can reject before all four are computed

• Efficiency improvement 2:
 – Equations for α_3, α_2

\[
y_{max} = (1 - \alpha_3)y_1 + \alpha_3 y_2
\]
\[
x_{min} = (1 - \alpha_2)x_1 + \alpha_2 x_2
\]
\[
\alpha_3 = \frac{y_{max} - y_1}{y_2 - y_1}
\]
\[
\alpha_2 = \frac{x_{min} - x_1}{x_2 - x_1}
\]

 – Compare α_3, α_2 without floating-point division
Line-Segment Clipping Assessment

• Cohen-Sutherland
 – Works well if many lines can be rejected early
 – Recursive structure (multiple subdiv) a drawback

• Liang-Barsky
 – Avoids recursive calls (multiple subdiv)
 – Many cases to consider (tedious, but not expensive)
 – Used more often in practice (?)
Outline

• Line-Segment Clipping
 – Cohen-Sutherland
 – Liang-Barsky
• Polygon Clipping
 – Sutherland-Hodgeman
• Clipping in Three Dimensions
Polygon Clipping

- Convert a polygon into **one or more** polygons
- Their union is intersection with clip window
- Alternatively, we can first tessellate concave polygons (OpenGL supported)
Concave Polygons

• **Approach 1:** clip and join to a single polygon

 ![Diagram](a)

 ![Diagram](b)

• **Approach 2:** tesselate and clip triangles

 ![Diagram](c)
Sutherland-Hodgeman I

• Subproblem:
 – Input: polygon (vertex list) and single clip plane
 – Output: new (clipped) polygon (vertex list)

• Apply once for each clip plane
 – 4 in two dimensions
 – 6 in three dimensions
 – Can arrange in pipeline
Sutherland-Hodgeman II

• To clip vertex list (polygon) against half-plane:
 – Test first vertex. Output if inside, otherwise skip.
 – Then loop through list, testing transitions
 • In-to-in: output vertex
 • In-to-out: output intersection
 • out-to-in: output intersection and vertex
 • out-to-out: no output
 – Will output clipped polygon as vertex list

• May need some cleanup in concave case
• Can combine with Liang-Barsky idea
Other Cases and Optimizations

- **Curves and surfaces**
 - Analytically if possible
 - Through approximating lines and polygons otherwise

- **Bounding boxes**
 - Easy to calculate and maintain
 - Sometimes big savings
Outline

• Line-Segment Clipping
 – Cohen-Sutherland
 – Liang-Barsky

• Polygon Clipping
 – Sutherland-Hodgeman

• Clipping in Three Dimensions
Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped
Cohen-Sutherland in 3D

• Use 6 bits in outcode
 – b_4: $z > z_{\text{max}}$
 – b_5: $z < z_{\text{min}}$
• Other calculations as before
Liang-Barsky in 3D

- Add equation \(z(\alpha) = (1- \alpha) z_1 + \alpha z_2 \)
- Solve, for \(p_0 \) in plane and normal \(n \):

\[
p(\alpha) = (1 - \alpha)p_1 + \alpha p_2
\]
\[
n \cdot (p(\alpha) - p_0) = 0
\]

- Yields

\[
\alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}
\]

- Optimizations as for Liang-Barsky in 2D
Perspective Normalization

- Intersection simplifies for orthographic viewing
 - One division only (no multiplication)
 - Other Liang-Barsky optimizations also apply
- Otherwise, use perspective normalization
 - Reduces to orthographic case
 - Applies to oblique and perspective viewing

Normalization of oblique projections
Summary: Clipping

• Clipping line segments to rectangle or cube
 – Avoid expensive multiplications and divisions
 – Cohen-Sutherland or Liang-Barsky

• Clipping to viewing frustum
 – Perspective normalization to orthographic projection
 – Apply clipping to cube from above

• Client-specific clipping
 – Use more general, more expensive form

• Polygon clipping
 – Sutherland-Hodgeman pipeline
Preview and Announcements

• Scan conversion
• Anti-aliasing
• Other pixel-level operations
• Assignment 5 due a week from Thursday!
• Start early!
• Sriram’s office hours now Mon 4:30-6:30
• Movie
• Returning Midterm