Global Illumination

Classical Radiosity Method

- Divide surfaces into patches
- Model light transfer between patches as system of linear equations
- Important assumptions (so far):
 - Reflection and emission are diffuse
 - No participating media (no fog)
 - No transmission (only opaque surfaces)
 - Radiosity is constant across each patch
 - Solve for R, G, B separately

Radiosity Equation

- For each patch i:
 \[B_i = E_i + \rho_i \sum_j (F_{ij} A_j / A_i) B_j \]
 \[= E_i + \rho_i \sum_j F_{ij} B_j \]

- Variables
 - \(B_i \) = radiosity (unknown)
 - \(E_i \) = emittance of light sources (given)
 - \(\rho_i \) = reflectance (given)
 - \(F_{ij} \) = form factor from i to j (computed)
 fraction of light emitted from patch i arriving at patch j
 - \(A_i \) = area of patch i (computed)

Idealized Radiosity Computation

Outline

- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing
Substructuring
- Radiosity assumed constant across patch
- Impact of number of patches
 - Few: fast, but very inaccurate (blocky)
 - Many: slow \(O(n^2)\), but much more accurate
- Substructuring
 - Introduce elements as a substructure for patches
 - Use adaptively where radiosity varies rapidly
 - Distinguish elements and patches to avoid explosion

Elements vs. Patches
- Analyse transport from patch onto elements
- Do not analyze element-to-element detail
- This means
 - Compute form factors from elements to patches
 - Do not compute form factors from patches to elements
 - Use weighted patch to parent-of-element
 - Complexity \(O(m \cdot n)\) for \(m\) elements, \(n\) patches
- Typically substructured areas
 - Near lights
 - Shadow boundaries

Outline
- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing

Matrix Radiosity Revisited
- Compute all form factors \(F_{ij}\)
- Make initial approximation to radiosity
 - Emitting elements \(B_i = E_i\)
 - Other elements \(B_i = 0\)
- Apply equation to get next approximation
 \[B_i^{(l)} = E_i + \sum_j F_{ij}B_j \]
- Iterate with new approximation
- Intuitively
 - Gather incoming light for each element \(i\)
 - Base new estimate on previous estimate

Progressive Refinement
- Shoot light instead of gathering light
- Basic algorithm
 - Initialize emitting element with \(B_i = E_i\)
 - Initialize others with with \(B_i = 0\)
 - Pick source \(i\) (start with brightest)
 - Using hemicube around source, calculate \(F_{ij}\)
 - For each \(j \neq i\), approximate \(B_j^{(l)} = \rho_j B_i F_{ij} (A_i / A_j)\)
 - Pick next source \(i\) and iterate until convergence
- Each iteration is \(O(n)\)
- May or may not keep \(F_{ij}\) after each iteration

Progressive Refinement Corrected
- Problem: double-count if source is used more than once as source
- Solution: compute and use difference from last time a patch was used as a source (\(\Delta B_i\))
 - Initialize \(\Delta B_i, B_i = E_i\)
 - Pick source \(i\) with maximum unshot power
 - Using hemicube, calculate \(F_{ij}\) for each \(j\)
 - \(\Delta R = \rho_i \Delta B_i F_{ij} (A_i / A_j)\)
 - \(B_i = B_i + \Delta R\)
 - \(\Delta B_i = \Delta B_i + \Delta R\)
 - \(\Delta B_i = 0\)
Some Special Cases
- Image after we have iterated through all light sources?
 - Shadows, but no interreflections
- Can incrementally display image while iterating
 - Add ambient light at each stage for visibility
 - Ambient shading if progressively refined
- Incremental form factor computation

Radiosity Algorithms Summary
- Matrix radiosity algorithm
 - Pre-compute all form factors
 - Iterative solution (Gauss-Seidel)
 - Start with emission
 - Each object gathers light from all other objects
- Progressive refinement
 - Pick brightest patch
 - Compute outgoing form factors
 - Shoot light from this patch to all other patches
 - Repeat for next brightest batch
- Combine substructuring and progressive refnt.

Outline
- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing

Bidirectional Reflectance Distribution
- General model of light reflection
- Hemispherical function
- 6-dimensional (location, 4 angles, wavelength)

\[
f(\omega_i \rightarrow \omega_f) = \frac{L_i(\omega_i)}{L_i(\omega_i) \cos \theta_i} \, \cos \theta_f \, d\omega_i
\]

BRDF Examples
- Measure BRDFs for different materials

Material Examples
Marschner et al. 2000

Fig. 16. Assumed scattering diagram of the BRF measurements of two patches: a blue-colored (top row) and a red automotive lacquer (bottom row). The RGB color measurements are shown from left to right.
BRDF Isotropy

- Rotation invariance of BRDF
- Reduces 4 angles to 2
- Holds for a wide variety of surfaces
- Anisotropic materials
 - Brushed metal
 - Others?
- How many parameters for
 - Ideal specular?
 - Ideal diffuse?

Subsurface Light Transport

- Jensen et al. 2001

Outline

- Substructuring
- Progressive Refinement
- Bidirectional Reflectance Distribution Function
- Combining Radiosity and Ray Tracing

Light Transport and Global Illumination

- Diffuse to diffuse
- Diffuse to specular
- Specular to diffuse
- Specular to specular
- Ray tracing (viewer dependent)
 - Light to diffuse
 - Specular to specular
- Radiosity (viewer independent)
 - Diffuse to diffuse
- Inherent limitations

Specular Radiosity

- Diffuse radiosity
 - Light reflected equally in all directions
 - Relationship between patches limited to form factor
- Specular radiosity
 - Retain viewer independence (unlike ray tracing)
 - Light reflected differently in different directions
 - For each source and each direction, need to calculate interaction
 - Not practical

Two-Pass Approach

- View-dependent specular is tractable
- View-independent diffuse is tractable
- First pass view independent
 - Enhanced radiosity
- Second pass is view dependent
 - Enhanced ray tracing
Pass 1: Enhanced Radiosity

• Diffuse transmission (translucent surfaces)
 – Backwards diffuse form factor
• Specular transmission
 – Extended form factor computation
 – Consider occluding translucent surfaces
 – Window form factor
• Specular reflection
 – Create “virtual” (mirror-image) environment
 – Use specular transmission technique
 – Mirror form factor

Pass 1 Result

• Account only for one specular reflection between surfaces (diffuse-specular-diffuse)
• Accurate diffuse component
• Solve enhanced radiosity equation as before
• Viewer independent solution

Pass 2: Enhanced Ray Tracing

• Classical ray tracing
 – Specular to specular light transport
• For diffuse-to-specular transport:
 – Should integrate incoming light over hemisphere
 – Approximate by using small frustum in direction of ideal reflection
 – Use radiosity of pixels calculated in Pass 1
 – Apply recursively if visible surface is specular

Two-Pass Global Illumination

• Still several approximating assumptions
• Appropriate for scenes with few specular reflecting or transmitting surfaces
• More expensive than already expensive methods
• Photon Mapping: another two-pass algorithm

Two-Pass Radiosity Example

Photon Mapping Example Jensen 1996
Summary

• Substructuring
• Progressive Refinement
• Bidirectional Reflectance Distribution Function
• Combining Radiosity and Ray Tracing

Preview

• Tuesday: Scientific Visualization