Clipping

The Graphics Pipeline, Revisited

- Must eliminate objects outside viewing frustum
- Tied in with projections
 - Clipping: object space (eye coordinates)
 - Scissoring: image space (pixels in frame buffer)
- Introduce clipping in stages
 - 2D (for simplicity)
 - 3D (as in OpenGL)
- In a later lecture: scissoring
Transformations and Projections

- Sequence applied in many implementations
 1. Object coordinates to
 2. Eye coordinates to
 3. Clip coordinates to
 4. Normalized device coordinates to
 5. Screen coordinates

Clipping Against a Frustum

- General case of frustum (truncated pyramid)

- Clipping is tricky because of frustum shape
Perspective Normalization

• Solution:
 – Implement perspective projection by perspective normalization and orthographic projection
 – Perspective normalization is a homogeneous tfm.

The Normalized Frustum

• OpenGL uses \(-1 \leq x, y, z \leq 1\) (others possible)
• Clip against resulting cube
• Clipping against programmer-specified planes is different and more expensive
• Often a useful programming device
The Viewport Transformation

- Transformation sequence again:
 1. Camera: From object coordinates to eye coords
 2. Perspective normalization: to clip coordinates
 3. Clipping
 4. Perspective division: to normalized device coords.
 5. Orthographic projection (setting $z_p = 0$)
 6. Viewport transformation: to screen coordinates
- Viewport transformation can distort
- Often in OpenGL: resize callback

Line-Segment Clipping

- General: 3D object against cube
- Simpler case:
 - In 2D: line against square or rectangle
 - Before scan conversion (rasterization)
 - Later: polygon clipping
- Several practical algorithms
 - Avoid expensive line-rectangle intersections
 - Cohen-Sutherland Clipping
 - Liang-Barsky Clipping
 - Many more [see Foley et al.]
Clipping Against Rectangle

- Line-segment clipping: modify endpoints of lines to lie within clipping rectangle
- Could calculate intersections of line (segments) with clipping rectangle (expensive)

Cohen-Sutherland Clipping

- Clipping rectangle as intersection of 4 half-planes
- Encode results of four half-plane tests
- Generalizes to 3 dimensions (6 half-planes)
Outcodes

- Divide space into 9 regions
- 4-bit outcode determined by comparisons

\[\begin{align*}
0101 & : y > y_{\text{max}} \\
0100 & : y < y_{\text{min}} \\
0110 & : x > x_{\text{max}} \\
0111 & : x < x_{\text{min}}
\end{align*} \]

- \(o_1 = \text{outcode}(x_1, y_1) \) and \(o_2 = \text{outcode}(x_2, y_2) \)

Cases for Outcodes

- Outcomes: accept, reject, subdivide

\[\begin{align*}
0101 & : o_1 = o_2 = 0000: \text{accept} \\
0100 & : o_1 \neq 0000: \text{reject} \\
0110 & : o_1 = 0000, o_2 \neq 0000: \text{subdiv} \\
0111 & : o_1 \neq 0000, o_2 = 0000: \text{subdiv} \\
0111 & : o_1 \neq 0000, o_2 = 0000: \text{subdiv}
\end{align*} \]
Cohen-Sutherland Subdivision

- Pick outside endpoint \((o \neq 0000)\)
- Pick a crossed edge \((o = b_0b_1b_2b_3\) and \(b_k \neq 0)\)
- Compute intersection of this line and this edge
- Replace endpoint with intersection point
- Restart with new line segment
 - Outcodes of second point are unchanged
- Must converge (roundoff errors?)

Liang-Barsky Clipping

- Starting point is parametric form

 \[
 p(\alpha) = (1 - \alpha)p_1 + \alpha p_2, \quad 0 \leq \alpha \leq 1
 \]

 \[
 x(\alpha) = (1 - \alpha)x_1 + \alpha x_2
 \]

 \[
 y(\alpha) = (1 - \alpha)y_1 + \alpha y_2
 \]

- Compute four intersections with extended clipping rectangle
- Will see that this can be avoided
Ordering of intersection points

- Order the intersection points
- Figure (a): $1 > \alpha_4 > \alpha_3 > \alpha_2 > \alpha_1 > 0$
- Figure (b): $1 > \alpha_4 > \alpha_2 > \alpha_3 > \alpha_1 > 0$

Liang-Barsky Efficiency Improvements

- Efficiency improvement 1:
 - Compute intersections one by one
 - Often can reject before all four are computed
- Efficiency improvement 2:
 - Equations for α_3, α_2
 \[
 \begin{align*}
 y_{max} &= (1 - \alpha_3)y_1 + \alpha_3y_2 \\
 x_{min} &= (1 - \alpha_2)x_1 + \alpha_2x_2 \\
 \alpha_3 &= \frac{y_{max} - y_1}{y_2 - y_1} \\
 \alpha_2 &= \frac{x_{min} - x_1}{x_2 - x_1}
 \end{align*}

 - Compare α_3, α_2 without floating-point division
Line-Segment Clipping Assessment

- Cohen-Sutherland
 - Works well if many lines can be rejected early
 - Recursive structure (multiple subdiv) a drawback
- Liang-Barsky
 - Avoids recursive calls (multiple subdiv)
 - Many cases to consider (tedious, but not expensive)
 - Used more often in practice (?)

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions
Polygon Clipping

- Convert a polygon into one or more polygons
- Their union is intersection with clip window
- Alternatively, we can first tesselate concave polygons (OpenGL supported)

![Polygon Clipping Diagram]

Concave Polygons

- Approach 1: clip and join to a single polygon
 - ![Approach 1 Diagram]
- Approach 2: tesselate and clip triangles
 - ![Approach 2 Diagram]
Sutherland-Hodgeman I

• Subproblem:
 – Input: polygon (vertex list) and single clip plane
 – Output: new (clipped) polygon (vertex list)

• Apply once for each clip plane
 – 4 in two dimensions
 – 6 in three dimensions
 – Can arrange in pipeline

Sutherland-Hodgeman II

• To clip vertex list (polygon) against half-plane:
 – Test first vertex. Output if inside, otherwise skip.
 – Then loop through list, testing transitions
 • In-to-in: output vertex
 • In-to-out: output intersection
 • out-to-in: output intersection and vertex
 • out-to-out: no output
 – Will output clipped polygon as vertex list

• May need some cleanup in concave case
• Can combine with Liang-Barsky idea
Other Cases and Optimizations

- Curves and surfaces
 - Analytically if possible
 - Through approximating lines and polygons otherwise
- Bounding boxes
 - Easy to calculate and maintain
 - Sometimes big savings

Outline

- Line-Segment Clipping
 - Cohen-Sutherland
 - Liang-Barsky
- Polygon Clipping
 - Sutherland-Hodgeman
- Clipping in Three Dimensions
Clipping Against Cube

- Derived from earlier algorithms
- Can allow right parallelepiped

Cohen-Sutherland in 3D

- Use 6 bits in outcode
 - b_4: $z > z_{\text{max}}$
 - b_5: $z < z_{\text{min}}$
- Other calculations as before
Liang-Barsky in 3D

- Add equation $z(\alpha) = (1 - \alpha) z_1 + \alpha z_2$
- Solve, for p_0 in plane and normal n:
 $$p(\alpha) = (1 - \alpha)p_1 + \alpha p_2$$
 $$n \cdot (p(\alpha) - p_0) = 0$$
- Yields
 $$\alpha = \frac{n \cdot (p_0 - p_1)}{n \cdot (p_2 - p_1)}$$
- Optimizations as for Liang-Barsky in 2D

Perspective Normalization

- Intersection simplifies for orthographic viewing
 - One division only (no multiplication)
 - Other Liang-Barsky optimizations also apply
- Otherwise, use perspective normalization
 - Reduces to orthographic case
 - Applies to oblique and perspective viewing

Normalization of oblique projections
Summary: Clipping

- Clipping line segments to rectangle or cube
 - Avoid expensive multiplications and divisions
 - Cohen-Sutherland or Liang-Barsky
- Clipping to viewing frustum
 - Perspective normalization to orthographic projection
 - Apply clipping to cube from above
- Client-specific clipping
 - Use more general, more expensive form
- Polygon clipping
 - Sutherland-Hodgeman pipeline

Preview and Announcements

- Scan conversion
- Anti-aliasing
- Other pixel-level operations
- Assignment 5 due a week from Thursday!
- Start early!
- Sriram’s office hours now Mon 4:30-6:30
- Movie
- Returning Midterm