Local vs. Global Rendering Models

• Local rendering models (graphics pipeline)
 – Object illuminations are independent
 – No light scattering between objects
 – No real shadows, reflection, transmission

• Global rendering models
 – Ray tracing (highlights, reflection, transmission)
 – Radiosity (surface interreflections)
Object Space vs. Image Space

• Graphics pipeline: for each object, render
 – Efficient pipeline architecture, on-line
 – Difficulty: object interactions
• Ray tracing: for each pixel, determine color
 – Pixel-level parallelism, off-line
 – Difficulty: efficiency, light scattering
• Radiosity: for each two surface patches, determine diffuse interreflections
 – Solving integral equations, off-line
 – Difficulty: efficiency, reflection

Forward Ray Tracing

• Rays as paths of photons in world space
• Forward ray tracing: follow photon from light sources to viewer
• Problem: many rays will not contribute to image!
Backward Ray Tracing

- Ray-casting: one ray from center of projection through each pixel in image plane
- Illumination
 1. Phong (local as before)
 2. Shadow rays
 3. Specular reflection
 4. Specular transmission
- (3) and (4) require recursion

Shadow Rays

- Determine if light “really” hits surface point
- Cast shadow ray from surface point to light
- If shadow ray hits opaque object, no contribution
- Improved diffuse reflection
Reflection Rays

- Calculate specular component of illumination
- Compute reflection ray (recall: backward!)
- Call ray tracer recursively to determine color
- Add contributions
- Transmission ray
 - Analogue for transparent or translucent surface
 - Use Snell’s laws for refraction
- Later:
 - Optimizations, stopping criteria

Ray Casting

- Simplest case of ray tracing
- Required as first step of recursive ray tracing
- Basic ray-casting algorithm
 - For each pixel (x,y) fire a ray from COP through (x,y)
 - For each ray & object calculate closest intersection
 - For closest intersection point p
 - Calculate surface normal
 - For each light source, calculate and add contributions
- Critical operations
 - Ray-surface intersections
 - Illumination calculation
Outline

- Ray Casting
- Ray-Surface Intersections
- Barycentric Coordinates
- Reflection and Transmission

Ray-Surface Intersections

- General implicit surfaces
- General parametric surfaces
- Specialized analysis for special surfaces
 - Spheres
 - Planes
 - Polygons
 - Quadrics
- Do not decompose objects into triangles!
- CSG (Constructive Solid Geometry)
 - Construct model from building blocks (later lecture)
Rays and Parametric Surfaces

• Ray in parametric form
 – Origin \(\mathbf{p}_0 = [x_0 \ y_0 \ z_0 \ 1]^T \)
 – Direction \(\mathbf{d} = [x_d \ y_d \ z_d \ 0]^T \)
 – Assume \(\mathbf{d} \) normalized \((x_d^2 + y_d^2 + z_d^2 = 1) \)
 – Ray \(\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{d} \ t \) for \(t > 0 \)

• Surface in parametric form
 – Point \(\mathbf{q} = g(u, v) \), possible bounds on \(u, v \)
 – Solve \(\mathbf{p} + \mathbf{d} \ t = g(u, v) \)
 – Three equations in three unknowns \((t, u, v) \)

Rays and Implicit Surfaces

• Ray in parametric form
 – Origin \(\mathbf{p}_0 = [x_0 \ y_0 \ z_0 \ 1]^T \)
 – Direction \(\mathbf{d} = [x_d \ y_d \ z_d \ 0]^T \)
 – Assume \(\mathbf{d} \) normalized \((x_d^2 + y_d^2 + z_d^2 = 1) \)
 – Ray \(\mathbf{p}(t) = \mathbf{p}_0 + \mathbf{d} \ t \) for \(t > 0 \)

• Implicit surface
 – Given by \(f(\mathbf{q}) = 0 \)
 – Consists of all points \(\mathbf{q} \) such that \(f(\mathbf{q}) = 0 \)
 – Substitute ray equation for \(\mathbf{q} \): \(f(\mathbf{p}_0 + \mathbf{d} \ t) = 0 \)
 – Solve for \(t \) (univariate root finding)
 – Closed form (if possible) or numerical approximation
Ray-Sphere Intersection I

• Common and easy case
• Define sphere by
 – Center $c = [x_c \quad y_c \quad z_c \quad 1]^T$
 – Radius r
 – Surface $f(q) = (x - x_c)^2 + (y - y_c)^2 + (z - z_c)^2 - r^2 = 0$
• Plug in ray equations for x, y, z:

\[
\begin{align*}
x &= x_0 + x_d t \\
y &= y_0 + y_d t \\
z &= z_0 + z_d t
\end{align*}
\]

Ray-Sphere Intersection II

• Simplify to
 \[
 at^2 + bt + c = 0
 \]
 where
 \[
 \begin{align*}
a &= x_d^2 + y_d^2 + z_d^2 = 1 & \text{since } |d| = 1 \\
b &= 2(x_d(x_0 - x_c) + y_d(y_0 - y_c) + z_d(z_0 - z_c)) \\
c &= (x_0 - x_c)^2 + (y_0 - y_c)^2 + (z_0 - z_c)^2 - r^2
\end{align*}
 \]
 • Solve to obtain t_0 and t_1
 \[
 t_{0,1} = \frac{-b \pm \sqrt{b^2 - 4c}}{2}
 \]
 Check if t_0, $t_1 > 0$ (ray)
 Return min(t_0, t_1)
Ray-Sphere Intersection III

- For lighting, calculate unit normal
 \[n = \frac{1}{r} [(x_i - x_c) (y_i - y_c) (z_i - z_c) 0]^T \]
- Negate if ray originates inside the sphere!
- Note possible problems with roundoff errors

Simple Optimizations

- Factor common subexpressions
- Compute only what is necessary
 - Calculate \(b^2 - 4c \), abort if negative
 - Compute normal only for closest intersection
 - Other similar optimizations [Handout]
Inverse Mapping for Texture Coords.

- How do we determine texture coordinates?
- Inverse mapping problem
- No unique solution
- Reconsider in each case
 - For different basic surfaces
 - For surface meshes
 - Still an area of research

Ray-Polygon Intersection I

- Assume planar polygon
 1. Intersect ray with plane containing polygon
 2. Check if intersection point is inside polygon
- Plane
 - Implicit form: \(ax + by + cz + d = 0 \)
 - Unit normal: \(\mathbf{n} = [a \ b \ c \ 0]^T \) with \(a^2 + b^2 + c^2 = 1 \)
- Substitute:
 \[
a(x_0 + x_d t) + b(y_0 + y_d t) + c(z_0 + z_d t) + d = 0
 \]
- Solve:
 \[
t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d}
 \]
Ray-Polygon Intersection II

- Substitute \(t \) to obtain intersection point in plane
- Test if point inside polygon
- For example, use even-odd rule or winding rule
 - Easier in 2D (project) and for triangles (tesselate)

Ray-Polygon Intersection III

- Rewrite using dot product
 \[
 t = \frac{-(ax_0 + by_0 + cz_0 + d)}{ax_d + by_d + cz_d} = \frac{-(\mathbf{n} \cdot \mathbf{p_0} + d)}{\mathbf{n} \cdot \mathbf{d}}
 \]
- If \(\mathbf{n} \cdot \mathbf{d} = 0 \), no intersection
- If \(t \leq 0 \) the intersection is behind ray origin
- Point-in-triangle testing critical for polygonal models
- Project onto planes \(x = 0 \), \(y = 0 \), or \(z = 0 \) for point-in-polygon test; can be precomputed
Ray-Quadric Intersection

- Quadric $f(p) = f(x, y, z) = 0$, where f is polynomial of order 2
- Sphere, ellipsoid, paraboloid, hyperboloid, cone, cylinder
- Closed form solution as for sphere
- Important case for modelling in ray tracing
- Combine with CSG

[see Handout]

Outline

- Ray Casting
- Ray-Surface Intersections
- Barycentric Coordinates
- Reflection and Transmission
Interpolated Shading for Ray Tracing

• Assume we know normals at vertices
• How do we compute normal of interior point?
• Need linear interpolation between 3 points
• Barycentric coordinates
• Yields same answer as scan conversion

Barycentric Coordinates in 1D

• Linear interpolation
 – \(p(t) = (1-t)p_1 + tp_2, \) \(0 \leq t \leq 1 \)
 – \(p(t) = \alpha p_1 + \beta p_2 \) where \(\alpha + \beta = 1 \)
 – \(p \) is between \(p_1 \) and \(p_2 \) iff \(0 \leq \alpha, \beta \leq 1 \)

• Geometric intuition
 – Weigh each vertex by ratio of distances from ends

• \(\alpha, \beta \) are called barycentric coordinates
Barycentric Coordinates in 2D

- Given 3 points instead of 2

- Define 3 barycentric coordinates, α, β, γ

- $p = \alpha \ p_1 + \beta \ p_2 + \gamma \ p_3$

- p inside triangle iff $0 \leq \alpha$, β, $\gamma \leq 1$, $\alpha + \beta + \gamma = 1$

- How do we calculate α, β, γ given p?

Barycentric Coordinates for Triangle

- Coordinates are ratios of triangle areas
Computing Triangle Area

- In 3 dimensions
 - Use cross product
 - Parallelogram formula
 - \(\text{Area}(ABC) = \frac{1}{2} |(B - A) \times (C - A)| \)
 - Optimization: project, use 2D formula

- In 2 dimensions
 - \(\text{Area}(x\text{-}y\text{-proj}(ABC)) = \)
 - \(\frac{1}{2}((b_x - a_x)(c_y - a_y) - (c_x - a_x)(b_y - a_y)) \)

Outline

- Ray Casting
- Ray-Surface Intersections
- Barycentric Coordinates
- Reflection and Transmission
Recursive Ray Tracing

- Calculate specular component
 - Reflect ray from eye on specular surface
 - Transmit ray from eye through transparent surface
- Determine color of incoming ray by recursion
- Trace to fixed depth
- Cut off if contribution below threshold

Angle of Reflection

- Recall: incoming angle = outgoing angle
- \(r = 2(l \cdot n) \cdot n - l \)
- For incoming/outgoing ray negate \(l \)!
- Compute only for surfaces with actual reflection
- Use specular coefficient
- Add specular and diffuse components
Transmitted Light

- Index of refraction is relative speed of light
- Snell’s law
 - $\eta_l =$ index of refraction for upper material
 - $\eta_t =$ index of refraction for lower material
 \[
 \frac{\sin(\theta_i)}{\sin(\theta_t)} = \frac{\eta_t}{\eta_l} = \eta
 \]
 \[
 t = -\frac{1}{\eta} l - (\cos(\theta_t) - \frac{1}{\eta} \cos(\theta_t)) n
 \]
 where $\cos(\theta_t) = l \cdot n$
 and $\cos^2(\theta_t) = 1 - \frac{1}{\eta^2} (1 - l \cdot n)$

 Note: negate l or t for transmission!

Translucency

- Diffuse component of transmission
- Scatter light on other side of surface
- Calculation as for diffuse reflection
- Reflection or transmission not perfect
- Use stochastic sampling
Ray Tracing Preliminary Assessment

- Global illumination method
- Image-based
- Pluses
 - Relatively accurate shadows, reflections, refractions
- Minuses
 - Slow (per pixel parallelism, not pipeline parallelism)
 - Aliasing
 - Inter-object diffuse reflections

Ray Tracing Acceleration

- Faster intersections
 - Faster ray-object intersections
 - Object bounding volume
 - Efficient intersector
 - Fewer ray-object intersections
 - Hierarchical bounding volumes (boxes, spheres)
 - Spatial data structures
 - Directional techniques
- Fewer rays
 - Adaptive tree-depth control
 - Stochastic sampling
- Generalized rays (beams, cones)
Raytracing Example I

www.povray.org

03/20/2003 15-462 Graphics I 35

Raytracing Example II

www.povray.org

03/20/2003 15-462 Graphics I 36
Raytracing Example II

Saito, Saturn Ring

Raytracing Example IV

www.povray.org
Summary

• Ray Casting
• Ray-Surface Intersections
• Barycentric Coordinates
• Reflection and Transmission

Preview

• Spatial data structures
• Ray tracing optimizations
• Assignment 6 out today
• Assignment 7 out after spring break