Local vs. Global Illumination

- Local illumination: Phong model (OpenGL)
 - Light to surface to viewer
 - No shadows, interreflections
 - Fast enough for interactive graphics

- Global illumination: Ray tracing
 - Multiple specular reflections and transmissions
 - Only one step of diffuse reflection

- Global illumination: Radiosity
 - All diffuse interreflections; shadows
 - Advanced: combine with specular reflection

Outline

- Measures of Illumination
- The Radiosity Equation
- Form Factors
- Radiosity Algorithms

Solid Angle

- 2D angle subtended by object O from point x:
 - Length of projection onto unit circle at x
 - Measured in radians (0 to 2π)

- 3D solid angle subtended by O from point x:
 - Area of projection onto unit sphere at x
 - Measured in steradians (0 to 4π)
Radiant Power and Radiosity

- Radiant power P
 - Rate at which light energy is transmitted
 - Dimension: $\text{power} = \text{energy} / \text{time}$
- Flux density Φ
 - Radiant power per unit area of the surface
 - Dimension: $\text{power} / \text{area}$
- Irradiance E: incident flux density of surface
- Radiosity B: exitant flux density of surface
 - Dimension: $\text{power} / \text{area}$
- Flux density at a point $\Phi(x) = \frac{dP}{dx}$

Power at Point in a Direction

- Radiant intensity I
 - Power radiated per unit solid angle by point source
 - Dimension: $\text{power} / \text{solid angle}$
- Radiant intensity in direction ω
 - $I(\omega) = \frac{dP}{d\omega}$
- Radiance $L(x, \omega)$
 - Flux density at point x in direction ω
 - Dimension: $\text{power} / (\text{area} \times \text{solid angle})$

Radiance

- Measured across surface in direction ω

$$L(x, \omega) = \frac{d^2P}{d\omega \, dx} = \frac{d^2P}{d\omega \, \cos \theta \, dx}$$

Radiosity and Radiance

- Radiosity $B(x) = \frac{dP}{dx}$
- Radiance $L(x, \omega) = \frac{d^2P}{d\omega \, \cos \theta \, dx}$
- Let Ω be set of all directions above x

$$\overline{B}(x) = \int_{\Omega} L(x, \omega) \cos \theta \, d\omega$$

Outline

- Measures of Illumination
- The Radiosity Equation
- Form Factors
- Radiosity Algorithms

Balance of Energy

- Lambertian surfaces (ideal diffuse reflector)
- Divided into n elements
- Variables
 - A_i: Area of element i (computable)
 - B_i: Radiosity of element i (unknown)
 - E_i: Radiant emitted flux density of element i (given)
 - ρ_i: Reflectance of element i (given)
 - F_{ij}: Form factor from j to i (computable)

$$A_i B_i = A_j E_j + \rho_i \sum_{j=1}^{n} F_{ji} A_j B_j$$
Form Factors

- Form factor F_{ij}: Fraction of light leaving element i arriving at element j
- Depends on
 - Shape of patches i and j
 - Relative orientation of both patches
 - Distance between patches
 - Occlusion by other patches

Form Factor Equation

- Polar angles θ and θ' between normals and ray between x and y
- Visibility function $v(x,y) = 0$ if ray from x to y is occluded, $v(x,y) = 1$ otherwise
- Distance r between x and y

\[A_i F_{ij} = \int_{x \in P_i} \int_{y \in P_j} \frac{\cos \theta \cos \theta'}{\pi r^2} v(x,y) \, dy \, dx \]

Reciprocity

- Symmetry of form factor

\[A_i F_{ij} = \int_{x \in P_i} \int_{y \in P_j} \frac{\cos \theta \cos \theta'}{\pi r^2} v(x,y) \, dy \, dx = A_j F_{ji} \]

- Divide earlier radiosity equation

\[A_i B_i = A_i E_i + \rho_i \sum_{j=1}^{n} F_{ij} A_i B_j \]

by A_i

\[B_i = E_i + \rho_i \sum_{j=1}^{n} (F_{ij} A_j / A_i) B_j \]

Radiosity as a Linear System

- Restate radiosity equation $B_i - \rho_i \sum_{j} F_{ij} B_j = E_i$
- In matrix form

\[
\begin{bmatrix}
1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & -\rho_1 F_{1n} \\
-\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & -\rho_2 F_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_n F_{n1} & -\rho_n F_{n2} & \cdots & 1 - \rho_n F_{nn}
\end{bmatrix}
\begin{bmatrix}
B_1 \\
B_2 \\
\vdots \\
B_n
\end{bmatrix}
= \begin{bmatrix}
E_1 \\
E_2 \\
\vdots \\
E_n
\end{bmatrix}
\]

- Known: reflectances ρ_i, form factors F_{ij}, emissions E_i
- Unknown: Radiosities B_i
- n linear equations in n unknowns

Radiosity "Pipeline"

Visualization

- Radiosity solution is viewer independent
- Can exploit graphics hardware to obtain image
- Convert color on patch to vertex color
- Easy part of radiosity method
Outline

- Measures of Illumination
- The Radiosity Equation
- Form Factors
- Radiosity Algorithms

Computing Form Factors

- Visibility critical
- Two principal methods
 - Hemicube: exploit z-buffer hardware
 - Ray casting (can be slow)
- Both exhibit aliasing effects
- For inter-visible elements
 - Many special cases can be solved analytically
 - Avoid full numeric approximation of double integral

Hemicube Algorithm

- Render model onto a hemicube as seen from the center of a patch
- Store patch identifiers j instead of color
- Use z-buffer to resolve visibility
- Efficiently implementable in hardware
- Examples of antialiasing [Chandran et al.]

Wireframe

Classical, No Intensity Interpolation

Antialiasing, No Intensity Interpolation
Radiosity Equation Revisited

- Direct form
 \[B_i = E_i + \rho_i \sum_j F_{ij} B_j \]

- As matrix equation
 \[
 \begin{bmatrix}
 1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & -\rho_1 F_{1n} \\
 -\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & -\rho_2 F_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 -\rho_n F_{n1} & -\rho_n F_{n2} & \cdots & 1 - \rho_n F_{nn}
 \end{bmatrix}
 \begin{bmatrix}
 B_1 \\
 B_2 \\
 \vdots \\
 B_n
 \end{bmatrix}
 =
 \begin{bmatrix}
 E_1 \\
 E_2 \\
 \vdots \\
 E_n
 \end{bmatrix}
 \]

- Unknown: radiosity \(B_i \)
- Known: emission \(E_i \), form factor \(F_{ij} \), reflect. \(\rho_i \)

Classical Radiosity Algorithms

- Matrix Radiosity
 - Diagonally dominant matrix
 - Use Gauss-Seidel iterative solution
 - Time and space complexity is \(O(n^2) \) for \(n \) elements
 - Memory cost excessive

- Progressive Refinement Radiosity
 - Solve equations incrementally with form factors
 - Time complexity is \(O(n \cdot s) \) for \(s \) iterations
 - Used more commonly (space complexity \(O(n) \))

Matrix Radiosity

- Compute all form factors \(F_{ij} \)
- Make initial approximation to radiosity
 - Emitting elements \(B_i = E_i \)
 - Other elements \(B_i = 0 \)
- Apply equation to get next approximation
 \[B_i' = E_i + \rho_i \sum_j F_{ij} B_j \]
- Iterate with new approximation
- Intuitively
 - Gather incoming light for each element \(i \)
 - Base new estimate on previous estimate

Radiosity Summary

- Assumptions
 - Opaque Lambertian surfaces (ideal diffuse)
 - Radiosity constant across each element

- Radiosity computation structure
 - Break scene into patches
 - Compute form factors between patches
 - Lighting independent
 - Solve linear radiosity equation
 - Viewer independent
 - Render using standard hardware
Lecture Summary

• Measures of Illumination
• The Radiosity Equation
• Form Factors
• Radiosity Algorithms

Preview

• Next Lecture
 – Radiosity refinements
 – Combining ray tracing and radiosity
• Assignment 7 (Ray Tracer) due April 24
• Different from OpenGL programming (150 pts)