15-462 Computer Graphics I
Lecture 20

Visualization

- Height Fields and Contours
- Scalar Fields
- Volume Rendering
- Vector Fields

April 15, 2003
Frank Pfenning
Carnegie Mellon University

http://www.cs.cmu.edu/~fp/courses/graphics/

Scientific Visualization

- Generally do not start with a 3D model
- Must deal with very large data sets
 - MRI, e.g. $512 \times 512 \times 200 \approx 50$MB points
 - Visible Human $512 \times 512 \times 1734 \approx 433$ MB points
- Visualize both real-world and simulation data
- User interaction
- Automatic search
Types of Data

- Scalar fields (3D volume of scalars)
 - E.g., x-ray densities (MRI, CT scan)
- Vector fields (3D volume of vectors)
 - E.g., velocities in a wind tunnel
- Tensor fields (3D volume of tensors [matrices])
 - E.g., stresses in a mechanical part [Angel 12.7]
- Static or through time

Height Field

- Visualizing an explicit function
 \[z = f(x,y) \]
- Adding contour curves
 \[g(x,y) = c \]
Meshes

• Function is sampled (given) at \(x_i, y_i, 0 \leq i, j \leq n \)
• Assume equally spaced
 \[
 x_i = x_0 + i\Delta x \\
 y_j = y_0 + j\Delta y \\
 z_{i,j} = f(x_i, y_j)
 \]
• Generate quadrilateral or triangular mesh
• [Asst 1]

Contour Curves

• Recall: implicit curve \(f(x,y) = 0 \)
• \(f(x,y) < 0 \) inside, \(f(x,y) > 0 \) outside
• Here: contour curve at \(f(x,y) = c \)
• Sample at regular intervals for \(x,y \)
 \[
 x_i = x_0 + i\Delta x \\
 y_j = y_0 + j\Delta y
 \]
• How can we draw the curve?
Marching Squares

- Sample function f at every grid point x_i, y_j
- For every point $f_{ij} = f(x_i, y_j)$ either $f_{ij} \leq c$ or $f_{ij} > c$
- Distinguish those cases for each corner x
 - White: $f_{ij} \leq c$
 - Black: $f_{ij} > c$
- Now consider cases for curve
- Assume “smooth”
- Ignore $f_{ij} = 0$

Interpolating Intersections

- Approximate intersection
 - Midpoint between x_i, x_{i+1} and y_j, y_{j+1}
 - Better: interpolate
- If $f_{ij} = a$ is closer to c than $b = f_{i+1j}$ then intersection is closer to (x_i, y_j):
 $$\frac{x - x_i}{x_{i+1} - x} = \frac{c - a}{b - c}$$
- Analogous calculation for y direction

\[f_{ij} = a < c \quad c < b = f_{i+1j} \]
Cases for Vertex Labels

16 cases for vertex labels

4 unique mod. symmetries

Ambiguities of Labelings

Ambiguous labels

Different resulting contours

Resolution by subdivision (where possible)
Marching Squares Examples

- Ovals of Cassini, 50×50 grid

 \[f(x, y) = (x^2 + y^2 + a^2)^2 - 4a^2x^2 - b^4 \]

 \(a = 0.49, b = 0.5\)

![Midpoint and Interpolation examples](image)

Contour plot of Honolulu data

Outline

- Height Fields and Contours
- Scalar Fields
- Volume Rendering
- Vector Fields
Scalar Fields

- Volumetric data sets
- Example: tissue density
- Assume again regularly sampled

\[
\begin{align*}
x_i &= x_0 + i \Delta x \\
y_j &= y_0 + j \Delta y \\
z_k &= z_0 + k \Delta z
\end{align*}
\]

- Represent as voxels

Isosurfaces

- \(f(x,y,z)\) represents volumetric data set
- Two rendering methods
 - Isosurface rendering
 - Direct volume rendering (use all values [next])
- Isosurface given by \(f(x,y,z) = c\)
- Recall implicit surface \(g(x, y, z)\):
 - \(g(x, y, z) < 0\) inside
 - \(g(x, y, z) = 0\) surface
 - \(g(x, y, z) > 0\) outside
- Generalize right-hand side from 0 to c
Marching Cubes

- Display technique for isosurfaces
- 3D version of marching squares
- 14 cube labelings (after elimination symmetries)

Marching Cube Tessellations

- Generalize marching squares, just more cases
- Interpolate as in 2D
- Ambiguities similar to 2D
Volume Rendering

- Sometimes isosurfaces are unnatural
- Use all voxels and transparency (α-values)

Ray-traced isosurface

Volume rendering

Surface vs. Volume Rendering

- 3D model of surfaces
- Convert to triangles
- Draw primitives
- Lose or disguise data
- Good for opaque objects

- Scalar field in 3D
- Convert to RGBA values
- Render volume “directly”
- See data as given
- Good for complex objects
Sample Applications

- Medical
 - Computed Tomography (CT)
 - Magnetic Resonance Imaging (MRI)
 - Ultrasound
- Engineering and Science
 - Computational Fluid Dynamic (CFD)
 - Aerodynamic simulations
 - Meteorology
 - Astrophysics

Volume Rendering Pipeline

- Transfer function: from data set to colors and opacities
 - Example: $256 \times 256 \times 64 \times 2 = 4$ MB
 - Example: use colormap (8 bit color, 8 bit opacity)
Transfer Functions

- Transform scalar data values to RGBA values
- Apply to every voxel in volume
- Highly application dependent
- Start from data histogram
- Opacity for emphasis

Transfer Function Example

Mantle Convection

Scientific Computing and Imaging (SCI)
University of Utah
Transfer Function Example

Volume Ray Casting

• Three volume rendering techniques
 – Volume ray casting
 – Splatting
 – 3D texture mapping

• Ray Casting
 – Integrate color through volume
 – Consider lighting (surfaces?)
 – Use regular x,y,z data grid when possible
 – Finite elements when necessary (e.g., ultrasound)
 – 3D-rasterize geometrical primitives
Accumulating Opacity

- $\alpha = 1.0$ is opaque
- Compositing multiple layers according to opacity
- Use local gradient of opacity to detect surfaces for lighting

\[
C_{(i)_{\text{out}}} = C_{(i)_{\text{in}}} \times (1 - \alpha_{(i)}) + C_{(i)} \times \alpha_{(i)}
\]

Trilinear Interpolation

- Interpolate to compute RGBA away from grid
- Nearest neighbor yields blocky images
- Use trilinear interpolation
- 3D generalization of bilinear interpolation
Splattering

- Alternative to ray tracing
- Assign shape to each voxel (e.g., Gaussian)
- Project onto image plane (splat)
- Draw voxels back-to-front
- Composite (α-blend)

3D Textures

- Alternative to ray tracing, splatting
- Build a 3D texture (including opacity)
- Draw a stack of polygons, back-to-front
- Efficient if supported in graphics hardware
- Few polygons, much texture memory
Example: 3D Textures
Other Techniques

• Use CSG for cut-away

Acceleration of Volume Rendering

• Basic problem: Huge data sets
• Program for locality (cache)
• Divide into multiple blocks if necessary
 – Example: marching cubes
• Use error measures to stop iteration
• Exploit parallelism
Outline

• Height Fields and Contours
• Scalar Fields
• Volume Rendering
• Vector Fields

Vector Fields

• Visualize vector at each (x,y,z) point
 – Example: velocity field
 – Example: hair
• Hedgehogs
 – Use 3D directed line segments (sample field)
 – Orientation and magnitude determined by vector
• Animation
 – Use for still image
 – Particle systems

Blood flow in human carotid artery
Using Glyphs and Streaks

Glyphs for air flow

University of Utah

04/15/2003 15-462 Graphics I 35

More Flow Examples

Banks and Interrante

04/15/2003 15-462 Graphics I 36
Example: Jet Shockwave

http://www.sci.utah.edu/

Summary

• Height Fields and Contours
• Scalar Fields
 – Isosurfaces
 – Marching cubes
• Volume Rendering
 – Volume ray tracing
 – Splatting
 – 3D Textures
• Vector Fields
 – Hedgehogs
 – Animated and interactive visualization
Preview

• Thursday
 – Non-photo-realistic rendering (NPR)
 – 4:00-5:00 Distinguished Lecture
 Ed Catmull, Pixar, WeH 7500
• Assignment 7 (Ray Tracing) due Thu 4/24
• Assignment 8 (written) out Thu (early!)
• Note: no late hand-in on assignment 8!