Blending

- Frame buffer
 - Simple color model: R, G, B; 8 bits each
 - α-channel A, another 8 bits
- Alpha determines opacity, pixel-by-pixel
 - $\alpha = 1$: opaque
 - $\alpha = 0$: transparent
- Blend translucent objects during rendering
- Achieve other effects (e.g., shadows)

Image Compositing

- Compositing operation
 - Source: $s = [s_r, s_g, s_b, s_a]$
 - Destination: $d = [d_r, d_g, d_b, d_a]$
 - $b = [b_r, b_g, b_b]$ source blending factors
 - $c = [c_r, c_g, c_b, c_a]$ destination blending factors
 - $d' = [b_r s_r + c_r d_r, b_g s_g + c_g d_g, b_b s_b + c_b d_b, b_a s_a + c_a d_a]$
 - Overlay n images with equal weight
 - Set α-value for each pixel in each image to $1/n$
 - Source blending factor is "α"
 - Destination blending factor is "1"

Blending in OpenGL

- Enable blending
  ```c
  glEnable(GL_BLEND);
  glBlendFunc(source_factor, dest_factor);
  ```
- Set up source and destination factors
  ```c
  glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
  ```
- Source and destination choices
 - GL_ONE, GL_ZERO
 - GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
 - GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA

Blending Errors

- Operations are not commutative
- Operations are not idempotent
- Interaction with hidden-surface removal
 - Polygon behind opaque one should be culled
 - Translucent in front of others should be composited
 - Solution: make z-buffer read-only for translucent polygons with `glDepthMask(GL_FALSE);`

Antialiasing Revisited

- Single-polygon case first
- Set α-value of each pixel to covered fraction
- Use destination factor of "$1 - \alpha$"
- Use source factor of "α"
- This will blend background with foreground
- Overlaps can lead to blending errors
Antialiasing with Multiple Polygons

- Initially, background color C_0, $\alpha_0 = 0$
- Render first polygon; color C_1, fraction α_1
 - $C_2 = (1 - \alpha_1)C_0 + \alpha_1C_1$
 - $\alpha_2 = \alpha_1$
- Render second polygon; assume fraction α_2
 - If no overlap (a), then
 - $C'_d = (1 - \alpha_2)C_d + \alpha_2C_2$
 - $\alpha'_d = \alpha_1 + \alpha_2$

Antialiasing with Overlap

- Now assume overlap (b)
- Average overlap is $\alpha_1\alpha_2$
- So $\alpha_d = \alpha_1 + \alpha_2 - \alpha_1\alpha_2$
- Make front/back decision for color as usual

Antialiasing in OpenGL

- Avoid explicit α-calculation in program
- Enable both smoothing and blending
 - `glEnable(GL_POINT_SMOOTH);`
 - `glEnable(GL_LINE_SMOOTH);`
 - `glEnable(GL_BLEND);`
 - `glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);`

Outline

- Blending
- Display Color Models
- Filters
- Dithering
- Image Compression

Displays and Framebuffers

- Image stored in memory as 2D pixel array, called framebuffer
- Value of each pixel controls color
- Video hardware scans the framebuffer at 60Hz
- Depth of framebuffer is information per pixel
 - 1 bit: black and white display (cf. Smithsonian)
 - 8 bit: 256 colors at any given time via colormap
 - 16 bit: 5, 6, 5 bits (R,G,B), $2^{16} = 65,536$ colors
 - 24 bit: 8, 8, 8 bits (R,G,B), $2^{24} = 16,777,216$ colors

Fewer Bits: Colormaps

- Colormaps typical for 8 bit framebuffer depth
- With screen $1024 \times 768 = 786432 = 0.75$ MB
- Each pixel value is index into colormap
- Colormap is array of RGB values, 8 bits each
- All 2^{24} colors can be represented
- Only $2^8 = 256$ at a time
- Poor approximation of full color
- Who owns the colormap?
- Colormap hacks: affect image w/o changing framebuffer (only colormap)
More Bits: Graphics Hardware

- 24 bits: RGB
- + 8 bits: A (α-channel for opacity)
- + 16 bits: Z (for hidden-surface removal)
- * 2: double buffering for smooth animation
- = 96 bits
- For 1024 * 768 screen: 9 MB

Image Processing

- 2D generalization of signal processing
- Image as a two-dimensional signal
- Point processing: modify pixels independently
- Filtering: modify based on neighborhood
- Compositing: combine several images
- Image compression: space-efficient formats
- Other topics (not in this course)
 - Image enhancement and restoration
 - Computer vision

Outline

- Blending
- Display Color Models
- Filters
- Dithering
- Image Compression

Point Processing

- Input: a(x,y); Output: b(x,y) = f(a(x,y))
- Useful for contrast adjustment, false colors
- Examples for grayscale, \(0 \leq v \leq 1\)
 - \(f(v) = v\) (identity)
 - \(f(v) = 1-v\) (negate image)
 - \(f(v) = v^p\), \(p < 1\) (brighten)
 - \(f(v) = v^p\), \(p > 1\) (darken)
- Gamma correction compensates monitor brightness loss

Gamma Correction Example

\[
\begin{align*}
\Gamma = 1.0; & \quad f(v) = v \\
\Gamma = 0.5; & \quad f(v) = v^{0.5} = v^{1/2} \\
\Gamma = 2.0; & \quad f(v) = v^{1/2} = v^{0.5}
\end{align*}
\]

Signals and Filtering

- Audio recording is 1D signal: amplitude(t)
- Image is a 2D signal: color(x,y)
- Signals can be continuous or discrete
- Raster images are discrete
 - In space: sampled in x, y
 - In color: quantized in value
- Filtering: a mapping from signal to signal

Outline

- Blending
- Display Color Models
- Filters
- Dithering
- Image Compression

Gamma Correction Example

\[
\begin{align*}
\Gamma = 1.0; & \quad f(v) = v \\
\Gamma = 0.5; & \quad f(v) = v^{0.5} = v^{1/2} \\
\Gamma = 2.0; & \quad f(v) = v^{1/2} = v^{0.5}
\end{align*}
\]

Signals and Filtering

- Audio recording is 1D signal: amplitude(t)
- Image is a 2D signal: color(x,y)
- Signals can be continuous or discrete
- Raster images are discrete
 - In space: sampled in x, y
 - In color: quantized in value
- Filtering: a mapping from signal to signal
Linear and Shift-Invariant Filters

- Linear with respect to input signal
- Shift-invariant with respect to parameter
- Convolution in 1D
 - $a(t)$ is input signal
 - $b(s)$ is output signal
 - $h(u)$ is filter
 - Shorthand: $b = a \ast h$ (as an aside)
- Convolution in 2D
 $$b(x, y) = \sum_{u=-\infty}^{+\infty} \sum_{v=-\infty}^{+\infty} a(u, v) h(x-u, y-v)$$

Filters with Finite Support

- Filter $h(u, v)$ is 0 except in given region
- Represent h in form of a matrix
- Example: 3×3 blurring filter
 $$b(x, y) = \frac{1}{9} \left(a(x-1, y-1) + a(x+1, y-1) + a(x+1, y+1) + a(x-1, y+1) + a(x, y) + a(x-1, y) + a(x+1, y) + a(x, y+1) + a(x, y+1) + a(x+1, y+1) + a(x, y+1) \right)$$
- As function
 $$h(u, v) = \begin{cases} 1/9 & \text{if } -1 \leq u, v \leq 1 \\ 0 & \text{otherwise} \end{cases}$$
- In matrix form
 $$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Blurring Filters

- Average values of surrounding pixels
- Can be used for anti-aliasing
- Size of blurring filter should be odd
- What do we do at the edges and corners?
 - For noise reduction, use median, not average
 - Eliminates intensity spikes
 - Non-linear filter

Examples of Blurring Filter

Pictures have been removed for printing purposes due to a PowerPoint bug

Example Noise Reduction

Pictures have been removed for printing due to a PowerPoint bug

Edge Filters

- Discover edges in image
- Characterized by large gradient
 $$\nabla a = \left[\frac{\partial a}{\partial x}, \frac{\partial a}{\partial y} \right], \quad |\nabla a| = \sqrt{\left(\frac{\partial a}{\partial x} \right)^2 + \left(\frac{\partial a}{\partial y} \right)^2}$$
- Approximate square root
 $$|\nabla a| \approx \sqrt{\frac{\partial a}{\partial x} + \frac{\partial a}{\partial y}}$$
- Approximate partial derivatives, e.g.
 $$\frac{\partial a}{\partial x} \approx a(x+1) - a(x-1)$$

Examples of Blurring Filter

- Original Image
- Image with noise
- Median filter (5x57)
Sobel Filter

- Edge detection filter, with some smoothing
- Approximate

\[
\frac{\partial}{\partial x} \approx \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}, \quad \frac{\partial}{\partial y} \approx \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}
\]

- Sobel filter is non-linear
 - Square and square root (more exact computation)
 - Absolute value (faster computation)

Sample Filter Computation

- Part of Sobel filter, detects vertical edges

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Example of Edge Filter

Images have been removed due to a PowerPoint bug

Outline

- Blending
- Display Color Models
- Filters
- Dithering
- Image Compression

Dithering

- Compensates for lack of color resolution
- Give up spatial resolution for color resolution
- Eye does spatial averaging
- Black/white dithering to achieve gray scale
 - Each pixel is black or white
 - From far away, color determined by fraction of white
 - For 3x3 block, 10 levels of gray scale

Halftone Screens

- Regular patterns create some artefacts
 - Avoid stripes
 - Avoid isolated pixels (e.g. on laser printer)
 - Monotonicity: keep pixels on at higher intensities
- Example of good 3x3 dithering matrix
 - For intensity n, turn on pixels 0..n-1
Floyd-Steinberg Error Diffusion

• Approximation without fixed resolution loss
• Scan in raster order
• At each pixel, draw least error output value
• Divide error into 4 different fractions
• Add the error fractions into adjacent, unwritten pixels

Floyd-Steinberg Example

Gray Scale Ramp

• Some worms
• Some checkerboards
• Enhance edges

Peter Anderson

Color Dithering

• Example: 8 bit framebuffer
 – Set color map by dividing 8 bits into 3,3,2 for RGB
 – Blue is deemphasized since we see it less well
• Dither RGB separately
 – Works well with Floyd-Steinberg
• Assemble results into 8 bit index into colormap
• Generally looks good

Outline

• Blending
• Display Color Models
• Filters
• Dithering
• Image Compression

Image Compression

• Exploit redundancy
 – Coding: some pixel values more common
 – Interpixel: adjacent pixels often similar
 – Psychovisual: some color differences imperceptible
• Distinguish lossy and lossless methods

Some Image File Formats

<table>
<thead>
<tr>
<th>Depth</th>
<th>File Size</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPEG</td>
<td>24</td>
<td>Small</td>
</tr>
<tr>
<td>TIFF</td>
<td>6, 24</td>
<td>Medium</td>
</tr>
<tr>
<td>GIF</td>
<td>1, 4, 8</td>
<td>Medium</td>
</tr>
<tr>
<td>PPM</td>
<td>24</td>
<td>Easy to read/write</td>
</tr>
<tr>
<td>EPS</td>
<td>1, 2, 4, 8, 24</td>
<td>Huge</td>
</tr>
</tbody>
</table>

Comments

- File Size: Small, Medium, Big
- Depth: 1, 4, 8, 24
- Lossy compression, Good general purpose, Popular, but 8 bit, Good for printing
Image Sizes

- 1024*1024 at 24 bits uses 3 MB
- Encyclopedia Britannica at 300 pixels/inch and 1 bit/pixels requires 25 gigabytes (25K pages)
- 90 minute movie at 640x480, 24 bits per pixels, 24 frames per second requires 120 gigabytes
- Applications: HDTV, DVD, satellite image transmission, medical image processing, fax, ...

Exploiting Coding Redundancy

- Not limited to images (text, other digital info)
- Exploit nonuniform probabilities of symbols
- Entropy as measure of information content
 \[H = -\sum \text{Prob}(s_i) \log_2 (\text{Prob}(s_i)) \]
 - If source is independent random variable need \(H \) bits
- Idea:
 - More frequent symbols get shorter code strings
 - Best with high redundancy (= low entropy)
- Common algorithms
 - Huffman coding
 - LZW coding (gzip)

Huffman Coding

- Codebook is precomputed and static
 - Use probability of each symbol to assign code
 - Map symbol to code
 - Store codebook and code sequence
- Precomputation is expensive
- What is "symbol" for image compression?

Lempel-Ziv-Welch (LZW) Coding

- Compute codebook on the fly
- Fast compression and decompression
- Can tune various parameters
- Both Huffman and LZW are lossless

Exploiting Interpixel Redundancy

- Neighboring pixels are correlated
- Spatial methods for low-noise image
 - Run-length coding:
 - Alternate values and run-length
 - Good if horizontal neighbors are same
 - Can be 1D or 2D (e.g. used in fax standard)
 - Quadtree:
 - Recursively subdivide until cells are constant color
 - Represent boundary curves of color-constant regions
- Combine methods
- Not good on natural images directly

Improving Noise Tolerance

- Predictive coding:
 - Predict next pixel based on prior ones
 - Output difference to actual
- Fractal image compression
 - Describe image via recursive affine transformation
- Transform coding
 - Exploit frequency domain
 - Example: discrete cosine transform (DCT)
 - Used in JPEG
- Transform coding for lossy compression
Discrete Cosine Transform

- Used for lossy compression (as in JPEG)

\[F(u, v) = c(u)c(v) \sum_{x} \sum_{y} f(x, y) \cos \left(\frac{2x+1}{2N} \pi \right) \cos \left(\frac{2y+1}{2N} \pi \right) \]

where \(c(x) = 1/\sqrt{N} \) if \(x = 0 \), \(c(x) = \sqrt{2/N} \) otherwise.

- JPEG (Joint Photographic Expert Group)
 - Subdivide image into \(n \times n \) blocks (\(n = 8 \))
 - Apply discrete cosine transform for each block
 - Quantize, zig-zag order, run-length code coefficients
 - Use variable length coding (e.g. Huffman)

- Many natural images can be compressed to 4 bits/pixels with little visible error

Summary

- Display Color Models
 - 8 bit (colormap), 24 bit, 96 bit

- Filters
 - Blur, edge detect, sharpen, despeckle

- Dithering
 - Floyd-Steinberg error diffusion

- Image Compression
 - Coding, interpixel, psychovisual redundancy
 - Lossless vs. lossy compression

Preview

- Assignment 5 due Thursday
- Assignment 6 out Thursday
- Thursday: Ray Tracing