
Computation and Deduction

Frank Pfenning
Carnegie Mellon University

Draft of January 18, 2001

Notes for a course given at Carnegie Mellon University during the Spring semester
of 2001. Please send comments to fp@cs.cmu.edu. These notes are to be published
by Cambridge University Press.

Copyright c© Frank Pfenning 1992–2001

ii

Contents

1 Introduction 1
1.1 The Theory of Programming Languages 2
1.2 Deductive Systems . 3
1.3 Goals and Approach . 6

2 The Mini-ML Language 9
2.1 Abstract Syntax . 9
2.2 Substitution . 12
2.3 Operational Semantics . 13
2.4 Evaluation Returns a Value . 18
2.5 The Type System . 21
2.6 Type Preservation . 24
2.7 Further Discussion . 28
2.8 Exercises . 31

Bibliography 37

iii

iv CONTENTS

Chapter 1

Introduction

Now, the question, What is a judgement? is no small question,
because the notion of judgement is just about the first of all the
notions of logic, the one that has to be explained before all the oth-
ers, before even the notions of proposition and truth, for instance.

— Per Martin-Löf
On the Meanings of the Logical Constants and the

Justifications of the Logical Laws [ML96]

In everyday computing we deal with a variety of different languages. Some of them
such as C, C++, Ada, ML, or Prolog are intended as general purpose languages.
Others like Emacs Lisp, Tcl, TEX, HTML, csh, Perl, SQL, Visual Basic, VHDL, or
Java were designed for specific domains or applications. We use these examples to
illustrate that many more computer science researchers and system developers are
engaged in language design and implementation than one might at first suspect. We
all know examples where ignorance or disregard of sound language design principles
has led to languages in which programs are much harder to write, debug, compose,
or maintain than they should be. In order to understand the principles which guide
the design of programming languages, we should be familiar with their theory. Only
if we understand the properties of complete languages as opposed to the properties
of individual programs, do we understand how the pieces of a language fit together
to form a coherent (or not so coherent) whole.

As these notes demonstrate, the theory of programming languages does not
require a deep and complicated mathematical apparatus, but can be carried out
in a concrete, intuitive, and computational way. With a only a few exceptions,
the material in these notes has been fully implemented in a meta-language, a so-
called logical framework. This implementation encompasses the languages we study,
the algorithms pertaining to these languages (for example, compilation), and the
proofs of their properties (for example, compiler correctness). This allows hands-on

1

2 CHAPTER 1. INTRODUCTION

experimentation with the given languages and algorithms and the exploration of
variants and extensions. We now briefly sketch our approach and the organization
of these notes.

1.1 The Theory of Programming Languages

The theory of programming languages covers diverse aspects of languages and their
implementations. Logically first are issues of concrete syntax and parsing. These
have been relatively well understood for some time and are covered in numerous
books. We therefore ignore them in these notes in order to concentrate on deeper
aspects of languages.

The next question concerns the type structure of a language. The importance of
the type structure for the design and use of a language can hardly be overempha-
sized. Types help to sort out meaningless programs and type checking catches many
errors before a program is ever executed. Types serve as formal, machine-checked
documentation for an implementation. Types also specify interfaces to modules
and are therefore important to obtain and maintain consistency in large software
systems.

Next we have to ask about the meanings of programs in a language. The most
immediate answer is given by the operational semantics which specifies the behavior
of programs, usually at a relatively high level of abstraction.

Thus the fundamental parts of a language specification are the syntax, the type
system, and the operational semantics. These lead to many meta-theoretic questions
regarding a particular language. Is it effectively decidable if an input expression is
well-typed? Do the type system and the operational semantics fit together? Are
types needed during the execution of a program? In these notes we investigate such
questions in the context of small functional and logic programming languages. Many
of the same issues arise for realistic languages, and many of the same solutions still
apply.

The specification of an operational semantics rarely corresponds to an efficient
language implementation, since it is designed primarily to be easy to reason about.
Thus we also study compilation, the translation from a source language to a target
language which can be executed more efficiently by an abstract machine. Of course
we want to show that compilation preserves the observable behavior of programs.
Another important set of questions is whether programs satisfy some abstract speci-
fication, for example, if a particular function really computes the integer logarithm.
Similarly, we may ask if two programs compute the same function, even though
they may implement different algorithms and thus may differ operationally. These
questions lead to general type theory and denotational semantics, which we con-
sider only superficially in these notes. We concentrate on type systems and the
operational behavior of programs, since they determine programming style and are

1.2. DEDUCTIVE SYSTEMS 3

closest to the programmer’s intuition about a language. They are also amenable
to immediate implementation, which is not so direct, for example, for denotational
semantics.

The principal novel aspect of these notes is that the operational perspective
is not limited to the programming languages we study (the object language), but
encompasses the meta-language, that is, the framework in which we carry out our
investigation. Informally, the meta-language is centered on the notions of judgment
and deductive system explained below. They have been formalized in a logical
framework (LF) [HHP93] in which judgments can be specified at a high level of
abstraction, consistent with informal practice in computer science. LF has been
given an operational interpretation in the Elf meta-programming language [Pfe91,
Pfe94], thus providing means for a computational meta-theory. Implementations of
the languages, algorithms, and proofs of meta-theorems in these notes are available
electronically and constitute an important supplement to these notes. They provide
the basis for hands-on experimentation with language variants, extensions, proofs
of exercises, and projects related to the formalization and implementation of other
topics in the theory of programming languages. The most recent implementation
of both LF and Elf is called Twelf [PS99], available from the Twelf home page at
http://www.cs.cmu.edu/~twelf/.

1.2 Deductive Systems

In logic, deductive systems are often introduced as a syntactic device for establishing
semantic properties. We are given a language and a semantics assigning meaning
to expressions in the language, in particular to a category of expressions called
formulas. Furthermore, we have a distinguished semantic property, such as truth in
a particular model. A deductive system is then defined through a set of axioms (all of
which are true formulas) and rules of inference which yield true formulas when given
true formulas. A deduction can be viewed as a tree labelled with formulas, where
the axioms are leaves and inference rules are interior nodes, and the label of the
root is the formula whose truth is established by the deduction. This naturally leads
to a number of meta-theoretic questions concerning a deductive system. Perhaps
the most immediate are soundness: “Are the axioms true, and is truth preserved by
the inference rules?” and completeness: “Can every true formula be deduced?”. A
difficulty with this general approach is that it requires the mathematical notion of
a model, which is complex and not immediately computational.

An alternative is provided by Martin-Löf [ML96, ML85] who introduces the no-
tion of a judgment (such as “A is true”) as something we may know by virtue of
a proof. For him the notions of judgment and proof are thus more basic than the
notions of proposition and truth. The meaning of propositions is explained via the
rules we may use to establish their truth. In Martin-Löf’s work these notions are

4 CHAPTER 1. INTRODUCTION

mostly informal, intended as a philosophical foundation for constructive mathemat-
ics and computer science. Here we are concerned with actual implementation and
also the meta-theory of deductive systems. Thus, when we refer to judgments we
mean formal judgments and we substitute the synonyms deduction and derivation
for formal proof. The term proof is reserved for proofs in the meta-theory. We call
a judgment derivable if (and only if) it can be established by a deduction, using
the given axioms and inference rules. Thus the derivable judgments are defined
inductively. Alternatively we might say that the set of derivable judgments is the
least set of judgments containing the axioms and closed under the rules of inference.
The underlying view that axioms and inference rules provide a semantic definition
for a language was also advanced by Gentzen [Gen35] and is sometimes referred
to as proof-theoretic semantics. A study of deductive systems is then a semantic
investigation with syntactic means. The investigation of a theory of deductions
often gives rise to constructive proofs of properties such as consistency (not every
formula is provable), which was one of Gentzen’s primary motivations. This is also
an important reason for the relevance of deductive systems in computer science.

The study of deductive systems since the pioneering work of Gentzen has arrived
at various styles of calculi, each with its own concepts and methods independent
of any particular logical interpretation of the formalism. Systems in the style of
Hilbert [HB34] have a close connection to combinatory calculi [CF58]. They are
characterized by many axioms and a small number of inference rules. Systems
of natural deduction [Gen35, Pra65] are most relevant to these notes, since they
directly define the meaning of logical symbols via inference rules. They are also
closely related to typed λ-calculi and thus programming languages via the so-called
Curry-Howard isomorphism [How80]. Gentzen’s sequent calculus can be consid-
ered a calculus of proof search and is thus relevant to logic programming, where
computation is realized as proof search according to a fixed strategy.

In these notes we concentrate on calculi of natural deduction, investigating meth-
ods for

1. the definition of judgments,

2. the implementation of algorithms for deriving judgments and manipulating
deductions, and

3. proving properties of deductive systems.

As an example of these three tasks, we show what they might mean in the context
of the description of a programming language.

Let e range over expressions of a statically typed programming language, τ range
over types, and v over those expressions which are values. The relevant judgments
are

. e : τ e has type τ
e ↪→ v e evaluates to v

1.2. DEDUCTIVE SYSTEMS 5

1. The deductive systems that define these judgments fix the type system and
the operational semantics of our programming language.

2. An implementation of these judgments provides a program for type inference
and an interpreter for expressions in the language.

3. A typical meta-theorem is type preservation, which expresses that the type
system and the operational semantics are compatible:

If . e : τ is derivable and e ↪→ v is derivable, then . v : τ is derivable.

In this context the deductive systems define the judgments under considerations:
there simply exists no external, semantical notion against which our inference rules
should be measured. Different inference systems lead to different notions of evalu-
ation and thus to different programming languages.

We use standard notation for judgments and deductions. Given a judgment J
with derivation D we write

D
J

or, because of its typographic simplicity,D :: J . An application of a rule of inference
with conclusion J and premises J1, . . . , Jn has the general form

J1 . . . Jn
rule name.

J

An axiom is simply an inference rule with no premises (n = 0) and we still show
the horizontal line. We use script letters D, E ,P,Q, . . . to range over deductions.
Inference rules are almost always schematic, that is, they contain meta-variables.
A schematic inference rule stands for all its instances which can be obtained by
replacing the meta-variables by expressions in the appropriate syntactic category.
We usually drop the byword “schematic” for the sake of simplicity.

Deductive systems are intended to provide an explicit calculus of evidence for
judgments. Sometimes complex side conditions restrict the set of possible instances
of an inference rule. This can easily destroy the character of the inference rules in
that much of the evidence for a judgment may be implicit in the side conditions. We
therefore limit ourselves to side conditions regarding legal occurrences of variables
in the premises. It is no accident that our formalization techniques directly account
for such side conditions. Other side conditions as they may be found in the literature
can often be converted into explicit premises involving auxiliary judgments. There
are a few standard means to combine judgments to form new ones. In particular,
we employ parametric and hypothetical judgments. Briefly, a hypothetical judgment
expresses that a judgment J may be derived under the assumption or hypothesis
J ′. If we succeed in constructing a deduction D′ of J ′ we can substitute D′ in

6 CHAPTER 1. INTRODUCTION

every place where J ′ was used in the original, hypothetical deduction of J to obtain
unconditional evidence for J . A parametric judgment J is a judgment containing a
meta-variable x ranging over some syntactic category. It is judged evident if we can
provide a deduction D of J such that we can replace x in D by any expression in the
appropriate syntactic category and obtain a deduction for the resulting instance of
J .

In the statements of meta-theorems we generally refer to a judgment J as deriv-
able or not derivable. This is because judgments and deductions have now become
objects of study and are themselves subjects of judgments. However, using the
phrase “is derivable” pervasively tends to be verbose, and we will take the liberty
of using “J” to stand for “J is derivable” when no confusion can arise.

1.3 Goals and Approach

We pursue several goals with these notes. First of all, we would like to convey a
certain style of language definition using deductive systems. This style is standard
practice in modern computer science and students of the theory of programming
languages should understand it thoroughly.

Secondly, we would like to impart the main techniques for proving properties of
programming languages defined in this style. Meta-theory based on deductive sys-
tems requires surprisingly few principles: induction over the structure of derivations
is by far the most common technique.

Thirdly, we would like the reader to understand how to employ the LF logical
framework [HHP93] and the Twelf system [PS99] in order to implement these def-
initions and related algorithms. This serves several purposes. Perhaps the most
important is that it allows hands-on experimentation with otherwise dry definitions
and theorems. Students can get immediate feedback on their understanding of the
course material and their ideas about exercises. Furthermore, using a logical frame-
work deepens one’s understanding of the methodology of deductive systems, since
the framework provides an immediate, formal account of informal explanations and
practice in computer science.

Finally, we would like students to develop an understanding of the subject mat-
ter, that is, functional and logic programming. This includes an understanding
of various type systems, operational semantics for functional languages, high-level
compilation techniques, abstract machines, constructive logic, the connection be-
tween constructive proofs and functional programs, and the view of goal-directed
proof search as the foundation for logic programming. Much of this understanding,
as well as the analysis and implementation techniques employed here, apply to other
paradigms and more realistic, practical languages.

The notes begin with the theory of Mini-ML, a small functional language includ-
ing recursion and polymorphism (Chapter 2). We informally discuss the language

1.3. GOALS AND APPROACH 7

specification and its meta-theory culminating in a proof of type preservation, al-
ways employing deductive systems. This exercise allows us to identify common
concepts of deductive systems which drive the design of a logical framework . In
Chapter ?? we then incrementally introduce features of the logical framework LF,
which is our formal meta-language. Next we show how LF is implemented in the
Elf programming language (Chapter ??). Elf endows LF with an operational in-
terpretation in the style of logic programming, thus providing a programming lan-
guage for meta-programs such as interpreters or type inference procedures. Our
meta-theory will always be constructive and we observe that meta-theoretic proofs
can also be implemented and executed in Elf, although at present they cannot be
verified completely. Next we introduce the important concepts of parametric and
hypothetical judgments (Chapter ??) and develop the implementation of the proof
of type preservation. At this point the basic techniques have been established,
and we devote the remaining chapters to case studies: compilation and compiler
correctness (Chapter ??), natural deduction and the connection between construc-
tive proofs and functional programs (Chapter ??), the theory of logic programming
(Chapter ??), and advanced type systems (Chapter ??).

8 CHAPTER 1. INTRODUCTION

Chapter 2

The Mini-ML Language

Unfortunately one often pays a price for [languages which impose
no discipline of types] in the time taken to find rather inscrutable
bugs—anyone who mistakenly applies CDR to an atom in LISP
and finds himself absurdly adding a property list to an integer, will
know the symptoms.

— Robin Milner
A Theory of Type Polymorphism in Programming [Mil78]

In preparation for the formalization of Mini-ML in a logical framework, we begin
with a description of the language in a common mathematical style. The version
of Mini-ML we present here lies in between the language introduced in [CDDK86,
Kah87] and call-by-value PCF [Plo75, Plo77]. The description consists of three
parts: (1) the abstract syntax, (2) the operational semantics, and (3) the type
system. Logically, the type system would come before the operational semantics,
but we postpone the more difficult typing rules until Section 2.5.

2.1 Abstract Syntax

The language of types centrally affects the kinds of expression constructs that should
be available in the language. The types we include in our formulation of Mini-
ML are natural numbers, products, and function types. Many phenomena in the
theory of Mini-ML can be explored with these types; some others are the subject
of Exercises 2.7, 2.8, and 2.10. For our purposes it is convenient to ignore certain
questions of concrete syntax and parsing and present the abstract syntax of the
language in Backus Naur Form (BNF). The vertical bar “|” separates alternatives
on the right-hand side of the definition symbol “::=”. Definitions in this style

9

10 CHAPTER 2. THE MINI-ML LANGUAGE

can be understood as inductive definitions of syntactic categories such as types or
expressions.

Types τ ::= nat | τ1 × τ2 | τ1 → τ2 | α

Here, nat stands for the type of natural numbers, τ1×τ2 is the type of pairs with
elements from τ1 and τ2, τ1 → τ2 is the type of functions mapping elements of type
τ1 elements of type τ2. Type variables are denoted by α. Even though our language
supports a form of polymorphism, we do not explicitly include a polymorphic type
constructor in the language; see Section 2.5 for further discussion of this issue. We
follow the convention that × and → associate to the right, and that × has higher
precendence than→. Parentheses may be used to explicitly group type expressions.
For example,

nat × nat→ nat→ nat

denotes the same type as

(nat × nat)→ (nat→ nat).

For each concrete type (excluding type variables) we have expressions that allow
us to construct elements of that type and expressions that allow us to destruct
elements of that type. We choose to separate the languages of types and expressions
so we can define the operational semantics without recourse to typing. We have in
mind, however, that only well-typed programs will ever be executed.

Expressions e ::= z | s e | (case e1 of z⇒ e2 | s x⇒ e3) Natural numbers
| 〈e1, e2〉 | fst e | snd e Pairs
| lam x. e | e1 e2 Functions
| letval x = e1 in e2 Definitions
| letname x = e1 in e2

| fix x. e Recursion
| x Variables

Most of these constructs should be familiar from functional programming lan-
guages such as ML: z stands for zero, s e stands for the successor of e. A case-
expression chooses a branch based on whether the value of the first argument is
zero or non-zero. Abstraction, lam x. e, forms functional expressions. It is often
written λx. e, but we will reserve “λ” for the formal meta-language. Application of
a function to an argument is denoted simply by juxtaposition.

Definitions introduced by let val provide for explicit sequencing of computation,
while letname introduces a local name abbreviating an expression. The latter
incorporates a form of polymorphism. Recursion is introduced via the fixed point
construct fix x. e explained below using the example of addition.

2.1. ABSTRACT SYNTAX 11

We use e, e′, . . ., possibly subscripted, to range over expressions. The letters
x, y, and occasionally u, v, f and g, range over variables. We use a boldface font
for language keywords. Parentheses are used for explicit grouping as for types.
Juxtaposition associates to the left. The period (in lam x. and fix x.) and the
keywords in and of act as a prefix whose scope extends as far to the right as possible
while remaining consistent with the present parentheses. For example, lam x. x z
stands for lam x. (x z) and

letval x = z in case x of z⇒ y | s x′ ⇒ f x′ x

denotes the same expression as

letval x = z in (case x of z⇒ y | s x′ ⇒ ((f x′) x)).

As a first example, consider the following implementation of the predecessor
function, where the predecessor of 0 is defined to be 0.

pred = lam x. case x of z⇒ z | s x′ ⇒ x′

Here “=” introduces a definition in our mathematical meta-language.
As a second example, we develop the definition of addition that illustrates the

fixed point operator in the language. We begin with an informal recursive specifi-
cation of the behavior or plus1.

plus1 z m = m
plus1 (s n′) m = s (plus1 n

′ m)

In order to express this within our language, we need to perform several transforma-
tions. The first is to replace the two clauses of the specification by one, expressing
the case distinction in Mini-ML.

plus1 n m = case n of z⇒ m | s x′ ⇒ s (plus1 x
′ m)

In the second step we explicitly abstract over the arguments of plus1.

plus1 = lam x. lam y. case x of z⇒ y | s x′⇒ s (plus1 x
′ y)

At this point we have an equation of the form

f = e(. . . f . . .)

where f is a variable (plus1) and e(. . . f . . .) is an expression with some occurrences
of f . If we think of e as a function that depends on f , then f is a fixed point of
e since e(. . . f . . .) = f . The Mini-ML language allows us to construct such a fixed
point directly.

f = fix x. e(. . . x . . .)

12 CHAPTER 2. THE MINI-ML LANGUAGE

In our example, this leads to the definition

plus1 = fix add . lam x. lam y. case x of z⇒ y | s x′ ⇒ s (add x′ y).

Our operational semantics will have to account for the recursive nature of computa-
tion in the presence of fixed point expressions, including possible non-termination.

The reader may want to convince himself now or after the detailed presentation
of the operational semantics that the following are correct alternative definitions of
addition.

plus2 = lam y. fix add . lam x. case x of z⇒ y | s x′ ⇒ s (add x′)
plus3 = fix add . lam x. lam y. case x of z⇒ y | s x′ ⇒ add x′ (s y)

2.2 Substitution

The concepts of free and bound variable are fundamental in this and many other
languages. In Mini-ML variables are scoped as follows:

case e1 of z⇒ e2 | s x⇒ e3 binds x in e3,
lam x. e binds x in e,
let val x = e1 in e2 binds x in e2,
let name x = e1 in e2 binds x in e2,
fix x. e binds x in e.

An occurrence of variable x in an expression e is a bound occurrence if it lies within
the scope of a binder for x in e, in which case it refers to the innermost enclosing
binder. Otherwise the variable is said to be free in e. For example, the two non-
binding occurrences of x and y below are bound, while the occurrence of u is free.

letname x = lam y. y in x u

The names of bound variables may be important to the programmer’s intuition,
but they are irrelevant to the formal meaning of an expression. We therefore do
not distinguish between expressions that differ only in the names of their bound
variables. For example, lam x. x and lam y. y both denote the identity function.
Of course, variables must be renamed “consistently”, that is, corresponding variable
occurrences must refer to the same binder. Thus

lam x. lam y. x = lam u. lam y. u

but
lam x. lam y. x 6= lam y. lam y. y.

When we wish to be explicit, we refer to expressions that differ only in the names of
their bound variables as α-convertible and the renaming operation as α-conversion.

2.3. OPERATIONAL SEMANTICS 13

Languages in which meaning is invariant under variable renaming are said to be
lexically scoped or statically scoped, since it is clear from program text, without
considering the operational semantics, where a variable occurrence is bound. Lan-
guages such as Lisp that permit dynamic scoping for some variables are semantically
less transparent and more difficult to describe formally and reason about.

A fundamental operation on expressions is substitution, the replacement of a
free variable by an expression. We write [e′/x]e for the result of substituting e′ for
all free occurrences of x in e. During this substitution operation we must make
sure that no variable that is free in e′ is captured by a binder in e. But since we
may tacitly rename bound variables, the result of substitution is always uniquely
defined. For example,

[x/y]lam x. y = [x/y]lam x′. y = lam x′. x 6= lam x. x.

This form of substitution is often called capture-avoiding substitution. It is the only
meaningful form of substitution under the variable renaming convention: with pure
textual replacement we could conclude that

lam x. x = [x/y](lam x. y) = [x/y](lam x′. y) = lam x′. x,

which is clearly nonsensical.
Substitution has a number of obvious and perhaps not so obvious properties.

The first class of properties may be considered part of a rigorous definition of
substitution. These are equalities of the form

[e′/x]x = e′

[e′/x]y = y for x 6= y
[e′/x](e1 e2) = ([e′/x]e1) ([e′/x]e2)

[e′/x](lam y. e) = lam y. [e′/x]e for x 6= y and y not free in e′.

Of course, there exists one of these equations for every construct in the language. A
second important property states that consecutive substitutions can be permuted
with each other under certain circumstances:

[e2/x2]([e1/x1]e) = [([e2/x2]e1)/x1]([e2/x2]e)

provided x1 does not occur free in e2. The reader is invited to explore the formal
definition and properties of substitution in Exercise 2.9. We will take such simple
properties largely for granted.

2.3 Operational Semantics

The first judgment to be defined is the evaluation judgment, e ↪→ v (read: e eval-
uates to v). Here v ranges over expressions; in Section 2.4 we define the notion of

14 CHAPTER 2. THE MINI-ML LANGUAGE

a value and show that the result of evaluation is in fact a value. For now we only
informally think of v as representing the value of e. The definition of the evaluation
judgment is given by inference rules. Here, and in the remainder of these notes, we
think of axioms as inference rules with no premises, so that no explicit distinction
between axioms and inference rules is necessary. A definition of a judgment via
inference rules is inductive in nature, that is, e evaluates to v if and only if e ↪→ v
can be established with the given set of inference rules. We will make use of this in-
ductive structure of deductions throughout these notes in order to prove properties
of deductive systems.

This approach to the description of the operational semantics of programming
languages goes back to Plotkin [Plo75, Plo81] under the name of structured oper-
ational semantics and Kahn [Kah87], who calls his approach natural semantics.
Our presentation follows the style of natural semantics.

We begin with the rules concerning the natural numbers.

ev z
z ↪→ z

e ↪→ v
ev s

s e ↪→ s v

The first rule expresses that z is a constant and thus evaluates to itself. The second
expresses that s is a constructor, and that its argument must be evaluated, that is,
the constructor is eager and not lazy. For more on this distinction, see Exercise 2.13.
Note that the second rule is schematic in e and v: any instance of this rule is valid.

The next two inference rules concern the evaluation of the case construct. The
second of these rules requires substitution as introduced in the previous section.

e1 ↪→ z e2 ↪→ v
ev case z

(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

e1 ↪→ s v′1 [v′1/x]e3 ↪→ v
ev case s

(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

The substitution of v′1 for x in case e1 evaluates to s v′1 eliminates the need for
environments which are present in many other semantic definitions. These rules
are declarative in nature, that is, we define the operational semantics by declaring
rules of inference for the evaluation judgment without actually implementing an
interpreter. This is exhibited clearly in the two rules for the conditional: in an
interpreter, we would evaluate e1 and then branch to the evaluation of e2 or e3,
depending on the value of e1. This interpreter structure is not contained in these
rules; in fact, naive search for a deduction under these rules will behave differently
(see Section ??).

As a simple example that can be expressed using only the four rules given so
far, consider the derivation of (case s (s z) of z ⇒ z | s x′ ⇒ x′) ↪→ s z. This

2.3. OPERATIONAL SEMANTICS 15

would arise as a subdeduction in the derivation of pred (s (s z)) with the earlier
definition of pred .

ev z
z ↪→ z

ev s
s z ↪→ s z

ev s
s (s z) ↪→ s (s z)

ev z
z ↪→ z

ev s
s z ↪→ s z

ev case s
(case s (s z) of z⇒ z | s x′⇒ x′) ↪→ s z

The conclusion of the second premise arises as [(s z)/x′]x′ = s z. We refer to a
deduction of a judgment e ↪→ v as an evaluation deduction or simply evaluation of
e. Thus deductions play the role of traces of computation.

Pairs do not introduce any new ideas.

e1 ↪→ v1 e2 ↪→ v2
ev pair

〈e1, e2〉 ↪→ 〈v1, v2〉

e ↪→ 〈v1, v2〉
ev fst

fst e ↪→ v1

e ↪→ 〈v1, v2〉
ev snd

snd e ↪→ v2

This form of operational semantics avoids explicit error values: for some ex-
pressions e there simply does not exist any value v such that e ↪→ v would be
derivable. For example, when trying to construct a v and a deduction of the ex-
pression (case 〈z, z〉 of z ⇒ z | s x′ ⇒ x′) ↪→ v, one arrives at the following
impasse:

ev z
z ↪→ z

ev z
z ↪→ z

ev pair
〈z, z〉 ↪→ 〈z, z〉 ?

?
case 〈z, z〉 of z⇒ z | s x′ ⇒ x′ ↪→ v

There is no inference rule “?” which would allow us to fill v with an expression and
obtain a valid deduction. This particular kind of example will be excluded by the
typing system, since the argument which determines the cases here is not a natural
number. On the other hand, natural semantics does not preclude a formulation
with explicit error elements (see Exercise 2.10).

In programming languages such as Mini-ML functional abstractions evaluate to
themselves. This is true for languages with call-by-value and call-by-name seman-
tics, and might be considered a distinguishing characteristic of evaluation compared

16 CHAPTER 2. THE MINI-ML LANGUAGE

to normalization.

ev lam
lam x. e ↪→ lam x. e

e1 ↪→ lam x. e′1 e2 ↪→ v2 [v2/x]e
′
1 ↪→ v

ev app
e1 e2 ↪→ v

This specifies a call-by-value discipline for our language, since we evaluate e2 and
then substitute the resulting value v2 for x in the function body e′1. In a call-by-
name discipline, we would omit the second premise and the third premise would be
[e2/x]e

′
1 ↪→ v (see Exercise 2.13).

The inference rules above have an inherent inefficiency: the deduction of a judg-
ment of the form [v2/x]e

′
1 ↪→ v may have many copies of a deduction of v2 ↪→ v2.

In an actual interpreter, we would like to evaluate e′1 in an environment where x is
bound to v2 and simply look up the value of x when needed. Such a modification in
the specification, however, is not straightforward, since it requires the introduction
of closures. We make such an extension to the language as part of the compilation
process in Section ??.

The rules for let are straightforward, given our understanding of function ap-
plication. There are two variants, depending on whether the subject is evaluated
(let val) or not (let name).

e1 ↪→ v1 [v1/x]e2 ↪→ v
ev letv

let val x = e1 in e2 ↪→ v

[e1/x]e2 ↪→ v
ev letn

let name x = e1 in e2 ↪→ v

The letval construct is intended for the computation of intermediate results that
may be needed more than once, while the let name construct is primarily intended
to give names to functions so they can be used polymorphically. For more on this
distinction, see Section 2.5.

Finally, we come to the fixed point construct. Following the considerations in
the example on page 11, we arrive at the rule

[fix x. e/x]e ↪→ v
ev fix.

fix x. e ↪→ v

Thus evaluation of a fixed point construct unrolls the recursion one level and eval-
uates the result. Typically this uncovers a lam-abstraction which evaluates to

2.3. OPERATIONAL SEMANTICS 17

itself. This rule clearly exhibits another situation in which an expression does not
have a value: consider fix x. x. There is only one rule with a conclusion of the
form fix x. e ↪→ v, namely ev fix. So if fix x. x ↪→ v were derivable for some v,
then the premise, namely [fix x. x/x]x ↪→ v would also have to be derivable. But
[fix x. x/x]x = fix x. x, and the instance of ev fix would have to have the form

fix x. x ↪→ v
ev fix.

fix x. x ↪→ v

Clearly we have made no progress, and hence there is no evaluation of fix x. x.
As an example of a successful evaluation, consider the function which doubles its
argument.

double = fix f. lam x. case x of z⇒ z | s x′ ⇒ s (s (f x′))

The representation of the evaluation tree for double (s z) uses a linear notation
which is more amenable to typesetting. The lines are shown in the order in which
they would arise during a left-to-right, depth-first construction of the evaluation
deduction. Thus it might be easiest to read this from the bottom up. We use
double as a short-hand for the expression shown above and not as a definition
within the language in order to keep the size of the expressions below manageable.
Furthermore, we use double′ for the result of unrolling the fixed point expression
double once.

1 double′ ↪→ double′ ev lam
2 double ↪→ double′ ev fix 1
3 z ↪→ z ev z
4 s z ↪→ s z ev s 3
5 z ↪→ z ev z
6 s z ↪→ s z ev s 5
7 double′ ↪→ double′ ev lam
8 double ↪→ double′ ev fix 1
9 z ↪→ z ev z

10 z ↪→ z ev z
11 z ↪→ z ev z
12 (case z of z⇒ z | s x′ ⇒ s (s (double x′))) ↪→ z ev case z 10, 11
13 double z ↪→ z ev app 8, 9, 12
14 s (double z) ↪→ s z ev s 13
15 s (s (double z)) ↪→ s (s z) ev s 14
16 (case s z of z⇒ z | s x′⇒ s (s (double x′))) ↪→ s (s z) ev case s 6, 15
17 double (s z) ↪→ s (s z) ev app 2, 4, 16

where

double = fix f. lam x. case x of z⇒ z | s x′ ⇒ s (s (f x′))
double′ = lam x. case x of z⇒ z | s x′ ⇒ s (s (double x′))

18 CHAPTER 2. THE MINI-ML LANGUAGE

The inefficiencies of the rules we alluded to above can be seen clearly in this
example: we need two copies of the evaluation of s z, one of which should in principle
be unnecessary, since we are in a call-by-value language (see Exercise 2.12).

2.4 Evaluation Returns a Value

Before we discuss the type system, we will formulate and prove a simple meta-
theorem. The set of values in Mini-ML can be described by the BNF grammar

Values v ::= z | s v | 〈v1, v2〉 | lam x. e.

This kind of grammar can be understood as a form of inductive definition of a
subcategory of the syntactic category of expressions: a value is either z, the successor
of a value, a pair of values, or any lam-expression. There are alternative equivalent
definition of values, for example as those expressions which evaluate to themselves
(see Exercise 2.14). Syntactic subcategories (such as values as a subcategory of
expressions) can also be defined using deductive systems. The judgment in this
case is unary: e Value. It is defined by the following inference rules:

val z
z Value

e Value
val s

s e Value

e1 Value e2 Value
val pair

〈e1, e2〉 Value
val lam

lam x. e Value

Again, this definition is inductive: an expression e is a value if and only if e Value
can be derived using these inference rules. It is common mathematical practice to
use different variable names for elements of the smaller set in order to distinguish
them in the presentation. But is it justified to write e ↪→ v with the understanding
that v is a value? This is the subject of the next theorem. The proof is instructive
as it uses an induction over the structure of a deduction. This is a central technique
for proving properties of deductive systems and the judgments they define. The
basic idea is simple: if we would like to establish a property for all deductions of a
judgment we show that the property is preserved by all inference rules, that is, we
assume the property holds of the deduction of the premises and we must show that
the property holds of the deduction of the conclusion. For an axiom (an inference
rule with no premises) this just means that we have to prove the property outright,
with no assumptions. An important special case of this induction principle is an
inversion principle: in many cases the form of a judgment uniquely determines
the last rule of inference which must have been applied, and we may conclude the
existence of a deduction of the premise.

2.4. EVALUATION RETURNS A VALUE 19

Theorem 2.1 (Value Soundness) For any two expressions e and v, if e ↪→ v is
derivable, then v Value is derivable.

Proof: The proof is by induction over the structure of the deduction D :: e ↪→ v.
We show a number of typical cases.

Case: D = ev z.
z ↪→ z

Then v = z is a value by the rule val z.

Case:

D =

D1

e1 ↪→ v1
ev s.

s e1 ↪→ s v1

The induction hypothesis on D1 yields a deduction of v1 Value. Using the
inference rule val s we conclude that s v1 Value.

Case:

D =

D1

e1 ↪→ z
D2

e2 ↪→ v
ev case z.

(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

Then the induction hypothesis applied to D2 yields a deduction of v Value,
which is what we needed to show in this case.

Case:

D =

D1

e1 ↪→ s v′1

D3

[v′1/x]e3 ↪→ v
ev case s.

(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

Then the induction hypothesis applied to D3 yields a deduction of v Value,
which is what we needed to show in this case.

Case: If D ends in ev pair we reason similar to cases above.

Case:

D =

D′
e′ ↪→ 〈v1, v2〉

ev fst.
fst e′ ↪→ v1

Then the induction hypothesis applied to D′ yields a deduction P ′ of the
judgment 〈v1, v2〉 Value. By examining the inference rules we can see that P ′

20 CHAPTER 2. THE MINI-ML LANGUAGE

must end in an application of the val pair rule, that is,

P ′ =

P1

v1 Value
P2

v2 Value
val pair

〈v1, v2〉 Value

for some P1 and P2. Hence v1 Value must be derivable, which is what we
needed to show. We call this form of argument inversion.

Case: If D ends in ev snd we reason similar to the previous case.

Case: D = ev lam.
lam x. e ↪→ lam x. e

Again, this case is immediate, since v = lam x. e is a value by rule val lam.

Case:

D =

D1

e1 ↪→ lam x. e′1

D2

e2 ↪→ v2

D3

[v2/x]e
′
1 ↪→ v

ev app.
e1 e2 ↪→ v

Then the induction hypothesis on D3 yields that v Value.

Case: D ends in ev letv. Similar to the previous case.

Case: D ends in ev letn. Similar to the previous case.

Case:

D =

D1

[fix x. e/x]e ↪→ v
ev fix.

fix x. e ↪→ v

Again, the induction hypothesis on D1 directly yields that v is a value.

2

Since it is so pervasive, we briefly summarize the principle of structural induction
used in the proof above. We assume we have an arbitrary derivation D of e ↪→ v
and we would like to prove a property P of D. We show this by induction on the
structure of D: For each inference rule in the system defining the judgment e ↪→ v
we show that the property P holds for the conclusion under the assumption that
it holds for every premise. In the special case of an inference rule with no premises
we have no inductive assumptions; this therefore corresponds to a base case of the
induction. This suffices to establish the property P for every derivation D since it
must be constructed from the given inference rules. In our particular theorem the
property P states that there exists a derivation P of the judgment that v is a value.

2.5. THE TYPE SYSTEM 21

2.5 The Type System

In the presentation of the language so far we have not used types. Thus types
are external to the language of expressions and a judgment such as . e : τ may
be considered as establishing a property of the (untyped) expression e. This view
of types has been associated with Curry [Cur34, CF58], and systems in this style
are often called type assignment systems. An alternative is a system in the style
of Church [Chu32, Chu33, Chu41], in which types are included within expressions,
and every well-typed expression has a unique type. We will discuss such a system
in Section ??.

Mini-ML as presented by Clément et al. is a language with some limited poly-
morphism in that it explicitly distinguishes between simple types and type schemes
with some restrictions on the use of type schemes. This notion of polymorphism
was introduced by Milner [Mil78, DM82]. We will refer to it as schematic polymor-
phism. In our formulation, we will be able to avoid using type schemes completely
by distinguishing two forms of definitions via let, one of which is polymorphic. A
formulation in this style orginates with Hannan and Miller [HM89, Han91, Han93].

Types τ ::= nat | τ1 × τ2 | τ1 → τ2 | α

Here, α stands for type variables. We also need a notion of context which assigns
types to free variables in an expression.

Contexts Γ ::= · | Γ, x:τ

We generally omit the empty context, “·”, and, for example, write x:τ for ·, x:τ .
We also have to deal again with the problem of variable names. In order to avoid
ambiguities and simplify the presentation, we stipulate that each variable may be
declared at most once in a context Γ. When we wish to emphasize this assumption,
we refer to contexts without repeated variables as valid contexts. We write Γ(x) for
the type assigned to x in Γ.

The typing judgment

Γ . e : τ

states that expression e has type τ in context Γ. It is important for the meta-theory
that there is exactly one inference rule for each expression constructor. We say that
the definition of the typing judgment is syntax-directed. Of course, many deduc-
tive systems defining typing judgments are not syntax-directed (see, for example,
Section ??).

We begin with typing rules for natural numbers. We require that the two
branches of a case-expression have the same type τ . This means that no mat-
ter which of the two branches of the case-expression applies during evaluation, the

22 CHAPTER 2. THE MINI-ML LANGUAGE

value of the whole expression will always have type τ .

tp z
Γ . z : nat

Γ . e : nat
tp s

Γ . s e : nat

Γ . e1 : nat Γ . e2 : τ Γ, x:nat . e3 : τ
tp case

Γ . (case e1 of z⇒ e2 | s x⇒ e3) : τ

Implicit in the third premise of the tp case rule is the information that x is a bound
variable whose scope is e3. Moreover, x stands for a natural number (the predecessor
of the value of e1). Note that we may have to rename the variable x in case another
variable with the same name already occurs in the context Γ.

Pairing is straightforward.

Γ . e1 : τ1 Γ . e2 : τ2
tp pair

Γ . 〈e1, e2〉 : τ1 × τ2
Γ . e : τ1 × τ2

tp fst
Γ . fst e : τ1

Γ . e : τ1 × τ2
tp snd

Γ . snd e : τ2

Because of the following rule for lam-abstraction, the type of an expression is
not unique. This is a characteristic property of a type system in the style of Curry.

Γ, x:τ1 . e : τ2
tp lam

Γ . lam x. e : τ1 → τ2

Γ . e1 : τ2 → τ1 Γ . e2 : τ2
tp app

Γ . e1 e2 : τ1

The rule tp lam is (implicitly) restricted to the case where x does not already occur
in Γ, since we made the general assumption that no variable occurs more than once
in a context. This restriction can be satisfied by renaming the bound variable x,
thus allowing the construction of a typing derivation for . lam x. lam x. x : α →
(β → β), but not for . lam x. lam x. x : α → (β → α). Note that together with
this rule, we need a rule for looking up variables in the context.

Γ(x) = τ
tp var

Γ . x : τ

As variables occur at most once in a context, this rule does not lead to any inherent
ambiguity.

2.5. THE TYPE SYSTEM 23

Our language incorporates a let val expression to compute intermediate values.
This is not strictly necessary, since it may be defined using lam-abstraction and
application (see Exercise 2.20).

Γ . e1 : τ1 Γ, x:τ1 . e2 : τ2
tp letv

Γ . letval x = e1 in e2 : τ2

Even though e1 may have more than one type, only one of these types (τ1) can be
used for occurrences of x in e2. In other words, x can not be used polymorphically,
that is, at various types.

Schematic polymorphism (or ML-style polymorphism) only plays a role in the
typing rule for let name. What we would like to achieve is that, for example, the
following judgment holds:

. let name f = lam x. x in 〈f z, f (lam y. s y)〉 : nat × (nat → nat)

Clearly, the expression can be evaluated to 〈z, (lam y. s y)〉, since lam x. x can act
as the identity function on any type, that is, both

. lam x. x : nat→ nat,
and . lam x. x : (nat→ nat)→ (nat→ nat)

are derivable. In a type system with explicit polymorphism a more general judg-
ment might be expressed as . lam x. x : ∀α. α → α (see Section ??). Here, we
use a different device by allowing different types to be assigned to e1 at different
occurrences of x in e2 when type-checking let name x = e1 in e2. We achieve this
by substituting e1 for x in e2 and checking only that the result is well-typed.

Γ . e1 : τ1 Γ . [e1/x]e2 : τ2
tp letn

Γ . letname x = e1 in e2 : τ2

Note that τ1, the type assigned to e1 in the first premise, is not used anywhere.
We require such a derivation nonetheless so that all subexpressions of a well-typed
term are guaranteed to be well-typed (see Exercise 2.21). The reader may want to
check that with this rule the example above is indeed well-typed.

Finally we come to the typing rule for fixed point expressions. In the evaluation
rule, we substitute [fix x. e/x]e in order to evaluate fix x. e. For this to be well-
typed, the body e must be well-typed under the assumption that the variable x has
the type of whole fixed point expression. Thus we are lead to the rule

Γ, x:τ . e : τ
tp fix.

Γ . fix x. e : τ

24 CHAPTER 2. THE MINI-ML LANGUAGE

More general typing rules for fixed point constructs have been considered in the
literature, most notably the rule of the Milner-Mycroft calculus which is discussed
in Section ??.

An important property of the system is that an expression uniquely determines
the last inference rule of its typing derivation. This leads to a principle of inversion:
from the type of an expression we can draw conclusions about the types of its
constituents expressions. The inversion principle is used pervasively in the proof of
Theorem 2.5, for example. In many deductive systems similar inversion principles
hold, though often they turn out to be more difficult to prove.

Lemma 2.2 (Inversion) Given a context Γ and an expression e such that Γ . e : τ
is derivable for some τ . Then the last inference rule of any derivation of Γ . e : τ ′

for some τ ′ is uniquely determined.

Proof: By inspection of the inference rules. 2

Note that this does not imply that types are unique. In fact, they are not, as
illustrated above in the rule for lam-abstraction.

2.6 Type Preservation

Before we come to the statement and proof of type preservation in Mini-ML, we need
a few preparatory lemmas. The reader may wish to skip ahead and reexamine these
lemmas wherever they are needed. We first note the property of weakening and then
state and prove a substitution lemma for typing derivations. Substitution lemmas
are basic to the investigation of many deductive systems, and we will pay special
attention to them when considering the representation of proofs of meta-theorems
in a logical framework. We use the notation Γ,Γ′ for the result of appending the
declarations in Γ and Γ′ assuming implicitly that the result is valid. Recall that a
context is valid if no variable in it is declared more than once.

Lemma 2.3 (Weakening) If Γ . e : τ then Γ,Γ′ . e : τ provided Γ,Γ′ is a valid
context.

Proof: By straightforward induction over the structure of the derivation of Γ .
e : τ . The only inference rule where the context is examined is tp var which will
be applicable if a declaration x:τ is present in the context Γ. It is clear that the
presence of additional non-conflicting declarations does not alter this property. 2

Type derivations which differ only by weakening in the type declarations Γ have
identical structure. Thus we permit the weakening of type declarations in Γ during
a structural induction over a typing derivation. The substitution lemma below is
also central. It is closely related to the notions of parametric and hypothetical
judgments introduced in Chapter ??.

2.6. TYPE PRESERVATION 25

Lemma 2.4 (Substitution) If Γ . e′ : τ ′ and Γ, x:τ ′,Γ′ . e : τ , then Γ,Γ′ . [e′/x]e :
τ .

Proof: By induction over the structure of the derivation D :: (Γ, x:τ ′,Γ′ . e : τ).
The result should be intuitive: wherever x occurs in e we are at a leaf in the typing
derivation of e. After substitution of e′ for x, we have to supply a derivation showing
that e′ has type τ ′ at this leaf position, which exists by assumption. We only show
a few cases in the proof in detail; the remaining ones follow the same pattern.

Case: D =
(Γ, x:τ ′,Γ′)(x) = τ ′

tp var.
Γ, x:τ ′,Γ′ . x : τ ′

Then [e′/x]e = [e′/x]x = e′, so the lemma reduces to showing Γ,Γ′ . e′ : τ ′

from Γ . e′ : τ ′ which follows by weakening.

Case: D =
(Γ, x:τ ′,Γ′)(y) = τ

tp var,
Γ, x:τ ′,Γ′ . y : τ

where x 6= y.

In this case, [e′/x]e= [e′/x]y = y and hence the lemma follows from

(Γ,Γ′)(y) = τ
tp var.

Γ,Γ′ . y : τ

Case: D =

D1

Γ, x:τ ′,Γ′ . e1 : τ2 → τ1

D2

Γ, x:τ ′,Γ′ . e2 : τ2
tp app.

Γ, x:τ ′,Γ′ . e1 e2 : τ1

Then we construct a deduction

E1
Γ,Γ′ . [e′/x]e1 : τ2 → τ1

E2
Γ,Γ′ . [e′/x]e2 : τ2

tp app
Γ,Γ′ . ([e′/x]e1) ([e′/x]e2) : τ1

where E1 and E2 are known to exist from the induction hypothesis applied
to D1 and D2, respectively. By definition of substitution, [e′/x](e1 e2) =
([e′/x]e1) ([e′/x]e2), and the lemma is established in this case.

Case: D =

D1

Γ, x:τ ′,Γ′, y:τ1 . e2 : τ2
tp lam

Γ, x:τ ′,Γ′ . lam y. e2 : τ1 → τ2
.

In this case we need to apply the induction hypothesis by using Γ′, y:τ1 for Γ′.
This is why the lemma is formulated using the additional context Γ′. From

26 CHAPTER 2. THE MINI-ML LANGUAGE

the induction hypothesis and one inference step we obtain

E1
Γ,Γ′, y:τ1 . [e′/x]e2 : τ2

tp lam
Γ,Γ′ . lam y. [e′/x]e2 : τ1 → τ2

which yields the lemma by the equation [e′/x](lam y. e2) = lam y. [e′/x]e2 if
y is not free in e′ and distinct from x. We can assume that these conditions
are satisfied, since they can always be achieved by renaming bound variables.

2

The statement of the type preservation theorem below is written in such a way
that the induction argument will work directly.

Theorem 2.5 (Type Preservation) For any e and v, if e ↪→ v is derivable, then
for any τ such that . e : τ is derivable, . v : τ is also derivable.

Proof: By induction on the structure of the deduction D of e ↪→ v. The justification
“by inversion” refers to Lemma 2.2. More directly, from the form of the judgment
established by a derivation we draw conclusions about the possible forms of the
premise, which, of course, must also derivable.

Case: D = ev z.
z ↪→ z

Then we have to show that for any type τ such that . z : τ is derivable, . z : τ
is derivable. This is obvious.

Case: D =

D1

e1 ↪→ v1
ev s.

s e1 ↪→ s v1

Then

. s e1 : τ By assumption

. e1 : nat and τ = nat By inversion

. v1 : nat By ind. hyp. on D1

. s v1 : nat By rule tp s

Case: D =

D1

e1 ↪→ z
D2

e2 ↪→ v
ev case z.

(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

. (case e1 of z⇒ e2 | s x⇒ e3) : τ By assumption

. e2 : τ By inversion

. v : τ By ind. hyp. on D2

2.6. TYPE PRESERVATION 27

Case: D =

D1

e1 ↪→ s v′1

D3

[v′1/x]e3 ↪→ v
ev case s.

(case e1 of z⇒ e2 | s x⇒ e3) ↪→ v

. (case e1 of z⇒ e2 | s x⇒ e3) : τ By assumption
x:nat . e3 : τ By inversion
. e1 : nat By inversion
. s v′1 : nat By ind. hyp. on D1

. v′1 : nat By inversion

. [v′1/x]e3 : τ By the Substitution Lemma 2.4

. v : τ By ind. hyp. on D3

Cases: If D ends in ev pair, ev fst, or ev snd we reason similar to cases above (see
Exercise 2.16).

Case: D = ev lam.
lam x. e ↪→ lam x. e

This case is immediate as for ev z.

Case: D =

D1

e1 ↪→ lam x. e′1

D2

e2 ↪→ v2

D3

[v2/x]e
′
1 ↪→ v

ev app.
e1 e2 ↪→ v

. e1 e2 : τ By assumption

. e1 : τ2 → τ and . e2 : τ2 for some τ2 By inversion

. lam x. e′1 : τ2 → τ By ind. hyp. on D1

x:τ2 . e
′
1 : τ By inversion

. v2 : τ2 By ind. hyp. on D2

. [v2/x]e
′
1 : τ By the Substitution Lemma 2.4

. v : τ By ind. hyp. on D3

Case: D =

D1

e1 ↪→ v1

D2

[v1/x]e2 ↪→ v
ev letv.

let val x = e1 in e2 ↪→ v

. let val x = e1 in e2 : τ By assumption

. e1 : τ1 and x:τ1 . e2 : τ for some τ1 By inversion

. v1 : τ1 By ind. hyp. on D1

. [v1/x]e2 : τ By the Substitution Lemma 2.4

. v : τ By ind. hyp. on D2

28 CHAPTER 2. THE MINI-ML LANGUAGE

Case: D =

D2

[e1/x]e2 ↪→ v
ev letn.

let name x = e1 in e2 ↪→ v

. let name x = e1 in e2 : τ By assumption

. [e1/x]e2 : τ By inversion

. v : τ By ind. hyp. on D2

Case: D =

D1

[fix x. e1/x]e1 ↪→ v
ev fix.

fix x. e1 ↪→ v

. fix x. e1 : τ By assumption
x : τ . e1 : τ By inversion
. [fix x. e1/x]e1 : τ By the Substitution Lemma 2.4
. v : τ By ind. hyp. on D1

2

It is important to recognize that this theorem cannot be proved by induction on
the structure of the expression e. The difficulty is most pronounced in the cases for
let and fix: The expressions in the premises of these rules are in general much larger
than the expressions in the conclusion. Similarly, we cannot prove type preservation
by an induction on the structure of the typing derivation of e.

2.7 Further Discussion

Ignoring details of concrete syntax, the Mini-ML language is completely specified
by its typing and evaluation rules. Consider a simple simple model of an interaction
with an implementation of Mini-ML consisting of two phases: type-checking and
evaluation. During the first phase the implementation only accepts expressions
e that are well-typed in the empty context, that is, . e : τ for some τ . In the
second phase the implementation constructs and prints a value v such that e ↪→ v
is derivable. This model is simplistic in some ways, for example, we ignore the
question which values can actually be printed or observed by the user. We will
return to this point in Section ??.

Our self-contained language definition by means of deductive systems does not
establish a connection between types, values, expressions, and mathematical objects
such as partial functions. This can be seen as the subject of denotational semantics.
For example, we understand intuitively that the expression

ss = lam x. s (s x)

2.7. FURTHER DISCUSSION 29

denotes the function from natural numbers to natural numbers that adds 2 to its
argument. Similarly,

pred0 = lam x. case x of z⇒ fix y. y | s x′ ⇒ x′

denotes the partial function from natural numbers to natural numbers that returns
the predecessor of any argument greater or equal to 1 and is undefined on 0. But
is this intuitive interpretation of expressions justified? As a first step, we establish
that the result of evaluation (if one exists) is unique. Recall that expressions that
differ only in the names of their bound variables are considered equal.

Theorem 2.6 (Uniqueness of Values) If e ↪→ v1 and e ↪→ v2 are derivable then
v1 = v2.

Proof: Straightforward (see Exercise 2.17). 2

Intuitively the type nat can be interpreted by the set of natural numbers. We
write vnat for values v such that . v : nat. It can easily be seen by induction on the
structure of the derivation of vnat Value that vnat could be defined inductively by

vnat ::= z | s vnat.

The meaning or denotation of a value vnat, [[vnat]], can be defined almost trivially as

[[z]] = 0
[[s vnat]] = [[vnat]] + 1.

It is immediate that this is a bijection between closed values of type nat and the
natural numbers. The meaning of an arbitrary closed expression enat of type nat
can then be defined by

[[enat]] =

{
[[v]] if enat ↪→ v is derivable
undefined otherwise

Determinism of evaluation (Theorem 2.6) tells us that v, if it exists, is uniquely
defined. Value soundness 2.1 tells us that v is indeed a value. Type preservation
(Theorem 2.5) tells us that v will be a closed expression of type nat and thus that the
meaning of an arbitrary expression of type nat, if it is defined, is a unique natural
number. Furthermore, we are justified in overloading the [[·]] notation for values and
arbitrary expressions, since values evaluate to themselves (Exercise 2.14).

Next we consider the meaning of expressions of functional type. Intuitively, if
. e : nat → nat, then the meaning of e should be a partial function from natural
numbers to natural numbers. We define this as follows:

[[e]](n) =

{
[[v2]] if e v1 ↪→ v2 and [[v1]] = n
undefined otherwise

30 CHAPTER 2. THE MINI-ML LANGUAGE

This definition is well-formed by reasoning similar to the above, using the observa-
tion that [[·]] is a bijection between closed values of type nat and natural numbers.

Thus we were justified in thinking of the type nat→ nat as consisting of partial
functions from natural numbers to natural numbers. Partial functions in mathe-
matics are understood in terms of their input/output behavior rather than in terms
of their concrete definition; they are viewed extensionally. For example, the expres-
sions

ss = lam x. s (s x) and
ss ′ = fix f. lam x. case x of z⇒ s (s z) | s x′⇒ s (f x′)

denote the same function from natural numbers to natural numbers: [[ss]] = [[ss ′]].
Operationally, of course, they have very different behavior. Thus denotational se-
mantics induces a non-trivial notion of equality between expressions in our language.
On the other hand, it is not immediately clear how to take advantage of this equal-
ity due to its non-constructive nature. The notion of extensional equality between
partial recursive function is not recursively axiomatizable and therefore we cannot
write a complete deductive system to prove functional equalities. The denotational
approach can be extended to higher types (for example, functions that map func-
tions from natural numbers to natural numbers to functions from natural numbers
to natural numbers) in a natural way.

It may seem from the above development that the denotational semantics of
a language is uniquely determined. This is not the case: there are many choices.
Especially the mathematical domains we use to interpret expressions and the struc-
ture we impose on them leave open many possibilites. For more on the subject of
denotational semantics see, for example, [Gun92].

In the approach above, the meaning of an expression depends on its type. For
example, for the expression id = lam x. x we have . id : nat → nat and by the
reasoning above we can interpret it as a function from natural numbers to natural
numbers. We also have . id : (nat → nat) → (nat → nat), so it also maps every
function between natural numbers to itself. This inherent ambiguity is due to our
use of Curry’s approach where types are assigned to untyped expressions. It can
be remedied in two natural ways: we can construct denotations independently of
the language of types, or we can give meaning to typing derivations. In the first
approach, types can be interpreted as subsets of a universe from which the meanings
of untyped expressions are drawn. The disadvantage of this approach is that we have
to give meanings to all expressions, even those that are intuitively meaningless, that
is, ill-typed. In the second approach, we only give meaning to expressions that have
typing derivations. Any possible ambiguity in the assignment of types is resolved,
since the typing derivation will choose are particular type for the expression. On
the other hand we may have to consider coherence: different typing derivations for
the same expression and type should lead to the same meaning. At the very least
the meanings should be compatible in some way so that arbitrary decisions made
during type inference do not lead to observable differences in the behavior of a

2.8. EXERCISES 31

program. In the Mini-ML language we discussed so far, this property is easily seen
to hold, since an expression uniquely determines its typing derivation. For more
complex languages this may require non-trivial proof. Note that the ambiguity
problem does not usually arise when we choose a language presentation in the style
of Church where each expression contains enough type information to uniquely
determine its type.

2.8 Exercises

Exercise 2.1 Write Mini-ML programs for multiplication, exponentiation, sub-
traction, and a function that returns a pair of (integer) quotient and remainder of
two natural numbers.

Exercise 2.2 The principal type of an expression e is a type τ such that any type
τ ′ of e can be obtained by instantiating the type variables in τ . Even though types
in our formulation of Mini-ML are not unique, every well-typed expression has a
principal type [Mil78]. Write Mini-ML programs satisfying the following informal
specifications and determine their principal types.

1. compose f g to compute the composition of two functions f and g.

2. iterate n f x to iterate the function f n times over x.

Exercise 2.3 Write down the evaluation of plus2 (s z) (s z), given the definition
of plus2 in the example on page 11.

Exercise 2.4 Write out the typing derivation that shows that the function double
on page 17 is well-typed.

Exercise 2.5 Explore a few alternatives to the definition of expressions given in
Section 2.1. In each case, give the relevant inference rules for evaluation and typing.

1. Add a type of Booleans and replace the constructs concerning natural numbers
by

e ::= . . . | z | s e | pred e | zerop e

2. Replace the constructs concerning pairs by

e ::= . . . | pair | fst | snd

3. Replace the constructs concerning pairs by

e ::= . . . | 〈e1, e2〉 | split e1 as 〈x1, x2〉 ⇒ e2

32 CHAPTER 2. THE MINI-ML LANGUAGE

Exercise 2.6 One might consider replacing the rule ev fst by

e1 ↪→ v1
ev fst′.

fst 〈e1, e2〉 ↪→ v1

Show why this is incorrect.

Exercise 2.7 Consider an extension of the language by the unit type 1 (often
written as unit) and disjoint sums τ1 + τ2:

τ ::= . . . | 1 | (τ1 + τ2)
e ::= . . . | 〈 〉 | inl e | inr e | (case e1 of inl x2 ⇒ e2 | inr x3 ⇒ e3)

For example, an alternative to the predecessor function might return 〈 〉 if the argu-
ment is zero, and the predecessor otherwise. Because of the typing discipline, the
expression

pred ′ = lam x. case x of z⇒ 〈 〉 | s x′ ⇒ x′

is not typable. Instead, we have to inject the values into a disjoint sum type:

pred ′ = lam x. case x of z⇒ inl 〈 〉 | s x′ ⇒ inr x′

so that
. pred ′ : nat→ (1 + nat)

Optional values of type τ can be modelled in general by using the type (1 + τ).

1. Give appropriate rules for evaluation and typing.

2. Extend the notion of value.

3. Extend the proof of value soundness (Theorem 2.1).

4. Extend the proof type preservation (Theorem 2.5).

Exercise 2.8 Consider a language extension

τ ::= . . . | τ∗.

where τ∗ is the type of lists whose members have type τ . Introduce appropriate
value constructor and destructor expressions and proceed as in Exercise 2.7.

Exercise 2.9 In this exercise we explore the operation of substitution in some
more detail than in Section 2.2. We limit ourselves to the fragment containing
lam-abstraction and application.

1. Define x free in e which should hold when the variable x occurs free in e.

2.8. EXERCISES 33

2. Define e =α e
′ which should hold when e and e′ are alphabetic variants, that

is, they differ only in the names assigned to their bound variables as explained
in Section 2.2.

3. Define [e′/x]e, the result of substituting e′ for x in e. This operation should
avoid capture of variables free in e′ and the result should be unique up to
renaming of bound variables.

4. Prove [e′/x]e =α e if x does not occur free in e′.

5. Prove [e2/x2]([e1/x1]e) =α [([e2/x2]e1)/x1]([e2/x2]e), provided x1 does not
occur free in e2.

Exercise 2.10 In this exercise we will explore different ways to treat errors in the
semantics.

1. Assume there is a new value error of arbitary type and modify the operational
semantics appropriately. You may assume that only well-typed expressions are
evaluated. For example, evaluation of s (lam x. x) does not need to result in
error.

2. Add an empty type 0 (often called void) containing no values. Are there
any closed expressions of type 0? Add a new expression form abort e which
has arbitrary type τ whenever e has type 0, but add no evaluation rules for
abort. Do the value soundness and type preservation properties extend to
this language? How does this language compare to the one in item 1.

3. An important semantic property of type systems is often summarized as “well-
typed programs cannot go wrong.” The meaning of ill-typed expressions such
as fst z would be defined as a distinguished semantic value wrong (in contrast
to intuitively non-terminating expressions such as fix x. x) and it is then
shown that no well-typed expression has meaning wrong. A related phrase
is that in statically typed languages “no type-errors can occur at runtime.”
Discuss how these properties might be expressed in the framework presented
here and to what extent they are already reflected in the type preservation
theorem.

Exercise 2.11 In the language Standard ML [MTH90], occurrences of fixed point
expressions are syntactially restricted to the form fix x. lam y. e. This means that
evaluation of a fixed point expression always terminates in one step with the value
lam y. [fix x. lam y. e/x]e.

It has occasionally been proposed to extend ML so that one can construct re-
cursive values. For example, ω = fix x. s x would represent a “circular value”
s (s . . .) which could not be printed finitely. The same value could also be defined,
for example, as ω′ = fix x. s (s x).

34 CHAPTER 2. THE MINI-ML LANGUAGE

In our language, the expressions ω and ω′ are not values and, in fact, they do
not even have a value. Intuitively, their evaluation does not terminate.

Define an alternative semantics for the Mini-ML language that permits recursive
values. Modify the definition of values and the typing rules as necessary. Sketch the
required changes to the statements and proofs of value soundness, type preservation,
and uniqueness of values. Discuss the relative merits of the two languages.

Exercise 2.12 Explore an alternative operational semantics in which expressions
that are known to be values (since they have been evaluated) are not evaluated
again. State and prove in which way the new semantics is equivalent to the one
given in Section 2.3.
Hint: It may be necessary to extend the language of expressions or explicitly
separate the language of values from the language of expressions.

Exercise 2.13 Specify a call-by-name operational semantics for our language,
where function application is given by

e1 ↪→ lam x. e′1 [e2/x]e
′
1 ↪→ v

ev app.
e1 e2 ↪→ v

We would like constructors (successor and pairing) to be lazy, that is, they should
not evaluate their arguments. Consider if it still makes sense to have let val and
let name and what their respective rules should be. Modify the affected inference
rules, define the notion of a lazy value, and prove that call-by-name evaluation
always returns a lazy value. Furthermore, write a function observe : nat → nat
that, given a lazy value of type nat, returns the corresponding eager value if it
exists.

Exercise 2.14 Prove that v Value is derivable if and only if v ↪→ v is derivable.
That is, values are exactly those expressions that evaluate to themselves.

Exercise 2.15 A replacement lemma is necessary in some formulations of the type
preservation theorem. It states:

If, for any type τ ′, . e′1 : τ ′ implies . e′2 : τ ′, then . [e′1/x]e : τ implies
. [e′2/x]e : τ .

Prove this lemma. Be careful to generalize as necessary and clearly exhibit the
structure of the induction used in your proof.

Exercise 2.16 Complete the proof of Theorem 2.5 by giving the cases for ev pair,
ev fst, and ev snd.

Exercise 2.17 Prove Theorem 2.6.

2.8. EXERCISES 35

Exercise 2.18 (Non-Determinism) Consider a non-deterministic extension of Mini-
ML with two new expression constructors ◦ and e1 ⊕ e2 with the evaluation rules

e1 ↪→ v
ev choice1

e1 ⊕ e2 ↪→ v

e2 ↪→ v
ev choice2

e1 ⊕ e2 ↪→ v

Thus, ⊕ signifies non-deterministic choice, while ◦ means failure (choice between
zero alternatives).

1. Modify the type system and extend the proofs of value soundness and type
preservation.

2. Write an expression that may evaluate to an arbitrary natural number.

3. Write an expression that may evaluate precisely to the numbers that are not
prime.

4. Write an expression that may evaluate precisely to the prime numbers.

Exercise 2.19 (General Pattern Matching) Patterns for Mini-ML can be defined
by

Patterns p ::= x | z | s p | 〈p1, p2〉.
Devise a version of Mini-ML where case (for natural numbers), fst, and snd are
replaced by a single form of case-expression with arbitrarily many branches. Each
branch has the form p⇒ e, where the variables in p are bound in e.

1. Define an operational semantics.

2. Define typing rules.

3. Prove type preservation and any lemmas you may need. Show only the critical
cases in proofs that are very similar to the ones given in the notes.

4. Is your language deterministic? If not, devise a restriction that makes your
language deterministic.

5. Does your operational semantics require equality on expressions of functional
type? If yes, devise a restriction that requires equality only on observable
types—in this case (inductively) natural numbers and products of observable
type.

Exercise 2.20 Prove that the expressions let val x = e1 in e2 and (lam x. e2) e1

are equivalent in sense that

1. for any context Γ, Γ . let val x = e1 in e2 : τ iff Γ . (lam x. e2) e1 : τ , and

2. letval x = e1 in e2 ↪→ v iff (lam x. e2) e1 ↪→ v.

36 CHAPTER 2. THE MINI-ML LANGUAGE

Is this sufficient to guarantee that if we replace one expression by the other some-
where in a larger program, the value of the whole program does not change?

Exercise 2.21 Carefully define a notion of subexpression for Mini-ML and prove
that if Γ . e : τ then every subexpression e′ of e is also well-typed in an appropriate
context.

Bibliography

[CDDK86] Dominique Clément, Joëlle Despeyroux, Thierry Despeyroux, and Gilles
Kahn. A simple applicative language: Mini-ML. In Proceedings of the
1986 Conference on LISP and Functional Programming, pages 13–27.
ACM Press, 1986.

[CF58] H. B. Curry and R. Feys. Combinatory Logic. North-Holland, Amster-
dam, 1958.

[Chu32] A. Church. A set of postulates for the foundation of logic I. Annals of
Mathematics, 33:346–366, 1932.

[Chu33] A. Church. A set of postulates for the foundation of logic II. Annals of
Mathematics, 34:839–864, 1933.

[Chu41] Alonzo Church. The Calculi of Lambda-Conversion. Princeton Univer-
sity Press, Princeton, New Jersey, 1941.

[Cur34] H. B. Curry. Functionality in combinatory logic. Proceedings of the
National Academy of Sciences, U.S.A., 20:584–590, 1934.

[DM82] Luis Damas and Robin Milner. Principal type schemes for functional
programs. In Conference Record of the 9th ACM Symposium on Princi-
ples of Programming Languages (POPL’82), pages 207–212. ACM Press,
1982.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathe-
matische Zeitschrift, 39:176–210, 405–431, 1935. English translation in
M. E. Szabo, editor, The Collected Papers of Gerhard Gentzen, pages
68–131, North-Holland, 1969.

[Gun92] Carl A. Gunter. Semantics of Programming Languages. MIT Press,
Cambridge, Massachusetts, 1992.

37

38 BIBLIOGRAPHY

[Han91] John J. Hannan. Investigating a Proof-Theoretic Meta-Language for
Functional Programs. PhD thesis, University of Pennsylvania, January
1991. Available as Technical Report MS-CIS-91-09.

[Han93] John Hannan. Extended natural semantics. Journal of Functional Pro-
gramming, 3(2):123–152, April 1993.

[HB34] David Hilbert and Paul Bernays. Grundlagen der Mathematik. Springer-
Verlag, Berlin, 1934.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. Journal of the Association for Computing Machinery,
40(1):143–184, January 1993.

[HM89] John Hannan and Dale Miller. A meta-logic for functional programming.
In H. Abramson and M. Rogers, editors, Meta-Programming in Logic
Programming, chapter 24, pages 453–476. MIT Press, 1989.

[How80] W. A. Howard. The formulae-as-types notion of construction. In J. P.
Seldin and J. R. Hindley, editors, To H. B. Curry: Essays on Combina-
tory Logic, Lambda Calculus and Formalism, pages 479–490. Academic
Press, 1980. Hitherto unpublished note of 1969, rearranged, corrected,
and annotated by Howard.

[Kah87] Gilles Kahn. Natural semantics. In Proceedings of the Symposium on
Theoretical Aspects of Computer Science, pages 22–39. Springer-Verlag
LNCS 247, 1987.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal
Of Computer And System Sciences, 17:348–375, August 1978.

[ML85] Per Martin-Löf. On the meanings of the logical constants and the jus-
tifications of the logical laws. Technical Report 2, Scuola di Specializ-
zazione in Logica Matematica, Dipartimento di Matematica, Università
di Siena, 1985.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the jus-
tifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

[MTH90] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Stan-
dard ML. MIT Press, Cambridge, Massachusetts, 1990.

[Pfe91] Frank Pfenning. Logic programming in the LF logical framework. In
Gérard Huet and Gordon Plotkin, editors, Logical Frameworks, pages
149–181. Cambridge University Press, 1991.

BIBLIOGRAPHY 39

[Pfe94] Frank Pfenning. Elf: A meta-language for deductive systems. In
A. Bundy, editor, Proceedings of the 12th International Conference
on Automated Deduction, pages 811–815, Nancy, France, June 1994.
Springer-Verlag LNAI 814. System abstract.

[Plo75] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoret-
ical Computer Science, 1:125–159, 1975.

[Plo77] G. D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5(3):223–255, 1977.

[Plo81] Gordon D. Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Computer Science Department,
Aarhus University, Aarhus, Denmark, September 1981.

[Pra65] Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.

[PS99] Frank Pfenning and Carsten Schürmann. System description: Twelf —
a meta-logical framework for deductive systems. In H. Ganzinger, edi-
tor, Proceedings of the 16th International Conference on Automated De-
duction (CADE-16), pages 202–206, Trento, Italy, July 1999. Springer-
Verlag LNAI 1632.

