Curves and Surfaces

Goals

- How do we draw surfaces?
 - Approximate with polygons
 - Draw polygons
- How do we specify a surface?
 - Explicit, implicit, parametric
- How do we approximate a surface?
 - Interpolation (use only points)
 - Hermite (use points and tangents)
 - Bezier (use points, and more points for tangents)
- Next lecture: splines, realization in OpenGL
Explicit Representation

- Curve in 2D: \(y = f(x) \)
- Curve in 3D: \(y = f(x), \ z = g(x) \)
- Surface in 3D: \(z = f(x,y) \)
- Problems:
 - How about a vertical line \(x = c \) as \(y = f(x) \)?
 - Circle \(y = \pm \sqrt{r^2 - x^2} \) two or zero values for \(x \)
- Too dependent on coordinate system
- Rarely used in computer graphics

Implicit Representation

- Curve in 2D: \(f(x,y) = 0 \)
 - Line: \(ax + by + c = 0 \)
 - Circle: \(x^2 + y^2 - r^2 = 0 \)
- Surface in 3d: \(f(x,y,z) = 0 \)
 - Plane: \(ax + by + cz + d = 0 \)
 - Sphere: \(x^2 + y^2 + z^2 - r^2 = 0 \)
- \(f(x,y,z) \) can describe 3D object:
 - Inside: \(f(x,y,z) < 0 \)
 - Surface: \(f(x,y,z) = 0 \)
 - Outside: \(f(x,y,z) > 0 \)
Algebraic Surfaces

- Special case of implicit representation
- $f(x,y,z)$ is polynomial in x, y, z
- Quadrics: degree of polynomial ≤ 2
- Render more efficiently than arbitrary surfaces
- Implicit form often used in computer graphics
- How do we represent curves implicitly?

02/11/2003 15-462 Graphics I 5

Parametric Form for Curves

- Curves: single parameter u (e.g. time)
- $x = x(u)$, $y = y(u)$, $z = z(u)$
- Circle: $x = \cos(u)$, $y = \sin(u)$, $z = 0$
- Tangent described by derivative

$$ p(u) = \begin{bmatrix} x(u) \\ y(u) \\ z(u) \end{bmatrix} \quad \frac{dp(u)}{du} = \begin{bmatrix} \frac{dx(u)}{du} \\ \frac{dy(u)}{du} \\ \frac{dz(u)}{du} \end{bmatrix} $$

- Magnitude is “velocity”

02/11/2003 15-462 Graphics I 6
Parametric Form for Surfaces

• Use parameters u and v
• \(x = x(u,v), \ y = y(u,v), \ z = z(u,v) \)
• Describes surface as both u and v vary
• Partial derivatives describe tangent plane at each point \(p(u,v) = [x(u,v) \ y(u,v) \ z(u,v)]^T \)

\[
\frac{\partial p(u, v)}{\partial u} = \begin{bmatrix} \frac{\partial x(u,v)}{\partial u} \\ \frac{\partial y(u,v)}{\partial u} \\ \frac{\partial z(u,v)}{\partial u} \end{bmatrix}, \quad \frac{\partial p(u, v)}{\partial v} = \begin{bmatrix} \frac{\partial x(u,v)}{\partial v} \\ \frac{\partial y(u,v)}{\partial v} \\ \frac{\partial z(u,v)}{\partial v} \end{bmatrix}
\]

Assessment of Parametric Forms

• Parameters often have natural meaning
• Easy to define and calculate
 – Tangent and normal
 – Curves segments (for example, \(0 \leq u \leq 1 \))
 – Surface patches (for example, \(0 \leq u,v \leq 1 \))
Parametric Polynomial Curves

- Restrict \(x(u), y(u), z(u) \) to be polynomial in \(u \)
- Fix degree \(n \)
 \[
 p(u) = \sum_{k=0}^{n} c_k u^k
 \]
- Each \(c_k \) is a column vector
 \[
 c_k = \begin{bmatrix}
 c_{xk} \\
 c_{yk} \\
 c_{zk}
 \end{bmatrix}
 \]

Parametric Polynomial Surfaces

- Restrict \(x(u,v), y(u,v), z(u,v) \) to be polynomial of fixed degree \(n \)
 \[
 p(u, v) = \begin{bmatrix}
 x(u, v) \\
 y(u, v) \\
 z(u, v)
 \end{bmatrix}
 = \sum_{i=0}^{n} \sum_{k=0}^{n} c_{ik} u^i v^k
 \]
- Each \(c_{ik} \) is a 3-element column vector
- Restrict to simple case where \(0 \leq u, v \leq 1 \)
Approximating Surfaces

• Use parametric polynomial surfaces
• Important concepts:
 – Join points for segments and patches
 – Control points to interpolate
 – Tangents and smoothness
 – Blending functions to describe interpolation
• First curves, then surfaces

Outline

• Parametric Representations
• Cubic Polynomial Forms
• Hermite Curves
• Bezier Curves and Surfaces
Cubic Polynomial Form

- Degree 3 appears to be a useful compromise
- Curves:
 \[p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3 = \sum_{k=0}^{3} c_k u^k \]
- Each \(c_k \) is a column vector \([c_{kx} \quad c_{ky} \quad c_{kz}]^T\)
- From control information (points, tangents) derive 12 values \(c_{kx}, c_{ky}, c_{kz} \) for \(0 \leq k \leq 3 \)
- These determine cubic polynomial form
- Later: how to render

Interpolation by Cubic Polynomials

- Simplest case, although rarely used
- Curves:
 - Given 4 control points \(p_0, p_1, p_2, p_3 \)
 - All should lie on curve: 12 conditions, 12 unknowns
- Space \(0 \leq u \leq 1 \) evenly
 \[p_0 = p(0), \quad p_1 = p(1/3), \quad p_2 = p(2/3), \quad p_3 = p(1) \]
Equations to Determine c_k

- Plug in values for $u = 0, \frac{1}{3}, \frac{2}{3}, 1$

\[
p_0 = p(0) = c_0
\]
\[
p_1 = p(\frac{1}{3}) = c_0 + \frac{1}{3}c_1 + (\frac{1}{3})^2c_2 + (\frac{1}{3})^3c_3
\]
\[
p_2 = p(\frac{2}{3}) = c_0 + \frac{2}{3}c_1 + (\frac{2}{3})^2c_2 + (\frac{2}{3})^3c_3
\]
\[
p_3 = p(1) = c_0 + c_1 + c_2 + c_3
\]

\[
\begin{bmatrix}
p_0 \\
p_1 \\
p_2 \\
p_3
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 & 0 \\
1 & \frac{1}{3} & (\frac{1}{3})^2 & (\frac{1}{3})^3 \\
1 & \frac{2}{3} & (\frac{2}{3})^2 & (\frac{2}{3})^3 \\
1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
c_0 \\
c_1 \\
c_2 \\
c_3
\end{bmatrix}
\]

Note: p_k and c_k are vectors!

Interpolating Geometry Matrix

- Invert A to obtain interpolating geometry matrix

\[
A^{-1} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
-5.5 & 9 & -4.5 & 1 \\
9 & -22.5 & 18 & 4.5 \\
-4.5 & 13.5 & -13.5 & 4.5
\end{bmatrix}
\]
\[
c = A^{-1}p
\]
Joining Interpolating Segments

- Do not solve degree n for n points
- Divide into overlap sequences of 4 points
- \(p_0, p_1, p_2, p_3 \) then \(p_3, p_4, p_5, p_6, \) etc.

- At join points
 - Will be continuous (\(C^0 \) continuity)
 - Derivatives will usually not match (no \(C^1 \) continuity)

Blending Functions

- Make explicit, how control points contribute
- Simplest example: straight line with control points \(p_0 \) and \(p_3 \)
- \(p(u) = (1 - u) p_0 + u p_3 \)
- \(b_0(u) = 1 - u, \; b_3(u) = u \)
Blending Polynomials for Interpolation

- Each blending polynomial is a cubic
- Solve (see [Angel, p. 427]):
 \[p(u) = b_0(u)p_0 + b_1(u)p_1 + b_2(u)p_2 + b_3(u)p_3 \]

Cubic Interpolation Patch

- Bicubic surface patch with \(4 \times 4\) control points
 \[p(u, v) = \sum_{i=0}^{3} \sum_{k=0}^{3} u^i v^k c_{ik} \]

Note: each \(c_{ik}\) is 3 column vector (48 unknowns)

[Angel, Ch. 10.4.2]
Outline

• Parametric Representations
• Cubic Polynomial Forms
• Hermite Curves
• Bezier Curves and Surfaces

Hermite Curves

• Another cubic polynomial curve
• Specify two endpoints and their tangents
Deriving the Hermite Form

• As before
 \[p(0) = p_0 = c_0 \]
 \[p(1) = p_3 = c_0 + c_1 + c_2 + c_3 \]

• Calculate derivative
 \[
 \begin{bmatrix}
 \frac{dx}{du} \\
 \frac{dy}{du} \\
 \frac{dz}{du}
 \end{bmatrix}
 = c_1 + 2uc_2 + 3u^2c_3

 \]

• Yields
 \[
 \begin{align*}
 p'_0 &= p'(0) = c_1 \\
 p'_3 &= p'(1) = c_1 + 2c_2 + 3c_3
 \end{align*}
 \]

Summary of Hermite Equations

• Write in matrix form

• Remember \(p_k \) and \(p'_k \) and \(c_k \) are vectors!

\[
\begin{bmatrix}
 p_0 \\
 p_3 \\
 p'_0 \\
 p'_3
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 1 & 1 & 1 & 1 \\
 0 & 1 & 1 & 1 \\
 0 & 1 & 2 & 3
\end{bmatrix}
\begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 c_3
\end{bmatrix}
\]

• Let \(q = [p_0 \ p_3 \ p'_0 \ p'_3]^T \) and invert to find Hermite geometry matrix \(M_H \) satisfying

\[
c = M_H q
\]
Blending Functions

- Explicit Hermite geometry matrix

\[
M_H = \begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-3 & 3 & -2 & -1 \\
2 & -2 & 1 & 1 \\
\end{bmatrix}
\]

- Blending functions for \(u = [1 \quad u \quad u^2 \quad u^3]^T \)

\[
b(u) = M_H^T u = \begin{bmatrix}
2u^3 - 3u^2 + 1 \\
-2u^3 + 3u^2 \\
u^3 - 2u^2 + u \\
u^3 - u^2 \\
\end{bmatrix}
\]

Join Points for Hermite Curves

- Match points and tangents (derivatives)

- Much smoother than point interpolation
- How to obtain the tangents?
- Skip Hermite surface patch
- More widely used: Bezier curves and surfaces
Parametric Continuity

• Matching endpoints (C^0 parametric continuity)
 \[p(1) = \begin{bmatrix} p_x(1) \\ p_y(1) \\ p_z(1) \end{bmatrix} = \begin{bmatrix} q_x(0) \\ q_y(0) \\ q_z(0) \end{bmatrix} = q(0) \]

• Matching derivatives (C^1 parametric continuity)
 \[p'(1) = \begin{bmatrix} p'_x(1) \\ p'_y(1) \\ p'_z(1) \end{bmatrix} = \begin{bmatrix} q'_x(0) \\ q'_y(0) \\ q'_z(0) \end{bmatrix} = q'(0) \]

Geometric Continuity

• For matching tangents, less is required
 \[p'(1) = \begin{bmatrix} p'_x(1) \\ p'_y(1) \\ p'_z(1) \end{bmatrix} = k \begin{bmatrix} q'_x(0) \\ q'_y(0) \\ q'_z(0) \end{bmatrix} = k q'(0) \]

• G^1 geometric continuity
• Extends to higher derivatives
Outline

• Parametric Representations
• Cubic Polynomial Forms
• Hermite Curves
• Bezier Curves and Surfaces

Bezier Curves

• Widely used in computer graphics
• Approximate tangents by using control points

\[p'(0) = 3(p_1 - p_0) \]
\[p'(1) = 3(p_3 - p_2) \]
Equations for Bezier Curves

- Set up equations for cubic parametric curve
- Recall:
 \[p(u) = c_0 + c_1 u + c_2 u^2 + c_3 u^3 \]
 \[p'(u) = c_1 + 2c_2 u + 3c_3 u^2 \]
- Solve for \(c_k \)
 \[p_0 = p(0) = c_0 \]
 \[p_3 = p(1) = c_0 + c_1 + c_2 + c_3 \]
 \[p'(0) = 3p_1 - 3p_0 = c_1 \]
 \[p'(1) = 3p_3 - 3p_2 = c_1 + 2c_2 + 3c_3 \]

Bezier Geometry Matrix

- Calculate Bezier geometry matrix \(M_B \)
 \[
 \begin{bmatrix}
 c_0 \\
 c_1 \\
 c_2 \\
 c_3
 \end{bmatrix}
 = M_B
 \begin{bmatrix}
 p_0 \\
 p_1 \\
 p_2 \\
 p_3
 \end{bmatrix}
 \]
 so \(M_B = \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 -3 & 3 & 0 & 0 \\
 3 & -6 & 3 & 0 \\
 -1 & 3 & -3 & 1
 \end{bmatrix} \)
- Have \(C^0 \) continuity, not \(C^1 \) continuity
- Have \(C^1 \) continuity with additional condition
Blending Polynomials

- Determine contribution of each control point

\[b(u) = M_B^T u = \begin{bmatrix} (1-u)^3 \\ 3u(1-u)^2 \\ 3u^2(1-u) \\ u^3 \end{bmatrix} \]

Smooth blending polynomials

Convex Hull Property

- Bezier curve contained entirely in convex hull of control points
- Determined choice of tangent coefficient (?)
Beziers Surface Patches

- Specify Bezier patch with 4×4 control points

- Bezier curves along the boundary
 \[p(0, 0) = p_{00} \]
 \[\frac{\partial p}{\partial u}(0, 0) = 3(p_{10} - p_{00}) \]
 \[\frac{\partial p}{\partial v}(0, 0) = 3(p_{01} - p_{00}) \]

Twist

- Inner points determine twist at corner
 \[\frac{\partial^2 p}{\partial u \partial v}(0, 0) = 9(p_{00} - p_{01} + p_{10} - p_{11}) \]
- Flat means p_{00}, p_{10}, p_{01}, p_{11} in one plane
- $(\partial^2 p/\partial u \partial v)(0,0) = 0$
Summary

• Parametric Representations
• Cubic Polynomial Forms
• Hermite Curves
• Bezier Curves and Surfaces

Preview

• B-Splines: more continuity (C²)
• Non-uniform B-splines (“heavier” points)
• Non-uniform rational B-splines (NURBS)
 – Rational functions instead of polynomials
 – Based on homogeneous coordinates
• Rendering and recursive subdivision
• Curves and surfaces in OpenGL
Announcements

• Handing back Assignment 2 Thursday
• Model solution coming soon
• Assignment 3 due a week from Thursday
• Movie from Assignment 1!
• Thursday: Texture Mapping [Ian Graham]
• Next Tuesday: Splines