Assignment 4: Curves and Surfaces

15-462 Computer Graphics I
Spring 2003
Frank Pfenning

Out February 20
Due February 27 before lecture
50 points

• The work must be all your own.
• The assignment is due before lecture on Thursday, February 28.
• Be explicit, define your symbols, and explain your steps.
 This will make it a lot easier for us to assign partial credit.

1 Bezier Curves (20 pts)

1. Under which conditions do we have C^1 continuity for two joined Bezier curves? Write out the condition explicitly as a test on the control points p_0, p_1, p_2, p_3 and q_0, q_1, q_2, q_3 of the two curves.

2. Under which conditions do we have G^1 continuity for two joined Bezier curves? Again, write out the condition explicitly as in part 1.

3. It is possible for a single segment Bezier curve to intersect itself. Give four control points with all coordinates between 0 and 1 that yield a self-intersecting Bezier curve.

4. Include a printed image of a self-intersecting Bezier curve with your assignment. You can capture an X window with `xwd -out bezier.xwd` and convert it to JPEG format with `convert bezier.xwd bezier.jpg`. You may use the sample program provided with Lecture 11 at http://www.cs.cmu.edu/~fp/courses/graphics/code/11-splines_code/bezcurve.c.

2 Bezier Surfaces (15 pts)

1. Compute the normal vector of a Bezier surface patch at the four corners and at the center ($u = v = 0.5$) for a given set of control points.

2. Discuss how you would define the normals for a surface created from joined Bezier patches using Gouraud shading.
3 Cubic B-Splines (15 pts)

1. Analyze the effect of four collinear control points on a cubic B-spline.
2. Verify the C^2 continuity of the cubic spline at the join points.