Splines

Cubic B-Splines
Nonuniform Rational B-Splines
Rendering by Subdivision
Curves and Surfaces in OpenGL
[Angel, Ch 10.7-10.14]

February 18, 2003
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/
Review

- Cubic polynomial form for curve
 \[p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3 = \sum_{k=0}^{3} c_k u^k \]

- Each \(c_k \) is a column vector \([c_{kx} \ c_{ky} \ c_{kz}]^T\)

- Solve for \(c_k \) given control points

- Interpolation: 4 points

- Hermite curves: 2 endpoints, 2 tangents

- Bezier curves: 2 endpoints, 2 tangent points
Splines

- Approximating more control points

- \(C^0 \) continuity: points match
- \(C^1 \) continuity: tangents (derivatives) match
- \(C^2 \) continuity: curvature matches
- With Bezier segments or patches: \(C^0 \)
B-Splines

- Use 4 points, but approximate only middle two

- Draw curve with overlapping segments
 0-1-2-3, 1-2-3-4, 2-3-4-5, 3-4-5-6, etc.
- Curve may miss all control points
- Smoother at joint points
Cubic B-Splines

- Need $m+2$ control points for m cubic segments
- Computationally 3 times more expensive than simple interpolation
- C^2 continuous at each interior point
- Derive as follows:
 - Consider two overlapping segments
 - Enforce C^0 and C^1 continuity
 - Employ symmetry
 - C^2 continuity follows
Deriving B-Splines

• Consider points
 – \(p_{i-2}, p_{i-1}, p_i, p_{i+1} \)
 – \(p(0) \) approx \(p_{i-1}, p(1) \) approx \(p_i \)
 – \(p_{i-3}, p_{i-2}, p_{i-1}, p_i \)
 – \(q(0) \) approx \(p_{i-2}, q(1) \) approx \(p_{i-1} \)

• Condition 1: \(p(0) = q(1) \)
 – Symmetry: \(p(0) = q(1) = \frac{1}{6}(p_{i-2} + 4p_{i-1} + p_i) \)

• Condition 2: \(p'(0) = q'(1) \)
 – Geometry: \(p'(0) = q'(1) = \frac{1}{2}((p_i - p_{i-1}) + (p_{i-1} - p_{i-2})) = \frac{1}{2}(p_i - p_{i-2}) \)
B-Spline Geometry Matrix

- Conditions at $u = 0$
 - $p(0) = c_0 = \frac{1}{6} (p_{i-2} + 4p_{i-1} + p_i)$
 - $p'(0) = c_1 = \frac{1}{2} (p_i - p_{i-2})$

- Conditions at $u = 1$
 - $p(1) = c_0 + c_1 + c_2 + c_3 = \frac{1}{6} (p_{i-1} + 4p_i + p_{i+1})$
 - $p'(1) = c_1 + 2c_2 + 3c_3 = \frac{1}{2} (p_{i+1} - p_{i-1})$

$$\begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = M_S \begin{bmatrix} p_{i-2} \\ p_{i-1} \\ p_i \\ p_{i+1} \end{bmatrix}, \quad M_S = \frac{1}{6} \begin{bmatrix} 1 & 4 & 1 & 0 \\ -3 & 0 & 3 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$
Blending Functions

- Calculate cubic blending polynomials

\[b(u) = M_S^T u = \frac{1}{6} \begin{bmatrix} (1 - u)^3 \\ 4 - 6u^2 + 3u^3 \\ 1 + 3u + 3u^2 - 3u^3 \\ u^3 \end{bmatrix} \]

- Note symmetries
Convex Hull

- For $0 \leq u \leq 1$, have $0 \leq b_k(u) \leq 1$
- Recall:

 $$p(u) = b_{i-2}(u)p_{i-2} + b_{i-1}(u)p_{i-1} + b_i(u)p_i + b_{i+1}(u)p_{i+1}$$
- So each point $p(u)$ lies in convex hull of p_k
Spline Basis Functions

- Total contribution $B_i(u)p_i$ of p_i is given by

$$B_i(u) = \begin{cases}
0 & u < i - 2 \\
 b_0(u + 2) & i - 2 \leq u < i - 1 \\
 b_1(u + 1) & i - 1 \leq u \leq i \\
 b_2(u) & i \leq u < i + 1 \\
 b_3(u - 1) & i + 1 \leq u < i + 2 \\
0 & i - 2 \leq u
\end{cases}$$
Spline Surface

- As for Bezier patches, use 16 control points
- Start with blending functions

\[p(u, v) = \sum_{i=0}^{3} \sum_{k=0}^{3} b_i(u)b_k(v)p_{ik} \]

- Need 9 times as many splines as for Bezier
Assessment: Cubic B-Splines

- More expensive than Bezier curves or patches
- Smoother at join points
- Local control
 - How far away does a point change propagate?
- Contained in convex hull of control points
- Preserved under affine transformation
- How to deal with endpoints?
 - Closed curves (uniform periodic B-splines)
 - Non-uniform B-Splines (multiplicities of knots)
General B-Splines

- Generalize from cubic to arbitrary order
- Generalize to different basis functions
- Read: [Angel, Ch 10.8]
- Knot sequence $u_{\text{min}} = u_0 \leq \ldots \leq u_n = u_{\text{max}}$
- Repeated points have higher “gravity”
- Multiplicity 4 means point must be interpolated
- $\{0, 0, 0, 0, 1, 2, \ldots, n-1, n, n, n, n\}$ solves boundary problem
Nonuniform Rational B-Splines (NURBS)

- Exploit homogeneous coordinates

\[
p_i = \begin{bmatrix}
x_i \\
y_i \\
z_i \\
\end{bmatrix} \cong w_i \begin{bmatrix}
x_i \\
y_i \\
z_i \\
1 \\
\end{bmatrix} = q_i
\]

- Use perspective division to renormalize

\[
p(u) = \frac{\sum_{i=0}^{n} B_i(u) w_i p_i}{\sum_{i=0}^{n} B_i(u) w_i}
\]

- Each component of \(p(u) \) is rational function of \(u \)
- Points not necessarily uniformly (NURBS)
NURBS Assessment

• Convex-hull and continuity props. of B-splines
• Preserved under perspective transformations
 – Curve with transformed points = transformed curve
• Widely used (including OpenGL)
Outline

• Cubic B-Splines
• Nonuniform Rational B-Splines (NURBS)
• Rendering by Subdivision
• Curves and Surfaces in OpenGL
Rendering by Subdivision

• Divide the curve into smaller subpieces
• Stop when “flat” or at fixed depth
• How do we calculate the sub-curves?
 – Bezier curves and surfaces: easy (next)
 – Other curves: convert to Bezier!
Subdividing Bezier Curves

- Given Bezier curve by \(p_0, p_1, p_2, p_3 \)
- Find \(l_0, l_1, l_2, l_3 \) and \(r_0, r_1, r_2, r_3 \)
- Subcurves should stay the same!
Construction of Bezier Subdivision

• Use algebraic reasoning

• \(l(0) = l_0 = p_0 \)
• \(l(1) = l_3 = p(1/2) = 1/8(p_0 + 3p_1 + 3p_2 + p_3) \)
• \(l'(0) = 3(l_1 - l_0) = p'(0) = 3/2 (p_1 - p_0) \)
• \(l'(1) = 3(l_3 - l_2) = p'(1/2) = 3/8(-p_0 - p_1 + p_2 +p_3) \)
• Note parameter substitution \(v = 2u \) so \(dv = 2du \)
Geometric Bezier Subdivision

• Can also calculate geometrically

\[l_1 = \frac{1}{2}(p_0 + p_1), \quad r_2 = \frac{1}{2}(p_2 + p_3) \]

\[l_2 = \frac{1}{2}(l_1 + \frac{1}{2}(p_1 + p_2)), \quad r_1 = \frac{1}{2}(r_2 + \frac{1}{2}(p_1 + p_2)) \]

\[l_3 = r_0 = \frac{1}{2}(l_2 + r_1), \quad l_0 = p_0, \quad r_3 = p_3 \]
Recall: Bezier Curves

- Recall
 \[u^T = \begin{bmatrix} 1 & u & u^2 & u^3 \end{bmatrix} \]
- Express
 \[p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3 \]
 \[= u^T \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix} = u^T M_B \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{bmatrix} \]
 \[M_B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & -1 \end{bmatrix} \]
Subdividing Other Curves

- Calculations more complex
- Trick: transform control points to obtain identical curve as Bezier curve!
- Then subdivide the resulting Bezier curve
- Bezier: \(p(u) = u^T M_b \ p \)
- Other curve: \(p(u) = u^T M q \), \(M \) geometry matrix
- Solve: \(q = M^{-1} M_b \ p \) with \(p = M_{b^{-1}} M q \)
Example Conversion

• From cubic B-splines to Bezier:

\[M_B^{-1}M_S = \frac{1}{6} \begin{bmatrix}
1 & 4 & 1 & 0 \\
0 & 4 & 2 & 0 \\
0 & 2 & 4 & 0 \\
0 & 1 & 4 & 1
\end{bmatrix} \]

• Calculate Bezier points \(p \) from \(q \)
• Subdivide as Bezier curve
Subdivision of Bezier Surfaces

- Slightly more complicated
- Need to calculate interior point
- Cracks may show with uneven subdivision
- See [Angel, Ch 10.9.4]
Outline

- Cubic B-Splines
- Nonuniform Rational B-Splines (NURBS)
- Rendering by Subdivision
- Curves and Surfaces in OpenGL
Curves and Surface in OpenGL

- Central mechanism is **evaluator**
- Defined by array of control points
- Evaluate coordinates at \(u \) (or \(u \) and \(v \)) to generate vertex
- Define Bezier curve: \(type = \text{GL}_\text{MAP}_\text{VERTEX}_3 \)

 \[
 \text{glMap1f}(type, \, u_0, \, u_1, \, \text{stride}, \, \text{order}, \, \text{point_array})
 \]

- Enable evaluator

 \[
 \text{glEnable}(type)
 \]

- Evaluate Bezier curve

 \[
 \text{glEvalCoord1f}(u)
 \]
Example: Drawing a Bezier Curve

• 4 control points

 GLfloat ctrlpoints[4][3] = {
 {-4.0, -4.0, 0.0}, {-2.0, 4.0, 0.0},
 {2.0, -4.0, 0.0}, {4.0, 4.0, 0.0}};

• Initialize

 void init()
 {
 ...
 glMap1f(GL_MAP1_VERTEX_3, 0.0, 1.0, 3, 4,
 &ctrlpoints[0][0]);
 glEnable(GL_MAP1_VERTEX_3);
 }
Evaluating Coordinates

• Use a fixed number of points, num_points

```c
void display()
{
    glBegin(GL_LINE_STRIP);
    for (i = 0; i <= num_points; i++)
        glEvalCoord1f((GLfloat)i/(GLfloat)num_points);
    glEnd();
    ...
}
```
Drawing the Control Points

• To illustrate Bezier curve

void display()
{
 ...
 glPointSize(5.0);
 glColor3f(1.0, 1.0, 0.0);
 glBegin(GL_POINTS);
 for (i = 0; i < 4; i++)
 glVertex3fv(&ctrlpoints[i][0]);
 glEnd();
 glFlush();
}
Resulting Images

n = 5

n = 20
Beziers Surfaces

• Create evaluator in two parameters u and v

\[
\text{glMap2f(GL_MAP2_VERTEX_3,} \\
u_0, u_1, u\text{_stride, u\text{_order,} } \\
v_0, v_1, v\text{_stride, v\text{_order, point_array});}
\]

• Enable, also automatic calculation of normal

\[
\text{glEnable(GL_MAP2_VERTEX_3);} \\
\text{glEnable(GL_AUTO_NORMAL);}
\]

• Evaluate at parameters u and v

\[
\text{glEvalCoord2f(u, v);} \\
\]
Grids

- Convenience for uniform evaluators
- Define grid ($nu = \text{number of u division}$)
 \[
gl\text{MapGrid2f}(nu, \, u_0, \, u_1, \, nv, \, v_0, \, v_1);
\]
- Evaluate grid
 \[
gl\text{EvalMesh2}(mode, \, i_0, \, i_1, \, k_0, \, k_1);
\]
- $mode = \text{GL_POINT, GL_LINE, or GL_FILL}$
- i and k define subrange
Example: Bezier Surface Patch

- Use 16 control points

 GLfloat ctrlpoints[4][4][3] = {...};

- Initialize 2-dimensional evaluator

 void init(void)
 {
 ...
 glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,
 0, 1, 12, 4, &ctrlpoints[0][0][0]);
 glEnable(GL_MAP2_VERTEX_3);
 glEnable(GL_AUTO_NORMAL);
 glMapGrid2f(20, 0.0, 1.0, 20, 0.0, 1.0);
 }
Evaluating the Grid

- Use full range

```c
void display(void)
{
    ...  
    glPushMatrix();
    glRotatef(85.0, 1.0, 1.0, 1.0);
    glEvalMesh2(GL_FILL, 0, 20, 0, 20);
    glPopMatrix();
    glFlush();
}
```
Resulting Image
NURBS Functions

• Higher-level interface
• Implemented in GLU using evaluators
• Create a NURBS renderer

 theNurb = gluNewNurbsRenderer();
• Set NURBS properties

 gluNurbsProperty(theNurb, GLU_DISPLAY_MODE, GLU_FILL);
 gluNurbsCallback(theNurb, GLU_ERROR, nurbsError);
Displaying NURBS Surfaces

• Specify knot arrays for splines

```c
GLfloat knots[8] = {0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0};
gluBeginSurface(theNurb);
gluNurbsSurface(theNurb,
    8, knots, 8, knots,
    4 * 3, 3, &ctlpoints[0][0][0],
    4, 4, GL_MAP2_VERTEX_3);
gluEndSurface(theNurb);
```

• For more see [Red Book, Ch. 12]
Summary

• Cubic B-Splines
• Nonuniform Rational B-Splines (NURBS)
• Rendering by Subdivision
• Curves and Surfaces in OpenGL
Reminders

- Assignment 3 due Thursday
- Assignment 4 out Thursday
- Midterm will cover curves and surfaces
- Thursday: Pixel Shading (Nvidia guest lecture)