Catmull-Rom splines

Christopher Twigg

March 11, 2003

1 Definition

Catmull-Rom splines are a family of cubic interpolating splines formulated such that the tangent at each point \mathbf{p}_{i} is calculated using the previous and next point on the spline, $\tau\left(\mathbf{p}_{i+1}-\mathbf{p}_{i-1}\right)$. The geometry matrix is given by

$$
\mathbf{p}(s)=\left[\begin{array}{llll}
1 & u & u^{2} & u^{3}
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\tau & 0 & \tau & 0 \\
2 \tau & \tau-3 & 3-2 \tau & -\tau \\
-\tau & 2-\tau & \tau-2 & \tau
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i-2} \\
\mathbf{p}_{i-1} \\
\mathbf{p}_{i} \\
\mathbf{p}_{i+1}
\end{array}\right]
$$

Catmull-Rom splines have C^{1} continuity, local control, and interpolation, but do not lie within the convex hull of their control points.

Note that the tangent at point \mathbf{p}_{0} is not clearly defined; oftentimes we set this to $\tau\left(\mathbf{p}_{1}-\mathbf{p}_{0}\right)$ although this is not necessary for the assignment (you can just assume the curve does not interpolate its endpoints).

The parameter τ is known as "tension" and it affects how sharply the curve bends at the (interpolated) control points (figure 2). It is often set to $1 / 2$ but you can use any reasonable value for this assignment.

2 Derivation

Consider a single Catmull-Rom segment, $\mathbf{p}(s)$. Suppose it is defined by 4 control points, $\mathbf{p}_{i-2}, \mathbf{p}_{i-1}, \mathbf{p}_{i}$, and \mathbf{p}_{i+1}, as in figure 3. We know that since it is cubic, it can be expressed by the polynomial form,

$$
\begin{align*}
\mathbf{p}(s) & =\mathbf{c}_{0}+\mathbf{c}_{1} u+\mathbf{c}_{2} u^{2}+\mathbf{c}_{3} u^{3} \tag{1}\\
& =\sum_{k=0}^{3} \mathbf{c}_{k} u^{k} \tag{2}
\end{align*}
$$

Figure 1: A Catmull-Rom spline

Figure 2: The effect of τ

Figure 3: Catmull-Rom spline derivation

Now, we need to express some constraints. Examining figure 3, we find the following,

$$
\begin{aligned}
\mathbf{p}(0) & =\mathbf{p}_{i-1} \\
\mathbf{p}(1) & =\mathbf{p}_{i} \\
\mathbf{p}^{\prime}(0) & =\tau\left(\mathbf{p}_{i}-\mathbf{p}_{i-2}\right) \\
\mathbf{p}^{\prime}(1) & =\tau\left(\mathbf{p}_{i+1}-\mathbf{p}_{i-1}\right)
\end{aligned}
$$

(you should make sure you understand where these come from). Now, we can combine these constraints with (2) to get the following,

$$
\begin{align*}
\mathbf{c}_{0} & =\mathbf{p}_{i-1} \tag{3}\\
\mathbf{c}_{0}+\mathbf{c}_{1}+\mathbf{c}_{2}+\mathbf{c}_{3} & =\mathbf{p}_{i} \tag{4}\\
\mathbf{c}_{1} & =\tau\left(\mathbf{p}_{i}-\mathbf{p}_{i-2}\right) \tag{5}\\
\mathbf{c}_{1}+2 \mathbf{c}_{2}+3 \mathbf{c}_{3} & =\tau\left(\mathbf{p}_{i+1}-\mathbf{p}_{i-1}\right) \tag{6}
\end{align*}
$$

Now, we can substitute (3) and (5) into (4) and (6) to get equations in where \mathbf{c}_{2} and \mathbf{c}_{3} are the only variables.

$$
\begin{aligned}
\mathbf{c}_{2}+\mathbf{c}_{3} & =\left(\mathbf{p}_{i}-\mathbf{p}_{i-1}\right)-\tau\left(\mathbf{p}_{i}-\mathbf{p}_{i-2}\right) \\
2 \mathbf{c}_{2}+3 \mathbf{c}_{3} & =\tau\left(\mathbf{p}_{i+1}-\mathbf{p}_{i-1}\right)-\tau\left(\mathbf{p}_{i}-\mathbf{p}_{i-2}\right)
\end{aligned}
$$

Now, it should be clear that by subtracting these two equations we can easily solve for \mathbf{c}_{2} and \mathbf{c}_{3} in terms of the \mathbf{p}_{j} and τ (which is also user-specified). We get

$$
\begin{aligned}
& \mathbf{c}_{0}=\mathbf{p}_{i-1} \\
& \mathbf{c}_{1}=\tau\left(\mathbf{p}_{i}-\mathbf{p}_{i-2}\right) \\
& \mathbf{c}_{2}=3\left(\mathbf{p}_{i}-\mathbf{p}_{i-1}\right)-\tau\left(\mathbf{p}_{i+1}-\mathbf{p}_{i-1}\right)-2 \tau\left(\mathbf{p}_{i}-\mathbf{p}_{i-2}\right) \\
& \mathbf{c}_{3}=-2\left(\mathbf{p}_{i}-\mathbf{p}_{i-1}\right)+\tau\left(\mathbf{p}_{i+1}-\mathbf{p}_{i-1}\right)+\tau\left(\mathbf{p}_{i}-\mathbf{p}_{i-2}\right)
\end{aligned}
$$

Figure 4: Catmull-Rom blending functions for $\tau=\frac{1}{2}$

Now, if we want to form a basis matrix out of this, we should group all the $\left\{\mathbf{p}_{j}\right\}$ terms together,

$$
\begin{aligned}
& \mathbf{c}_{0}=\mathbf{p}_{i-1} \\
& \mathbf{c}_{1}=(-\tau) \mathbf{p}_{i-2}+(\tau) \mathbf{p}_{i} \\
& \mathbf{c}_{2}=(2 \tau) \mathbf{p}_{i-2}+(\tau-3) \mathbf{p}_{i-1}+(3-2 \tau) \mathbf{p}_{i}+(-\tau) \mathbf{p}_{i+1} \\
& \mathbf{c}_{3}=(-\tau) \mathbf{p}_{i-2}+(2-\tau) \mathbf{p}_{i-1}+(\tau-2) \mathbf{p}_{i}+(\tau) \mathbf{p}_{i+1}
\end{aligned}
$$

From this it should be fairly clear how to fill out the geometry matrix,

$$
\mathbf{p}(s)=\mathbf{u}^{T} \mathbf{M} \mathbf{p}=\left[\begin{array}{llll}
1 & u & u^{2} & u^{3}
\end{array}\right]\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-\tau & 0 & \tau & 0 \\
2 \tau & \tau-3 & 3-2 \tau & -\tau \\
-\tau & 2-\tau & \tau-2 & \tau
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{i-2} \\
\mathbf{p}_{i-1} \\
\mathbf{p}_{i} \\
\mathbf{p}_{i+1}
\end{array}\right]
$$

From this we can also derive our blending functions (see figure 4),

$$
\mathbf{M u}=\left[\begin{array}{c}
-\tau u+2 \tau u^{2}-\tau u^{3} \\
1+(\tau-3) u^{2}+(2-\tau) u^{3} \\
\tau u+(3-2 \tau) u^{2}+(\tau-2) u^{3} \\
-\tau u^{2}+\tau u^{3}
\end{array}\right]
$$

References

[1] Catmull, E., and Rom, R. A class of local interpolating splines. In Computer Aided Geometric Design, R. E. Barnhill and R. F. Reisenfeld, Eds. Academic Press, New York, 1974, pp. 317-326.
[2] Watt, A., and Watt, M. Advanced Animation and Rendering Techniques: Theory and Practice. ACM Press, 1992.

