Local vs. Global Illumination

• Local illumination: Phong model (OpenGL)
 – Light to surface to viewer
 – No shadows, interreflections
 – Fast enough for interactive graphics

• Global illumination: Ray tracing
 – Multiple specular reflections and transmissions
 – Only one step of diffuse reflection

• Global illumination: Radiosity
 – All diffuse interreflections; shadows
 – Advanced: combine with specular reflection
Image vs. Object Space

- **Image space:** Ray tracing
 - Trace backwards from viewer
 - View-dependent calculation
 - Result: rasterized image (pixel by pixel)
- **Object space:** Radiosity
 - Assume only diffuse-diffuse interactions
 - View-independent calculation
 - Result: 3D model, color for each surface patch
 - Can render with OpenGL

Classical Radiosity Method

- Divide surfaces into patches (elements)
- Model light transfer between patches as system of linear equations
- Important assumptions:
 - Reflection and emission are diffuse
 - Recall: diffuse reflection is equal in all directions
 - So radiance is independent of direction
 - No participating media (no fog)
 - No transmission (only opaque surfaces)
 - Radiosity is constant across each element
 - Solve for R, G, B separately
Outline

• Measures of Illumination
• The Radiosity Equation
• Form Factors
• Radiosity Algorithms

Solid Angle

• 2D angle subtended by object O from point x:
 – Length of projection onto unit circle at x
 – Measured in radians (0 to 2π)
• 3D solid angle subtended by O from point x:
 – Area of projection onto unit sphere at x
 – Measured in steradians (0 to 4π)
Radiant Power and Radiosity

- Radiant power P
 - Rate at which light energy is transmitted
 - Dimension: $\text{power} = \frac{\text{energy}}{\text{time}}$
- Flux density Φ
 - Radiant power per unit area of the surface
 - Dimension: $\text{power} / \text{area}$
- Irradiance E: incident flux density of surface
- Radiosity B: exitant flux density of surface
 - Dimension: $\text{power} / \text{area}$
- Flux density at a point $\Phi(x) = \frac{dP}{dx}$

Power at Point in a Direction

- Radiant intensity I
 - Power radiated per unit solid angle by point source
 - Dimension: $\text{power} / \text{solid angle}$
- Radiant intensity in direction ω
 - $I(\omega) = \frac{dP}{d\omega}$
- Radiance $L(x, \omega)$
 - Flux density at point x in direction ω
 - Dimension: $\text{power} / (\text{area} \times \text{solid angle})$
Radiance

• Measured across surface in direction \(\omega \)

\[
\begin{aligned}
L(x, \omega) &= \frac{d^2 P}{d\omega \, dx'} = \frac{d^2 P}{d\omega \, \cos \theta \, dx} \\
\end{aligned}
\]

• For angle \(\theta \) between \(\omega \) and normal \(n \)

Radiosity and Radiance

• Radiosity \(B(x) = \frac{dP}{dx} \)
• Radiance \(L(x, \omega) = \frac{d^2 P}{d\omega \, dx'} = \frac{d^2 P}{d\omega \, \cos \theta \, dx} \)
• Let \(\Omega \) be set of all directions above \(x \)

\[
B(x) = \int_{\Omega} L(x, \omega) \cos \theta \, d\omega
\]
Outline

• Measures of Illumination
• The Radiosity Equation
• Form Factors
• Radiosity Algorithms

Balance of Energy

• Lambertian surfaces (ideal diffuse reflector)
• Divided into n elements
• Variables
 – A_i Area of element i (computable)
 – B_i Radiosity of element i (unknown)
 – E_i Radiant emitted flux density of element i (given)
 – ρ_i Reflectance of element i (given)
 – F_{ji} Form factor from j to i (computable)

\[A_i B_i = A_i E_i + \rho_i \sum_{j=1}^{n} F_{ji} A_j B_j \]
Form Factors

- Form factor F_{ij}: Fraction of light leaving element i arriving at element j
- Depends on
 - Shape of patches i and j
 - Relative orientation of both patches
 - Distance between patches
 - Occlusion by other patches

Form Factor Equation

- Polar angles θ and θ' between normals and ray between x and y
- Visibility function $v(x,y) = 0$ if ray from x to y is occluded, $v(x,y) = 1$ otherwise
- Distance r between x and y

$$A_i F_{ij} = \int_{x \in P_i} \int_{y \in P_j} \frac{\cos \theta \cos \theta'}{\pi r^2} v(x, y) \, dy \, dx$$
Reciprocity

• Symmetry of form factor

\[A_i F_{ij} = \int_{x \in P_i} \int_{y \in P_j} \frac{\cos \theta \cos \theta'}{\pi r^2} v(x, y) \, dy \, dx = A_j F_{ji} \]

• Divide earlier radiosity equation

\[A_i B_i = A_i E_i + \rho_i \sum_{j=1}^{n} F_{ji} A_j B_j \]

by \(A_i \)

\[B_i = E_i + \rho_i \sum F_{ji} A_j B_j \]

Radiosity as a Linear System

• Restate radiosity equation \(B_i - \rho_i \sum F_{ij} B_j = E_i \)

• In matrix form

\[
\begin{bmatrix}
1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & \rho_1 F_{1n} \\
-\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & \rho_2 F_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
-\rho_n F_{n1} & \rho_n F_{n2} & \cdots & 1 - \rho_n F_{nn}
\end{bmatrix}
\begin{bmatrix}
B_1 \\
B_2 \\
\vdots \\
B_n
\end{bmatrix}
=
\begin{bmatrix}
E_1 \\
E_2 \\
\vdots \\
E_n
\end{bmatrix}
\]

• Known: reflectances \(\rho_i \), form factors \(F_{ij} \), emissions \(E_i \)

• Unknown: Radiosities \(B_i \)

• \(n \) linear equations in \(n \) unknowns
Radiosity “Pipeline”

- Scene Geometry
- Reflectance Properties
- Form factor calculation
- Solution of Radiosity Eq
- Radiosity Image
- Visualization
- Viewing Conditions

Visualization

- Radiosity solution is viewer independent
- Can exploit graphics hardware to obtain image
- Convert color on patch to vertex color
- Easy part of radiosity method
Outline

- Measures of Illumination
- The Radiosity Equation
- Form Factors
- Radiosity Algorithms

Computing Form Factors

- Visibility critical
- Two principal methods
 - Hemicube: exploit z-buffer hardware
 - Ray casting (can be slow)
 - Both exhibit aliasing effects
- For inter-visible elements
 - Many special cases can be solved analytically
 - Avoid full numeric approximation of double integral
Hemicube Algorithm

- Render model onto a hemicube as seen from the center of a patch
- Store patch identifiers j instead of color
- Use z-buffer to resolve visibility
- Efficiently implementable in hardware
- Examples of antialiasing [Chandran et al.]

Wireframe
Supersampling, Resolution 100

Classical, Resolution 2500, Interpolated
Outline

- Measures of Illumination
- The Radiosity Equation
- Form Factors
- Radiosity Algorithms
Radiosity Equation Revisited

• Direct form
 \[B_i = E_i + \rho_i \sum_j F_{ij} B_j \]

• As matrix equation
 \[
 \begin{bmatrix}
 1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & \rho_1 F_{1n} \\
 -\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & \rho_2 F_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 -\rho_n F_{n1} & \rho_n F_{n2} & \cdots & 1 - \rho_n F_{nn}
 \end{bmatrix}
 \begin{bmatrix}
 B_1 \\
 B_2 \\
 \vdots \\
 B_n
 \end{bmatrix}
 =
 \begin{bmatrix}
 E_1 \\
 E_2 \\
 \vdots \\
 E_n
 \end{bmatrix}

 \]

• Unknown: radiosity \(B_i \)
• Known: emission \(E_i \), form factor \(F_{ij} \), reflect. \(\rho_i \)

Classical Radiosity Algorithms

• Matrix Radiosity
 – Diagonally dominant matrix
 – Use Gauss-Seidel iterative solution
 – Time and space complexity is \(O(n^2) \) for \(n \) elements
 – Memory cost excessive

• Progressive Refinement Radiosity
 – Solve equations incrementally with form factors
 – Time complexity is \(O(n \cdot s) \) for \(s \) iterations
 – Used more commonly (space complexity \(O(n) \))
Matrix Radiosity

• Compute all form factors F_{ij}
• Make initial approximation to radiosity
 – Emitting elements $B_i = E_i$
 – Other elements $B_i = 0$
• Apply equation to get next approximation
 $$B'_i = E_i + \rho_i \sum_j F_{ij} B_j$$
• Iterate with new approximation
• Intuitively
 – Gather incoming light for each element i
 – Base new estimate on previous estimate

Radiosity Summary

• Assumptions
 – Opaque Lambertian surfaces (ideal diffuse)
 – Radiosity constant across each element
• Radiosity computation structure
 – Break scene into patches
 – Compute form factors between patches
 • Lighting independent
 – Solve linear radiosity equation
 • Viewer independent
 – Render using standard hardware
Lecture Summary

• Measures of Illumination
• The Radiosity Equation
• Form Factors
• Radiosity Algorithms

Preview

• Next Lecture
 – Radiosity refinements
 – Combining ray tracing and radiosity
• Assignment 7 (Ray Tracer) due April 24
• Different from OpenGL programming (150 pts)