Clipping

The Graphics Pipeline, Revisited

- Must eliminate objects outside viewing frustum
- Tied in with projections
 - Clipping: object space (eye coordinates)
 - Scissoring: image space (pixels in frame buffer)
- Introduce clipping in stages
 - 2D (for simplicity)
 - 3D (as in OpenGL)
- In a later lecture: scissoring

Transformations and Projections

- Sequence applied in many implementations
 1. Object coordinates to
 2. Eye coordinates to
 3. Clip coordinates to
 4. Normalized device coordinates to
 5. Screen coordinates

Clipping Against a Frustum

- General case of frustum (truncated pyramid)
- Clipping is tricky because of frustum shape

Perspective Normalization

- Solution:
 - Implement perspective projection by perspective normalization and orthographic projection
 - Perspective normalization is a homogeneous tmf.

The Normalized Frustum

- OpenGL uses $-1 \leq x,y,z \leq 1$ (others possible)
- Clip against resulting cube
- Clipping against programmer-specified planes is different and more expensive
- Often a useful programming device
The Viewport Transformation

- Transformation sequence again:
 1. Camera: From object coordinates to eye coords
 2. Perspective normalization: to clip coordinates
 3. Clipping
 4. Perspective division: to normalized device coords.
 5. Orthographic projection (setting \(z_p = 0 \))
 6. Viewport transformation: to screen coordinates
- Viewport transformation can distort
- Often in OpenGL: resize callback

Line-Segment Clipping

- General: 3D object against cube
- Simpler case:
 - In 2D: line against square or rectangle
 - Before scan conversion (rasterization)
 - Later: polygon clipping
- Several practical algorithms
 - Avoid expensive line-rectangle intersections
 - Cohen-Sutherland Clipping
 - Liang-Barsky Clipping
 - Many more [see Foley et al.]

Clipping Against Rectangle

- Line-segment clipping: modify endpoints of lines to lie within clipping rectangle
- Could calculate intersections of line (segments) with clipping rectangle (expensive)

Cohen-Sutherland Clipping

- Clipping rectangle as intersection of 4 half-planes
- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)

Outcodes

- Divide space into 9 regions
- 4-bit outcode determined by comparisons

\[
\begin{array}{c|c|c|c}
 0100 & 0101 & 0110 & 1000 \\
 y_{\text{max}} & 0 & 1 & 0 \\
 0001 & 0000 & 0010 & 1001 \\
 y_{\text{min}} & 1 & 0 & 0 \\
 0100 & 0110 & 0101 & 0100 \\
 x_{\text{min}} & 0 & 0 & 1 \\
 0001 & 0010 & 0000 & 0001 \\
 x_{\text{max}} & 0 & 1 & 0
\end{array}
\]

- \(o_1 = \text{outcode}(x_1, y_1) \) and \(o_2 = \text{outcode}(x_2, y_2) \)

Cases for Outcodes

- Outcomes: accept, reject, subdivide

\[
\begin{array}{c|c|c|c|c}
 0001 & 0100 & 1000 & 1010 \\
 y_{\text{max}} & 0 & 0 & 0 \\
 0001 & 0000 & 0010 & 1001 \\
 y_{\text{min}} & 0 & 0 & 0 \\
 0100 & 1000 & 0110 & 0110 \\
 x_{\text{min}} & 0 & 0 & 0 \\
 0001 & 0010 & 0000 & 0001 \\
 x_{\text{max}} & 0 & 0 & 0
\end{array}
\]

- \(o_1 = o_2 = 0000: \text{accept} \)
- \(o_1 \land o_2 \neq 0000: \text{reject} \)
- \(o_1 = 0000, o_2 \neq 0000: \text{subdiv} \)
- \(o_1 \neq 0000, o_2 = 0000: \text{subdiv} \)
- \(o_1 \land o_2 = 0000: \text{subdiv} \)
Cohen-Sutherland Subdivision

- Pick outside endpoint (o ≠ 0000)
- Pick a crossed edge (o = b_0b_1b_2b_3 and b_k ≠ 0)
- Compute intersection of this line and this edge
- Replace endpoint with intersection point
- Restart with new line segment
 - Outcodes of second point are unchanged
- Must converge (roundoff errors?)

Liang-Barsky Clipping

- Starting point is parametric form

 \[
 p(\alpha) = (1 - \alpha)p_1 + \alpha p_2, \quad 0 \leq \alpha \leq 1
 \]

 \[
 x(\alpha) = (1 - \alpha)x_1 + \alpha x_2
 \]

 \[
 y(\alpha) = (1 - \alpha)y_1 + \alpha y_2
 \]

- Compute four intersections with extended clipping rectangle
- Will see that this can be avoided

Ordering of intersection points

- Order the intersection points
- Figure (a): 1 > \alpha_4 > \alpha_3 > \alpha_2 > \alpha_1 > 0
- Figure (b): 1 > \alpha_4 > \alpha_2 > \alpha_3 > \alpha_1 > 0

Liang-Barsky Efficiency Improvements

- Efficiency improvement 1:
 - Compute intersections one by one
 - Often can reject before all four are computed
- Efficiency improvement 2:
 - Equations for \(\alpha_3, \alpha_2 \)

 \[
 \alpha_3 = \frac{y_{\text{max}} - y_1}{y_2 - y_1}, \quad \alpha_2 = \frac{x_{\text{max}} - x_1}{x_2 - x_1}
 \]
 - Compare \(\alpha_3, \alpha_2 \) without floating-point division

Line-Segment Clipping Assessment

- Cohen-Sutherland
 - Works well if many lines can be rejected early
 - Recursive structure (multiple subdiv) a drawback
- Liang-Barsky
 - Avoids recursive calls (multiple subdiv)
 - Many cases to consider (tedious, but not expensive)
 - Used more often in practice (?)
Polygon Clipping

- Convert a polygon into one or more polygons
- Their union is intersection with clip window
- Alternatively, we can first tessellate concave polygons (OpenGL supported)

Concave Polygons

- Approach 1: clip and join to a single polygon
- Approach 2: tessellate and clip triangles

Sutherland-Hodgeman I

- Subproblem:
 - Input: polygon (vertex list) and single clip plane
 - Output: new (clipped) polygon (vertex list)
- Apply once for each clip plane
 - 4 in two dimensions
 - 6 in three dimensions
 - Can arrange in pipeline

Sutherland-Hodgeman II

- To clip vertex list (polygon) against half-plane:
 - Test first vertex. Output if inside, otherwise skip.
 - Then loop through list, testing transitions
 - In-to-in: output vertex
 - In-to-out: output intersection
 - Out-to-in: output intersection and vertex
 - Out-to-out: no output
 - Will output clipped polygon as vertex list
- May need some cleanup in concave case
- Can combine with Liang-Barsky idea

Other Cases and Optimizations

- Curves and surfaces
 - Analytically if possible
 - Through approximating lines and polygons otherwise
- Bounding boxes
 - Easy to calculate and maintain
 - Sometimes big savings

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions
Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped

\[
\begin{align*}
&x_2, y_2, z_2 \\
&x_1, y_1, z_1 \\
&x_3, y_3, z_3
\end{align*}
\]

Cohen-Sutherland in 3D

- Use 6 bits in outcode
 - \(b_4\): \(z > z_{\text{max}}\)
 - \(b_5\): \(z < z_{\text{min}}\)
- Other calculations as before

Liang-Barsky in 3D

- Add equation \(z(\alpha) = (1 - \alpha) z_1 + \alpha z_2\)
- Solve, for \(p_0\) in plane and normal \(n\):
 \[
 p(\alpha) = (1 - \alpha)p_1 + \alpha p_2 \\
 n \cdot (p(\alpha) - p_0) = 0
 \]
- Yields
 \[
 \alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}
 \]
- Optimizations as for Liang-Barsky in 2D

Perspective Normalization

- Intersection simplifies for orthographic viewing
 - One division only (no multiplication)
- Otherwise, use perspective normalization
 - Reduces to orthographic case
 - Applies to oblique and perspective viewing

Summary: Clipping

- Clipping line segments to rectangle or cube
 - Avoid expensive multiplications and divisions
 - Cohen-Sutherland or Liang-Barsky
- Clipping to viewing frustum
 - Perspective normalization to orthographic projection
 - Apply clipping to cube from above
- Client-specific clipping
 - Use more general, more expensive form
- Polygon clipping
 - Sutherland-Hodgeman pipeline

Preview and Announcements

- Scan conversion
- Anti-aliasing
- Other pixel-level operations
- Assignment 5 due a week from Thursday!
- Start early!
- Sriram’s office hours now Mon 4:30-6:30
- Movie
- Returning Midterm