Chapter 3

Formalization in a Logical
Framework

We can look at the current field of problem solving by computers

as a series of ideas about how to present a problem. If a problem
can be cast into one of these representations in a natural way, then

it is possible to manipulate it and stand some chance of solving it.

— Allen Newell,

Limitations of the Current Stock of Ideas for Problem Solving [New65]

In the previous chapter we have seen a typical application of deductive systems
to specify and prove properties of programming languages. In this chapter we
present techniques for the formalization of the languages and deductive systems
involved. In the next chapter we show how these formalization techniques can lead
to implementations.

The logical framework we use in these notes is called LF and sometimes ELF (for
Edinburgh Logical Framework), not to be confused with Elf, which is the program-
ming language based on the LF logical framework we introduce in Chapter ??. LF
was introduced by Harper, Honsell, and Plotkin [HHP93]. It has its roots in similar
languages used in the project Automath [dB68, NGdV94]. LF has been explicitly
designed as a meta-language for high-level specification of languages in logic and
computer science and thus provides natural support for many of the techniques we
have seen in the preceding chapter. For example, it can capture the convention that
expressions that differ only in the names of bound variables are identified. Similarly,
contexts and variable lookup as they arise in the typing judgment can be modelled
concisely. The fact that these techniques are directly supported by the logical frame-
work is not just a matter of engineering an implementation of the deductive systems
in question, but it will be a crucial factor for the succinct implementation of proofs
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38 CHAPTER 3. FORMALIZATION IN A LOGICAL FRAMEWORK

of meta-theorems such as type preservation.

By codifying formalization techniques into a meta-language, a logical framework
also provides insight into principles of language presentation. Just as it is interesting
to know if a mathematical proof depends on the axiom of choice or the law of
excluded middle, a logical framework can be used to gauge the properties of the
systems we are investigating.

The formalization task ahead of us consists of three common stages. The first
stage is the representation of abstract syntax of the object language under investi-
gation. For example, we need to specify the languages of expressions and types of
Mini-ML. The second stage is the representation of the language semantics. This
includes the static semantics (for example, the notion of value and the type system)
and the dynamic semantics (for example, the operational semantics). The third
stage is the representation of meta-theory of the language (for example, the proof of
type preservation). Each of these uses its own set of techniques, some of which are
explained in this chapter using the example of Mini-ML from the preceding chapter.

In the remainder of this chapter we introduce the framework in stages, always
motivating new features using our example. The final summary of the system is
given in Section 3.8 at the end of this chapter.

3.1 The Simply-Typed Fragment of LF

For the representation of the abstract syntax of a language, the simply-typed A-
calculus (A7) is usually adequate. When we tackle the task of representing inference
rules, we will have to refine the type system by adding dependent types. The reader
should bear in mind that A~ should not be considered as a functional programming
language, but only as a representation language. In particular, the absence of
recursion will be crucial in order to guarantee adequacy of representations. Our
formulation of the simply-typed A-calculus has two levels: the level of types and the
level of objects, where types classify objects. Furthermore, we have signatures which
declare type and object constants, and conterts which assign types to variables.
Unlike Mini-ML, the presentation is given in the style of Church: every object
will have a unique type. This requires that types appear in the syntax of objects
to resolve the inherent ambiguity of certain functions, for example, the identity
function. We let a range over type constants, ¢ over object constants, and x over
variables.

Types A = al| A — A
Objects M cla| Az:A. M | My M,

Signatures X | Z, atype | 3, A
Contexts r S| T, x:A

We make the general restriction that constants and variables can occur at most
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once in a signature or context, respectively. We will write X(c) = A if ¢:A occurs
in ¥ and ¥(a) = type if a:type occurs in 3. Similarly I'(z) = A if 2:4 occurs in T'.
We will use A and B to range over types, and M and N to range over objects. We
refer to type constants a as atomic types and types of the form A — B as function

types.
The judgments defining A~ are

k. A:type A is a valid type

'k M:A M isa valid object of type A in context T'
F X Sig 3 is a valid signature

kT Ctx T is a valid context

They are defined via the following inference rules.

E)=4 I'z)=A
——con - wvar
I'kc: A I'kz: A
K A : type INe:Ax M : B
lam
'k MX:A.M:A— B
'k M:A— B 'k N:A
app
I's M N:B
Y(a) = type K A :type k. B : type
— tcon arrow
K a: type K A — B :type
) F 3 Sig )
esig ———————tconsig

F - Sig F 3, a:type Sig

3 Sig K A:type )

consig

F 3, c:A Sig
kT Ctz k A : type
ectx varctx

K - Ctz Kk I z:A Ctx
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The rules for valid objects are somewhat non-standard in that they contain no
check whether the signature ¥ or the context I' are valid. These are often added to
the base cases, that is, the cases for variables and constants. We can separate the
validity of signatures, since the signature ¥ does not change in the rules for valid
types and objects, Furthermore, the rules guarantee that if we have a derivation
D::T kK M : AandT is valid, then every context appearing in D is also valid. This
is because the type A in the lam rule is checked for validity as it is added to the
context. For an alternative formulation see Exercise 3.1.

Our formulation of the simply-typed A-calculus above is parameterized by a
signature in which new constants can be declared. In contrast, our formulation of
Mini-ML has only a fixed set of constants and constructors. So far, we have left
the dynamic semantics of A\~ unspecified. We later consider canonical forms as
an analogue to Mini-ML values and conversion to canonical form as an analogue
to evaluation. However, every well-typed A\~ object has a canonical form, while
not every well-typed Mini-ML expression evaluates to a value. Moreover, we will
start with a notion of definitional equality rather than an operational semantics.
These differences illustrate that the similarity between Mini-ML as a programming
language and A\~ as a representation language are rather superficial.

The notion of definitional equality for objects in A, written as M = N, can be
based on three conversions. The first is a-conversion: two objects are considered
identical if they differ only in the names of their bound variables. The second is
B-conversion: (Az:A. M) N = [N/z]M. It employs substitution [N/xz]M which
renames bound variables to avoid variable capture. The third is derived from an
extensionality principle. Roughly, two objects of functional type should be equal if
applying them to equal arguments yields equal results. This can be incorporated
by the rule of n-conversion: (Az:A. M x) = M provided z does not occur free
in M. The conversion rules can be applied to any subobject of an object M to
obtain an object M’ that is definitionally equal to M. Furthermore the relation
of definitional equality is assumed to be an equivalence relation. We define the
conversion judgment more formally in Section 3.8, once we have seen which role it
plays in the logical framework.

3.2 Higher-Order Abstract Syntax

The first task in the formalization of a language in a logical framework is the rep-
resentation of its expressions. We base the representation on abstract (rather than
concrete) syntax in order to expose the essential structure of the object language so
we can concentrate on semantics and meta-theory, rather than details of lexical anal-
ysis and parsing. The representation technique we use is called higher-order abstract
syntax. It is supported by the simply-typed fragment A~ of the logical framework
LF. The idea of higher-order abstract syntax goes back to Church [Chu40] and has
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since been employed in a number of different contexts and guises. Church observed
that once A-notation is introduced into a language, all constructs that bind vari-
ables can be reduced to M-abstraction. If we apply this principle in a setting where
we distinguish a meta-language (the logical framework) from an object language
(Mini-ML, in this example) then variables in the object language are represented
by variables in the meta-language. Variables bound in the object language (by con-
structs such as case, lam, let, and fix) will be bound by A in the meta-language.
This has numerous advantages and a few disadvantages over the more immediate
technique of representing variables by strings; some of the trade-offs are discussed
in Section 3.10.

In the development below it is important not to confuse the typing of Mini-
ML expressions with the type system employed by the logical framework, even
though some overloading of notation is unavoidable. For example, “:” is used in
both systems. For each (abstract) syntactic category of the object language we
introduce a new type constant in the meta-language via a declaration of the form
a:type. Thus, in order to represent Mini-ML expressions we declare a type exp in
the meta-language. Since the representation techniques do not change when we
generalize from the simply-typed A-calculus to LF, we refer to the meta-language
as LF throughout.

exp : type

We intend that every LF object M of type exp represents a Mini-ML expression
and vice versa. The Mini-ML constant z is now represented by an LF constant z
declared in the meta-language to be of type exp.

z : exp

The successor s is an expression constructor. It is represented by a constant of
functional type that maps expressions to expressions so that, for example, s z has

type exp.
S @ exp— exp

We now introduce the function ™7 which maps Mini-ML expressions to their
representation in the logical framework. Later we will use "7 generically for repre-
sentation functions. So far we have

M —

A =
fse! = slel

We would like to achieve that "e has type exp in LF, given appropriate declara-
tions for constants representing Mini-ML expression constructors. The constructs
that do not introduce bound variables can be treated in a straightforward manner.
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[

z' = z z Toexp
fse! = sle’ s I exp — exp
Te1,e2) = pairTe; " Tey” pair : exp — exp — exp
Tfste! = fstTe fst  : exp — exp
fsnde' = sndTe’ snd : exp — exp
Terea! = apple; ey app : exp — exp — exp

Traditionally, one might now represent lam z. e by lam "z "e™, where "' may
be a string or have some abstract type of identifier. This approach leads to a rela-
tively low-level representation, since renaming of bound variables, capture-avoiding
substitution, etc. as given in Section 2.2 now need to be axiomatized explicitly. Us-
ing higher-order abstract syntax means that variables of the object language (the
language for which we are designing a representation) are represented by variables in
the meta-language (the logical framework). Variables bound in the object language
must then be bound correspondingly in the meta-language. As a first and immedi-
ate benefit, expressions which differ only in the names of their bound variables will
be a-convertible in the meta-language. This leads to the representation

[

! = =z
Flam z. e’ = lam (Az:exp. e™) lam : (exp — exp) — exp.

Recall that LF requires explicit types wherever variables are bound by A, and free
variables must be assigned a type in a context. Note also that the two occurrences
of x in the first line above represent two variables with the same name in different
languages, Mini-ML and LF. One can allow explicit renaming in the translation,
but it complicates the presentation unnecessarily. The four remaining Mini-ML
constructs, case, let val, let name, and fix, also introduce binding operators. Their
representation follows the scheme for lam, taking care that variables bound in Mini-
ML are also bound at the meta-level and have proper scope. For example, the
representation of let val z = e; in e; reflects that x is bound in ey but not in e;.

Tcaseejof z= ey | sz =e3" = caseTe; 'Tex (Axiexp. Tes™)
Cletval z = e in ey’ = letv Te; ! (Aziexp. Tex )
Cletname x = e; in ey = letn ey (Az:exp. Tex )
Mixz. e’ = fix (\z:exp. Te?)

Hence we have

case : exp — exp — (exp — exp) — exp
letv : exp — (exp — exp) — exp
letn : exp — (exp — exp) — exp

fix : (exp — exp) — exp.
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As an example, consider the program double from page 17.

fix f.lamz.casezof z=z | sz’ = s (s (f )"
= fix (Af:exp. lam (Az:exp. case x z (A\z":exp. s (s (app f z)))))

One can easily see that the object on the right-hand side is valid and has type exp,
given the constant declarations above.

The next step will be to formulate (and later prove) what this representation
accomplishes, namely that every expression has a representation, and every LF
object of type exp constructed with constants from the signature above represents an
expression. In practice we want a stronger property, namely that the representation
function is a compositional bijection, something we will return to later in this chapter
in Section 3.3.

Recall that F; is the typing judgment of LF. We fix the signature E to contain
all declarations above starting with exp:type through fix:(exp — exp) — exp. At
first it might appear that we should be able to prove:

1. For any Mini-ML expression e, h; Te™ : exp.

2. For any LF object M such that h; M : exp, there is a Mini-ML expression e
such that "em = M.

As stated, neither of these two propositions is true. The first one fails due to the
presence of free variables in e and therefore in "e™ (recall that object-language
variables are represented as meta-language variables). The second property fails
because there are many objects M of type exp that are not in the image of ™.
Consider, for example, (Az:exp. x) z for which it is easy to show that

b (Az:exp. ) z : exp.

Examining the representation function reveals that the resulting LF objects contain
no [-redices, that is, no objects of the form (Az:A. M) N.

A more precise analysis later yields the related notion of canonical form. Tak-
ing into account free variables and restricting ourselves to canonical forms (yet to
be defined), we can reformulate the proposition expressing the correctness of the
representation.

1. Let e be a Mini-ML expression with free variables among z1,...,x,. Then
T1:€XP,...,TneXp Fp "€ : exp, and "e is in canonical form.

2. For any canonical form M such that xj:exp,...,z,:exp iz M : exp there is a
Mini-ML expression e with free variables among x1, . . ., z,, such that e = M.

It is a deep property of LF that every valid object is definitionally equal to a unique
canonical form. Thus, if we want to answer the question which Mini-ML expression
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is represented by a non-canonical object M of type exp, we convert it to canonical
form M’ and determine the expression e represented directly by M’.

The definition of canonical form is based on two observations regarding the
inverse of the representation function. The first is that if we are considering an LF
object M of type exp we can read off the top-level constructor (the alternative in
the definition of Mini-ML expressions) if the term has the form ¢ Mj ... M, where
c is one of the LF constants in the signature defining Mini-ML expressions. For
example, if M has the form (s M7) we know that M represents an expression of the
form s ey, where M is the representation of e;.

The second observation is less obvious. Let us consider an LF object of type
exp — exp. Such objects arise in the representation, for example, in the second
argument to letv, which has type exp — (exp — exp) — exp. For example,

Fletval z = s z in (z, )" = letv (s z) (Az:exp. pair z x).

The argument (Axz:exp. pair x z) represents the body of the let-expression, ab-
stracted over the let-bound variable z. Since we model the scope of a bound
variable in the object language by the scope of a corresponding A-abstraction in the
meta-language, we always expect an object of type exp — exp to be a A-abstraction.
As a counterexample consider the object

letv (pair (s z) z) fst

which is certainly well-typed in LF and has type exp, since fst : exp — exp. This
object is not the image of any expression e under the representation function ™.
However, there is an n-equivalent object, namely

letv (pair (s z) z) (Az:exp. fst z)

which represents let val x = (s z, z) in fst z.
We can summarize these two observations as the following statement constrain-
ing our definition of canonical forms.

1. A canonical object of type exp should either be a variable or have the form
cM; ...M,, where My, ..., M, are again canonical; and

2. a canonical object of type exp — exp should have the form Ax:exp. M7, where
M is again canonical.

Returning to an earlier counterexample, ((Az:exp. x) z), we notice that it is not
canonical, since it is of atomic type (exp), but does not have the form of a constant
applied to some arguments. In this case, there is a [-equivalent object which is
canonical form, namely z. In general each valid object has a Bn-equivalent object
in canonical form, but this is a rather deep theorem about LF.
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For the representation of more complicated languages, we have to generalize the
observations above and allow an arbitrary number of type constants (rather than
just exp) and allow arguments to variables. We write the general judgment as

'EMApyA M is canonical of type A.

This judgment is defined by the following inference rules. Recall that a stands
for constants at the level of types.

K A : type I'Ne:Ax M\ B
carrow
'k Az:AMfA— B
Ye)=A == A, —wa ThkM1HtA ... Th M, A,
conapp
I'keMy...M, fa
MNz)=A4 —---—A,—wa TkMNA ... Th M, A4,
varapp

I'skxM,.. M, a

This judgment singles out certain valid objects, as the following theorem shows.

Theorem 3.1 (Validity of Canonical Objects) Let ¥ be a valid signature and ' a
context valid in 2. If T, Mt A thenT'kx M : A.

Proof: See Exercise 3.2 and Section 3.9. a

The simply-typed A-calculus we have introduced so far has some important
properties. In particular, type-checking is decidable, that is, it is decidable if a given
object is valid. It is also decidable if a given object is in canonical form, and every
well-typed object can effectively be converted to a unique canonical form. Further
discussion and proof of these and other properties can be found in Section ?7?.

3.3 Representing Mini-ML Expressions

In order to obtain a better understanding of the representation techniques, it is
worthwile to state in full detail and carry out the proofs that the representation of
Mini-ML introduced in this chapter is correct. First, we summarize the representa-
tion function and the signature F defining the abstract syntax of Mini-ML.
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My

Zz = V4
I_S e_\ — S I_e_\
Tcasee;of z= ey | sz =e3" = caseTe; 'Tex (Aziexp. Tes™)

I_<61, 62>_‘ = pair"el_‘ I_eg_‘
Tfste! = fstle’
"fsnde' = sndTe’
Mlam z. e7 = lam (Az:exp. "e™)
ey es’ = appler'Tep”

letv Te; 7 (Az:exp. Tex )
letn Te; T (Az:exp. Tex ™)

Mletval z = e; in ey !
Mletname z = ¢; in ey’

Mixz. e’ = fix (A\z:exp. Te?)
27 = =z

exp : type

z ©exp

s : exp — exp

case : exp — exp — (exp — exp) — exp

pair : exp — exp — exp

fst : exp — exp

snd : exp — exp

lam : (exp — exp) — exp

app : exp — exp — exp

let : exp — (exp — exp) — exp

fix : (exp — exp) — exp
Lemma 3.2 (Validity of Representation) For any context I' = x1:exp, ..., Tniexp
and Mini-ML expression e with free variables among x1, ..., Tn,

T e exp

Proof: The proof is a simple induction on the structure of e. We show three
representative cases—the others follow similarly.

Case: e =z. Then "z"'=z and I' k5, z 1} exp.

Case: ¢ = e e3. Then "e' = app "e; ' "es . By induction hypothesis there are
derivations
D1 = I'k e 'y exp, and
Dy i Tk Tex' 1) exp.
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Since E(app) = exp — exp — exp we can apply rule conapp from the definition
of canonical forms to D; and Dy to conclude that

T app e 'Tes ' 1) exp

is derivable.

Case: e = (letval x = e; in e3). Then Te? = let Te; ' (Az:exp. Tex). Note
that if e has free variables among x4, . . ., z,, then es has free variables among
T1,...,Tn, . Hence, by induction hypothesis, we have derivations

Dy :: I'kgTey ' exp, and
Dy i T',xz:exphs Tex ') exp.

Applying rule carrow yields the derivation

E(exp) = type D
——con 2

= exp : type T, z:exphs Tea ' 1) exp

carrow

Tk Ax:exp. Tex ' 1) exp — exp

Using this derivation, F(let) = exp — (exp — exp) — exp, derivation D; and
rule conapp yields a derivation of

by let Tep 7 (Aziexp. Te2 ) 1 exp,
which is what we needed to show.

O

Next we define the inverse of the representation function, L-1. We need to keep
in mind that it only needs to be defined on canonical forms of type exp.

LZ = Z
tsMy = sLMJ
Lcase My My (Az:exp. M3)s = case.Mjiof z= My | sz = LMs,

Lpair My My = (CMya, Msy)
Lfst Mo = fstL M
tsnd Mo = sndoLM.
Llam (Az:exp. M)y = lamax. M,
Lapp M1 M2_l = I_Ml_l I_MQ_I

Lletv My ()\m:exp. MQ)_I letval x = . M;in . M5,
Lletn My (Az:exp. Mz). let name x = (M in L M5,
Lfix (Az:exp. M) fixz. .M.

L1 = X
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Lemma 3.3 For any I' = xy:exp, ..., z:exp and M such that T' b M 1 exp, LM
is defined and yields a Mini-ML expression such that "uM "= M.

Proof: The proof is by induction on the structure of the derivation D of I" by, M 1)
exp. Note that D cannot end with an application of the carrow rule, since exp is
atomic.

Case: D ends in varapp. From the form of I' we know that x = x; for some ¢ and
x has no arguments. Hence LM 1 = Lz = x is defined.

Case: D ends in conapp. Then ¢ must be one of the constants in £. We now
further distinguish subcases, depending on c¢. We only show three subcases;
the others follow similarly.

Subcase: ¢ = z. Then ¢ has no arguments and .M = Lz = z, which is a
Mini-ML expression. Furthermore, "z = z.

Subcase: ¢ = app. Then ¢ has two arguments, LM 1 = Lapp M1 Myl =
LMy .My, and, suppressing the premise E(app) = exp — exp — exp,

D has the form
D: Do

' M exp T' M fh exp

conapp

Tk app My M ) exp
By the induction hypothesis on D; and Do, L M7 and LM are defined
and therefore LM 1 = L M; 1 _M>51is also defined. Furthermore, "M " =
LMy cMosm = app "ML "ML = app My Ms, where the last
equality follows by the induction hypothesis on M; and Ms.

Subcase: ¢ = letv. Then ¢ has two arguments and, suppressing the premise
E(letv) = exp — (exp — exp) — exp, D has the form

Dl DQ

T'H My exp Tk Ms ff exp — exp
conapp

I letv My Mo 1) exp

There is only one inference rule which could have been used as the last
inference in Dy, namely carrow. Hence, by inversion, D, must have the
form
Dy
I, x:exp b M) A exp
carrow

[ b Az:exp. M3 {) (exp — exp)
where My = Az:exp. Mj. Then

LML= Lletv My (A\z:exp. M3). = (let val x = L M; . in L M .)
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which is a Mini-ML expression by induction hypothesis on Dy and Dj.
We reason as in the previous cases that here, too, "M 7 = M.

Lemma 3.4 For any Mini-ML expression e, L"e 1= e.

Proof: The proof is a simple induction over the structure of e (see Exercise 3.3).
O

The final lemma of this section asserts compositionality of the representation
function, connecting meta-level substitution with object-level substitution. We only
state this lemma for substitution of a single variable, but other, more general vari-
ants are possible. This lemma gives a formal expression to the statement that the
representation of a compound expression is constructed from the representations of
its immediate constituents. Note that in the statement of the lemma, the substitu-
tion on the left-hand side of the equation is substitution in the Mini-ML language
as defined in Section 2.2, while on the right-hand side we have substitution at the
level of the framework.

Lemma 3.5 (Compositionality) "[e;/x]ea = [Te1/x] ex™.

Proof: The proof is by induction on the structure of e;. We show three cases—the
remaining ones follow the same pattern.

Case: e = . Then
Cler/xlex =Ter/z]la =Ter " = [Ter x|z = [Te1 /] e2™.
Case: e; =y and y # x. Then
Tler/alex =er/aly’ =y =[TerV/aly=[Te1 /2] e

Case: ex = (letval y = ¢} in €), where y # x and y is not free in e;. Note that
this condition can always be achieved via renaming of the bound variable y.
Then

= Tley/z]ex”

Tlex/z](let val y = €}, in €)™
Clet val y = [e1/z]eh in [e1 /x]el™
letv "[e1/x]eb ™ (Ay:exp. Ter/z]es )

letv ([Te1/x]"e5) (Ay:exp. [Te1/z] ey ) by induction hypothesis
[Fe17/x](letv "eb ™ (Ay:exp. Ted 7))

[Fe17/x] letval y = €} in e

— [rel—\/m]re{\'
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O

We usually summarize Lemmas 3.2, 3.3, 3.4, and 3.5 into a single adequacy
theorem, whose proof is is immediate from the preceding lemmas.

Theorem 3.6 (Adequacy) There is a bijection ™7 between Mini-ML expressions
with free variables among 1, ..., x, and (canonical) LF objects M such that

T1:€XP, ..., Tpexp ly M 1 exp
is derivable. The bijection is compositional in the sense that

ex/xlex = [Tex/x] e,

3.4 Judgments as Types

So far, we have only discussed the representation of the abstract syntax of a lan-
guage, taking advantage of the expressive power of the simply-typed A-calculus.
The next step is the representation of deductions. The general approach is to rep-
resent deductions as objects and judgments as types. For example, given closed
expressions e and v and a deduction

D
e —v

we would like to establish that
v "D Te =07,

where "7 is again a representation function and EV is an LF signature from which
the constants in "D are drawn. That is, the representation of D is a canonical
object of type "e < v™". The main difficulty will be achieving the converse, namely
that if

Fov M Te — v

then there is a deduction D such that "D = M.
As a first approximation, assume we declare a type eval of evaluations, similar
to the way we declared a type exp of Mini-ML expressions.

eval : type

An axiom would simply be represented as a constant of type eval. An inference rule
can be viewed as a constructor which, given deductions of the premises, yields a
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deduction of the conclusion. For example, the rules

e “—>v
ev_z —F F  €V_S
Z“—Z Se“—Ssv
el “—Z €y — U

€v_case_z

(casee;of z= ez | sz = e3) >0

would be represented by

ev_z . eval
ev_s : eval — eval
ev_case_z : eval — eval — eval.

One can easily see that this representation is not faithful: the declaration of a
constant in the signature contains much less information than the statement of the
inference rule. For example,

v ev_case_z (ev_s ev_z) ev_z 1 eval

would be derivable, but the object above does not represent a valid evaluation. The
problem is that the first premise of the rule ev_case_z must be an evaluation yielding
z, while the corresponding argument to ev_case_z, namely (ev_s ev_z), represents an
evaluation yielding s z.

One solution to this representation problem is to introduce a validity predicate
and define when a given object of type eval represents a valid deduction. This is,
for example, the solution one would take in a framework such as higher-order Horn
clauses or hereditary Harrop formulas. This approach is discussed in a number of
papers [MNPS91, Pau86] and also is the basis for the logic programming language
AProlog [NM99] and the theorem prover Isabelle [Pau94]. Here we take a different
approach in that we refine the type system instead in such a way that only the
representations of valid deductions (evaluations, in this example) will be well-typed
in the meta-language. This has a number of methodological advantages. Perhaps
the most important is that checking the validity of a deduction is reduced to a type-
checking problem in the logical framework. Since LF type-checking is decidable, this
means that checking deductions of the object language is automatically decidable,
once a suitable representation in LF has been chosen.

But how do we refine the type system so that the counterexample above is
rejected as ill-typed? It is clear that we have to subdivide the type of all evaluations
into an infinite number of subtypes: for any expression e and value v there should be
a type of deductions of e < v. Of course, many of of these types should be empty.
For example, there is no deduction of the judgment s z <— z. These considerations
lead to the view that eval is a type family indexed by representations of e and wv.
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Following our representation methodology, both of these will be LF objects of type
exp. Thus we have types, such as (eval z z) which depend on objects, a situation
which can easily lead to an undecidable type system. In the case of LF we can
preserve decidability of type-checking (see Section 3.5). A first approximation to a
revision of the representation for evaluations above would be

eval : exp — exp — type

ev_z : evalzz

ev.s : eval EV —eval sE) (sV)

evcasez : eval By z— eval E; V — eval (case By Ey E3) V.

The declarations of ev_s and ev_case_z are schematic in the sense that they are
intended to represent all instances with valid objects E, F;, FEs, E3, and V of
appropriate type. With these declarations the object (ev_case_z (ev_s ev_z) ev_z)
is no longer well-typed, since (ev_s ev_z) has type eval (s z) (s z), while the first
argument to ev_case_z should have type eval E; z for some Fj.

Although it is not apparent in this example, allowing unrestricted schematic
declarations would lead to an undecidable type-checking problem for LF, since it
would require a form of higher-order unification. Instead we add Fi, Fs, E3, and
V' as explicit arguments to ev_case_z. In practice this is often unnecessary and
the EIf programming language allows schematic declarations in the form above
and performs type reconstruction. A simple function type (formed by —) is not
expressive enough to capture the dependencies between the various arguments. For
example,

ev_casez : exp — exp — (exp — exp) — exp
— eval Fy z — eval B2 V — eval (case By Ey E3) V

does not express that the first argument is supposed to be E7, the second argument
E5, etc. Thus we must explicitly label the first four arguments: this is what the
dependent function type constructor II achieves. Using dependent function types we
write

ev_case.z : IIFEj:exp. [I1Es:exp. IIE5:exp — exp. IIV:exp.
eval By z — eval E; V — eval (case By E5 E3) V.

Note that the right-hand side is now a closed type since II binds the variable it
quantifies. The function ev_case_z is now a function of six arguments.

Before continuing the representation, we need to extend the simply-typed frame-
work as presented in Section 3.1 to account for the two new phenomena we have
encountered: type families indexed by objects and dependent function types.
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3.5 Adding Dependent Types to the Framework

We now introduce type families and dependent function types into the simply-typed
fragment, although at this point not in the full generality of LF.

The first change deals with type families: it is now more complicated to check if
a given type is well-formed, since types depend on objects. Moreover, we must be
able to declare the type of the indices of type families. This leads to the introduction
of kinds, which form another level in the definition of the framework calculus.

Kinds K = A —...— A, — type

Types A = aMy...M,| A — Ay | TIz:A;. As
Objects M == c|z|lz:A. M| M M,

Signatures X = -|X,a:K | %, cA

Contexts r == -|Ix:A

Note that the level of objects has only changed insofar as the types occurring
in \-abstractions may now be more general. Indeed, all functions which can be
expressed in this version of the framework could already be expressed in the simply-
typed fragment. This highlights our motivation and intuition behind this extension:
we refine the type system so that objects that do not represent deductions will be
ill-typed. We are not interested in extending the language so that, for example,
more functions would be representable.

Type families can be declared via a:K in signatures and instantiated to types as
a M ... M,. We refer to such types as atomic types, to types of the form A; — A,
as simple function types, and to types of the form Ilz:A;. Ay as dependent function
types. We also need to extend the inference rules for valid types and objects. We
now have the basic judgments

I'k A:type A isa valid type
'k M:A M is a valid object of type A

and auxiliary judgments

F X Sig 3 is a valid signature
&I Ctx T is a valid context
I'k K : kind K is a valid kind

' M=N:A M is definitionally equal to N at type A
'k, A= B :type A is definitionally equal to B
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The judgments are now mutually dependent to a large degree. For example, in
order to check that a type is valid, we have to check that the objects occuring in
the indices of a type family are valid. The need for the convertibility judgments
will be motivated below. Again, there are a variety of possibilities for defining these
judgments. The one we give below is perhaps not the most convenient for the meta-
theory of LF, but it reflects the process of type-checking fairly directly. We begin
with the rules defining the valid types.

Y(a) =A; — -+ = A, — type ' M 4 ... Tk M,:A,
atom
I'kaM;...M,: type
'k A:type I'k B : type
arrow
I'k A— B :type
I'k A: type I'xz:Ak B :type
pi

I'k IIx:A. B : type

The basic rules for valid objects are as before, except that we now have to allow
for dependency. The typing rule for applying a function with a dependent type
requires some thought. Recall, from the previous section,

ev_case.z : IIFEj:exp. [I1Es:exp. IIE5:exp — exp. IIV:exp.
eval By z — eval E; V — eval (case By E5 E3) V.

The IT construct was introduced to express the dependency between the first argu-
ment and the type of the fifth argument. This means, for example, that we would
expect

Fov  evcasezzz (Ax:exp. x) z
reval zz — eval zz — eval (case z z (Az:exp. x)) z

to be derivable. We have instantiated E; with z, Es with z, E3 with (Az:exp. )
and V with z. Thus the typing rule

I's M:1lz:A. B 'k N:A
', M N :[N/z|]B

app

emerges. In this rule we can see that the type (and not just the value) of an
application of a function M to an argument N may depend on N. This is the
reason why Ilx:A. B is called a dependent function type. For different reasons it is
also sometimes referred to as the dependent product. The rule for A-abstraction and
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the other rules do not change significantly.

Y(e)=A Ixz)=A

——con —var

I'kc: A I'kz: A
I'k A:type I'Ne:Ak M : B

lam
'k M\z:A. M :1Ixz:A. B

The prior rules for functions of simple type are still valid, with the restriction that
2 may not occur free in B in the rule lam”. This restriction is necessary, since it is
now possible for z to occur in B because objects (including variables) can appear
inside types.

I'k A:type I'Ne:Ax M: B
lam”
'k MX:A.M:A— B
'k M:A— B 'k N:A "
app
I's M N:B

The type system as given so far has a certain redundancy and is also no longer
syntax-directed. That is, there are two rules for A-abstraction (lam and lam”) and
application. It is convenient to eliminate this redundancy by allowing A — B as a
notation for ITx:A. B whenever x does not occur in B. It is easy to see that under
this convention, the rules lam” and app” are valid rules of inference, but are no
longer necessary since any of their instances are also instances of lam and app.

The rules for valid signatures, contexts, and kinds are straightforward and left
as Exercise 3.10. They are a special case of the rules for full LF given in Section 3.8.

One rule which is still missing is the rule of type conversion. Type conversion
introduces a major complication into the type system and is difficult to motivate
and illustrate with the example as we have developed it so far. We take a brief
excursion and introduce another example to illustrate the necessity for the type
conversion rule. Consider a potential application of dependent types in functional
programming, where we would like to index the type of vectors of integers by the
length of the vector. That is, vector is a type family, indexed by integers.

int 1 type
plus :int —int — int
vector : int — type

Furthermore, assume we can assign the following type to the function which con-
catenates two vectors:

concat : IIn:int. IIm:int. vector n — vector m — vector (plus n m).
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Then we would obtain the typings

concat 32 (1,2,3) (4,5) : vector (plus 3 2)
(1,2,3,4,5) : vector 5.

But since the first expression presumably evaluates to the second, we would expect
(1,2,3,4,5) to have type vector (plus 3 2), or the first expression to have type
vector b—otherwise the language would not preserve types under evaluation.

This example illustrates two points. The first is that adding dependent types
to functional languages almost invariably leads to an undecidable type-checking
problem, since with the approach above one could easily encode arbitrary arithmetic
equations. The second is that we need to allow conversion between equivalent types.
In the example above, vector (plus 3 2) = vector 5. Thus we need a notion of
definitional equality and add the rule of type conversion to the system we have
considered so far.

'k M: A I'k A= B:type
'k M:B

conv

It is necessary to check the validity of B in the premise, since we have followed
the standard technique of formulating definitional equality as an untyped judgment,
and a valid type may be convertible to an invalid type. As hinted earlier, the notion
of definitional equality that is most useful for our purposes is based on (- and 7-
conversion. We postpone the full definition until the need for these conversions is
better motivated from the example.

3.6 Representing Evaluations

We summarize the signature for evaluations as we have developed it so far, taking
advantage of type families and dependent types.

eval :exp — exp — type
ev_z : evalzz
ev.s : IIE:exp. IIV:exp. eval EV — eval (s E) (s V)

ev_case.z : IIFEj:exp. [I1Es:exp. IIE5:exp — exp. IIV:exp.
eval By z — eval E; V — eval (case By E2 E5) V

The representation function on derivations using these rules is defined induc-
tively on the structure of the derivation.

r A

ev_z = ev.z
Z >z
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r !
D
e v = evslelTy' ™D
—  evs
se<—sv
r il
Dy Do
el “—z €y — U

€v_case_z

(casee; of z= ez | s = e3) > v

= evcasez e; 'Tex! (Aziexp. Tes™) "o "Dy TDyT

The rules dealing with pairs are straightforward and introduce no new repre-
sentation techniques. We leave them as Exercise 3.4. Next we consider the rule for
evaluating a Mini-ML expression formed with lam. For this rule we will examine
more closely why, for example, F5 in the ev_case_z rule was assumed to be of type
exp — exp.

ev_lam
lamz. e — lam z. e

Recall that the representation function employs the idea of higher-order abstract
syntax:
Mlam z. e = lam (Az:exp. Te™).

An incorrect attempt at a direct representation of the inference rule above would
be

ev_lam : IIE:exp. eval (lam (Az:exp. E)) (lam (Az:exp. E)).
The problem with this formulation is that, because of the variable naming hygiene

of the framework, we cannot instantiate E with an object that contains x free. That
is, for example,

ev_lam
lam z. x — lam z. z

could not be represented by (ev_lam z) since its type would be

[z/E]eval (lam (Az:exp. E)) (lam (Az:exp. E))
eval (lam (Az’:exp. z)) (lam (Az':exp. z))

eval (lam (Az:exp. x)) (lam (Az:exp. z))

eval "lam z. 7' "lam z. ™

[N
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for some new variable z’. Instead, we have to bundle the scope of the bound variable
with its binder into a function from exp to exp, the type of the argument to lam.

ev_lam : IIE:exp — exp. eval (lam E) (lam E).

Now the evaluation of the identity function above would be correctly represented
by (ev_lam (Az:exp. )) which has type

[(Az:exp. x)/FEleval (lam E) (lam E)
= eval (lam (Az:exp. x)) (lam (Az:exp. z)).

To summarize this case, we have

r q
ev_lam = ev_lam (Az:exp. "e).

lamz. e — lam z. e

Yet another new technique is introduced in the representation of the rule which
deals with applying a function formed by lam to an argument.

e; — lam . €] €g < Vg [vy/x]€] — v
ev_app

€1 €2 — v

As in the previous example, €] must be represented with its binder as a function
from exp to exp. But how do we represent [vy/z]e}? Compositionality (Lemma 3.5)
tell us that
"va/aley T = [Tva /)"y

The right-hand side is §-convertible to (Ax:exp. "€} ™) Twy . Note that the function
part of this application, (Az:exp. "€} ™) will be an argument to the constant repre-
senting the rule, and we can thus directly apply it to the argument representing vs.
These considerations lead to the declaration

ev_app : IIEj:exp. [1E;:exp. ILE] :exp — exp. IV3:exp. IV :exp.
eval E (lam EY})
— eval By V5
—eval (B] V2)V
— eval (app E1 Eq) V

where
r !
Dy Do D3
e1 < lam z. €} €9 < Vs [v2/x]€] — v
ev_app
€1 €y — v

= ev_app "e1 'Tex ! (Aziexp. Tef ) T T TD 1 TDyV TD3 .
1
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Consider the evaluation of the Mini-ML expression (lam z. z) z:

ev_lam ev_z ev_z

lam z. x — lam z. z Z—Z Z—Z

ev_app

(lamz. z)z < z

Note that the third premise is a deduction of [z/z]z < z which is z — z. The
whole deduction is represented by the LF object

ev_app (lam (Az:exp. x)) z (Az:exp. x) z z
(ev_lam (Az:exp. x))
ev_z
ev_z.

But why is this well-typed? The crucial question arises with the last argument to
ev_app. By substitution into the type of ev_app we find that the last argument is
required to have type (eval ((Ax:exp. z) z) z), while the actual argument, ev_z, has
type eval z z. The rule of type conversion allows us to move from one type to the
other provided they are definitionally equal. Thus our notion of definitional equality
must include (-conversion in order to allow the representation technique whereby
object-level substitution is represented by meta-level (-reduction.

In the seminal paper on LF [HHP93], definitional equality was based only on
[B-reduction, due to technical problems in proving the decidability of the system
including n-conversion. The disadvantage of the system with only (-reduction is
that not every object is convertible to a canonical form using only S-conversion (see
the counterexample on page 44). This property holds once 7-conversion is added.
The decidability of the system with both Sn-conversion has since been proven using
four different techniques [Sal90, Coq91, Geu92, HP0O].

The remaining rules of the operational semantics of Mini-ML follow the pattern
of the previous rules.

€1 <> s V) [v]/z]es — v
ev_case.s

(casee;of z=ex | sz =e3) v

ev_cases : IIEj:exp. [IEs:exp. [IE3:exp — exp. IV :exp. IIV :exp.
eval By (s V{) — eval (B3 V{) V — eval (case Ey E2 E5) V

er — v [v1/x]es — v

- ev_letv
letval x = e; iney — v

ev_letv : IIFj:exp. IIFs:exp — exp. IIV;:exp. IIV:exp.
eval By Vi — eval (B2 V1) V — eval (letv Ey E3) V
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[e1/x]ea — v

- ev_letn
let name z = e; in ey

ev_letn : TIIEj:exp. [TF;:exp — exp. IIV:exp.
eval (B3 E1) V — eval (letn Ey E3) V

For the fixpoint construct, we have to substitute a compound expression and
not just a variable.

[fix x. e/x]e = v

ev_fix
fixz. e —wv

evfix : IIE:exp — exp. IIV:exp.
eval (E (fix E)) V — eval (fix E) V

Again we are taking advantage of compositionality in the form
Tlfix z. e/z]e” = [fix z. e/z]"e = (Az:exp. Te) Tfix z. .

The succession of representation theorems follows the pattern of Section 3.3.
Note that we postulate that e and v be closed, that is, do not contain any free
variables. We state this explicitly, because according to the earlier inference rules,
there is no requirement that lam z. e be closed in the ev_lam rule. However, we
would like to restrict attention to closed expressions e, since they are the only
ones which will be well-typed in the empty context within the Mini-ML typing
discipline. The generalization of the canonical form judgment to LF in the presence
of dependent types is given in Section 3.9.

Lemma 3.7 Let e and v be closed Mini-ML expressions, and D a derivation of
e — v. Then
Fov "D freval Te T

Proof: The proof proceeds by induction on the structure of D. We show only one
case—the others are similar and simpler.

D, D, D3
e1 — lam z. €] €2 <> Vo [ve/x]e] — v
Case: D = ev_app. Then
€1 €y — v

TD7 = ev_app Te; ' Tey” ()\m:exp. re/l—\) Ty 1 Ty Ty T Dy Dy
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By the adequacy of the representation of expressions (Theorem 3.6), "e; ™,
Teo ™, Mg, and v are canonical of type exp. Furthermore, "¢ 7 is canonical

of type exp and one application of the carrow rule yields

x:exp Fyy "€l 1 exp
carrow,

Fov Az:exp. Te] 7 fh exp — exp
that is, A\z:exp. e} is canonical of type exp — exp.
By the induction hypothesis on D;, we have
Fsv D1 fheval Te; ' Tlam z. €)™
and hence by the definition of the representation function
bov D1 freval Tey 7 (lam (Az:exp. "€} 7))
Furthermore, by induction hypothesis on Ds,

v Dot eval Teg T Tup
Recalling the declaration of ev_app,

evaapp : IIFEj:exp. [IEs:exp. ILE] :exp — exp. IIVa:exp. IIV:exp.
eval E (lam EY)
— eval By V5
—eval (B} Vo)V
— eval (app E1 Eq) V,

we conclude that
ev_app Te; ' Tex ' (Amiexp. "€} ) Twy Tu TDy 7 TDy
seval (\z:exp. "€} ) Tva ") Tv T — eval (app Te1 ' Tea ) Tw .

The type here is not in canonical form, since (Az:exp. "e] ™) is applied to Tva .
With the rule of type conversion we now obtain

ev_app "e; " Tea T (Axiexp. Tel ) Tu  Tu TD T MDY
seval ([Twe/x]"e]™) Tv — eval (app Te1 7 Tex ) T

where [Tvy7/x]|7e] 7 is a valid object of type exp. The application of the ob-
ject above to "D3 7 (which yields "D7) can be seen as type-correct, since the
induction hypothesis on D3 yields

by D3 1 eval Mua/xle) " v,
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and from compositionality (Lemma 3.5) we know that
lua/zley T = [Tva 7 a]"ey

Furthermore, D is canonical, since it is atomic and all the arguments to ev_app
are in canonical form.

O

Lemma 3.8 For any LF objects E, V', and M such that by E } exp, bsyv V I} exp
and by M 1y eval E V', there exist unique Mini-ML expressions e and v and a
deduction D :: e — v such that "e'=FE, "v'=V and "D = M.

Proof: The proof is by structural induction on the derivation of F5y M f eval EV
(see Exercise 3.12). ]

A compositionality property does not arise here in the same way as it arose
for expressions since evaluations are closed. However, as we know from the use of
Lemma 2.4 in the proof of type preservation (Theorem 2.5), a substitution lemma
for Mini-ML typing derivations plays an important role. We will return to this in
Section ?7?. As before, we summarize the correctness of the representation into an
adequacy theorem. It follows directly from Lemmas 3.7 and 3.8.

Theorem 3.9 (Adequacy) There is a bijection between deductions of e — v for
closed Mini-ML expressions e and v and canonical LF objects M such that

v M freval Tel "o

As a second example for the representation of deductions we consider the judg-
ment e Value, defined in Section 2.4. Again, the judgment is represented as a type
family, value, indexed by the representation of the expression e. That is,

value : exp — type

Objects of type value "e™ then represent deductions, and inference rules are encoded
as constructors for objects of such types.

val_z : value z

val_s : IIE:exp. value E — value (s E)

val_pair : IIFEj:exp. IIEq:exp. value Eq — value Eo — value (pair Eq E3)
val_lam : IIE:exp — exp. value (lam E)

In the last rule, the scope of the binder lam is represented as a function from
expressions to expressions. We refer to the signature above (including the signature
E representing Mini-ML expressions) as V. We omit the obvious definition of the
representation function on value deductions. The adequacy theorem only refers to
its existence implicitly.
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Theorem 3.10 (Adequacy) For closed expressions e there is a bijection between
deductions P :: e Value and canonical LF objects M such that =, M ) value "e is
derivable.

Proof: See Exercise 3.13. ]

3.7 Meta-Theory via Higher-Level Judgments

So far we have completed two of the tasks we set out to accomplish in this chapter:
the representation of abstract syntax and the representation of deductive systems
in a logical framework. This corresponds to the specification of a language and its
semantics. The third task now before us is the representation of the meta-theory of
the language, that is, proofs of properties of the language and its semantics.

This representation of meta-theory should naturally fit within the framework we
have laid out so far. It should furthermore reflect the structure of the informal proof
as directly as possible. We are thus looking for a formal language and methodology
for expressing a given proof, and not for a system or environment for finding such a
proof. Once such a methodology has been developed it can also be helpful in proof
search, but we would like to emphasize that this is a secondary consideration. In
order to design a proof representation we must take stock of the proof techniques
we have seen so far. By far the most pervasive is structural induction. Structural
induction is applied in various forms: we have used induction over the structure of
expressions, and induction over the structure of deductions. Within proofs of the
latter kind we have also frequent cause to appeal to inversion, that is, from the
form of a derivable judgment we make statements about which inference rule must
have been applied to infer it. Of course, as is typical in mathematics, we break
down a proof into a succession of lemmas leading up to a main theorem. A kind of
lemma which arises frequently when dealing with deductive systems is a substitution
lemma.

We first consider the issue of structural induction and its representation in the
framework. At first glance, this seems to require support for logical reasoning, that
is, we need quantifiers and logical connectives to express a meta-theorem, and log-
ical axioms and inference rules to prove it. Our framework does not support this
directly—we would either have to extend it very significantly or encode the logic
we are attempting to model just like any other deductive system. Both of these
approaches have some problems. The first does not mesh well with the idea of
higher-order abstract syntax, basically because the types (such as the type exp of
Mini-ML expressions) are not inductively defined in the usual sense. The problem
arises from the negative occurrences of exp in the type of case, lam, let, and fix.
Similar problems arise when encoding deductive systems employing parametric and
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hypothetical judgments such as the Mini-ML typing judgment. The second ap-
proach, that is, to first define a logical system and then reason within it, incurs a
tremendous overhead in additional machinery to be developed. Furthermore, the
connection between the direct representations given in the previous sections of this
chapter and this indirect method is problematic.

Thus we are looking for a more direct way to exploit the expressive power of the
framework we have developed so far. We will use Theorem 2.1 (value soundness for
Mini-ML) and its proof as a motivating example. Recall that the theorem states
that whenever e < v is derivable, then v Value is also derivable. The proof proceeds
by an induction on the structure of the derivation of e < wv.

A first useful observation is that the proof is constructive in the sense that
it implicitly contains a method for constructing a deduction P of the judgment
v Value, given a deduction D of e — wv. This is an example of the relation-
ship between constructive proofs and programs considered further in Sections 77
through ??. Could we exploit the converse, that is, in what sense might the
function f for constructing P from D represent a proof of the theorem? Such a
function f, if it were expressible in the framework, would presumably have type
IIE:exp. [IV:exp. eval E V' — value V. If it were guaranteed that a total function
of this type existed, our meta-theorem would be verified. Unfortunately, such a
function is not realizable within the logical framework, since it would have to be
defined by a form of recursion on an object of type eval £ V. Attempting to ex-
tend the framework in a straightforward way to encompass such function definitions
invalidates our approach to abstract syntax and hypothetical judgments.

But we have one further possibility: why not represent the connection between
D ::e— vand P ::v Value as a judgment (defined by inference rules) rather than a
function? This technique is well-known from logic programming, where predicates
(defined via Horn clauses) rather than functions give rise to computation. A related
operational interpretation for LF signatures (which properly generalize sets of Horn
clauses) forms the basis for the Elf programming language discussed in Chapter ?7.
To restate the idea: we represent the essence of the proof of value soundness as
a judgment relating deductions D :: e — v and P :: v Value. Judgments relating
deductions are not uncommon in the meta-theory of logic. An important example is
the judgment that a natural deduction reduces to another natural deduction, which
we will discuss in Section ?7.

In order to illustrate this approach, we quote various cases in the proof of value
soundness and try to extract the inference rules for the judgment we motivated
above. We write the judgment as

D . P
e—v v Value

and read it as “D reduces to P.” Following this analysis, we give its representation
in LF. Recall that the proof is by induction over the structure of the deduction
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D:e— .

Case: D = ev_z. Then v = z is a value by the rule val_z.

Z“— Z

This gives rise to the axiom

VS_Z

evz — —valz
Z—Z z Value

Case:

Dy
€1 — U1
D=———evs.
Sey — SV

The induction hypothesis on D; yields a deduction of v1 Value. Using the
inference rule val_s we conclude that s v1 Value.

This case in the proof is represented by the following inference rule.

Dy P1
—
e1 < U1 vy, Value
VS_S

Dl Pl

€1 — U1 vy Value
- evs — — vals

Se;p —Suvp s v1 Value

Here, the appeal to the induction hypothesis on D; has been represented in the
premise, where we have to establish that D; reduces to P;.

Case:

Ds Do
€1 “— 2 €2 — v
D= ev_case_z.
(caseeiof z=ex | sz =e3) = v

Then the induction hypothesis applied to D2 yields a deduction of v Value,
which is what we needed to show in this case.
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In this case, the appeal to the induction hypothesis immediately yields the cor-
rect deduction; no further inference is necessary.

Do Po
=
€3 v v Value
vs_case_z
Dy Do
el —Z €y — v ,P2

€v_case_z -

(caseerof z=ex | sz =€3) > v v Value
Case:
Dl Dg
er = s vy [v]/T]es — v
D= ev_case.s.

(caseeiof z=ex | sz =e3) v

Then the induction hypothesis applied to D3 yields a deduction of v Value,
which is what we needed to show in this case.

This is like the previous case.

Dy P
[v]/z]es — v v Value
vs_case.s
D, Dy
€1 <> s ] [v]/z]es — v Py

€v_Ccase_s -

(casee; of z = €3 | sz = e3) = v v Value

If D ends in ev_pair we reason similar to cases above.
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Case:

D/
e < (v1,v2)

D=———¢vfst.
fst e — v

P’ must end in an application of the val_pair rule, that is,

P1 P2
) vy Value vy Value
P = val_pair
(v1,v2) Value

needed to show.

Then the induction hypothesis applied to D’ yields a deduction P’ of the
judgment (v1,v2) Value. By examining the inference rules we can see that

for some P; and Ps. Hence v1 Value must be derivable, which is what we
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In this case we also have to deal with an application of inversion in the informal
proof, analyzing the possible inference rules in the last step of the derivation P’ ::
(v1,v2) Value. The only possibility is val_pair. In the representation of this case as
an inference rule for the reduction judgment, we require that the right-hand side of

the premise end in this inference rule.

P1 Po
D vy, Value vy Value

val_pair
€ — <’Ul7’02> <’L)1,’L)2> Value

D
e — <’Ul, 'U2> Pl
- eV_fSt -
fst e — v v1 Value

The remaining cases are similar to the ones shown above and left as an exercise
(see Exercise 3.8). While our representation technique should be clear from the
example, it also appears to be extremely unwieldy. The explicit definition of the
reduction judgment given above is fortunately only a crutch in order to explain the
LF signature which follows below. In practice we do not make this intermediate form
explicit, but directly express the proof of a meta-theorem as an LF signature. Such
signatures may seem very cumbersome, but the type reconstruction phase of the
Elf implementation allows very concise signature specifications that are internally

expanded into the form shown below.
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The representation techniques given so far suggest that we represent the judg-
ment

D P
e<— v v Value

as a type family indexed by the representation of the deductions D and P, that is,
vs : eval EV — value V — type

Once again we need to resolve the status of the free variables £ and V in order
to achieve (in general) a decidable type reconstruction problem. Before, we used
the dependent function type constructor II to turn them into explicit arguments to
object level constants. Here, we need to index the type family vs explicitly by E
and V', both of type exp. Thus we need to extend the language for kinds (which
classify type families) to admit dependencies and allow the declaration

vs : IIE:exp. [IV:exp. eval EV — value V — type.

The necessary generalization of the system from Section 3.5 is given in Section 3.8.
The main change is a refinement of the language for kinds by admitting dependen-
cies, quite analogous to the previous refinement of the language of types when we
generalized the simply-typed fragment of Section 3.1.

We now consider the representation of some of the rules of the judgment D — P
as LF objects. The axiom

VS_Z

ev.z —
Z—Z z Value

val_z

is represented as
vsz : vszzev_zvalz
The instantiation of the type family vs is valid, since ev_z : eval z z and val_z : value z.

The second rule we considered arose from the case where the evaluation ended
in the rule for successor.

Dy P1
=
e1 — U1 vy Value
VS_S

Dl Pl

€1 — U1 vy Value
- evs — — vals

Sel < s s v1 Value

Recall the declarations for ev_s and val_s.
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ev.ss @ IIE:exp. IIV:exp. eval EV — eval (s E) (s V)
vals : IIE:exp.value E — value (s E)

The declaration corresponding to vs_s:

vs.s @ ITE;:exp. IIV;:exp.
IID;:eval E; V;. I1P;:value V3.
vs E1 Vi D1 P1 — vs (s Eq) (s V1) (evs By Vi Dy) (vals Vi Py).

We consider one final example, where inversion was employed in the informal
proof.

Py Py
D vy, Value vy Value
= val_pair
e < (v1,v2) (v1,v2) Value
vs_fst
D/
e <= (v1,va) P,
————evfst = Val
fst e — vy v1 Value
We recall the types for the inference rule encodings involved here:
val_pair : IIE:exp.IIEs:exp. value E; — value Ey — value (pair Eq E3)

ev_fst : ITE:exp. [IV;:exp. I1Vs:exp.
eval E (pair V1 V2) — eval (fst E) V4

The rule above can then be represented as

vs_fst : TIIE;:exp. IIV;:exp. IIV;:exp.
I1D":eval E (pair Vi Vo). I1P;:value V;. I1P;:value V5.
vs E (pair Vi Va) D’ (val_pair V4 Vo Py Py)
—vs (fst E) Vi (evfst EV; Vo D) Py

What have we achieved with this representation of the proof of value soundness
in LF? The first observation is the obvious one, namely a representation theorem
relating this signature to the judgment D = P. Let P be the signature containing
the declaration for expressions, evaluations, value deductions, and the declarations
above encoding the reduction judgment via the type family vs.

Theorem 3.11 (Adequacy) For closed expressions e and v, there is a composi-
tional bijection between deductions of

D N P
e<— v v Value

and canonical LF objects M such that
b M ffvsTel Ty TDT TP

1s derivable.
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This representation theorem is somewhat unsatisfactory, since the connection
between the informal proof of value soundness and the LF signature remains un-
stated and unproven. It is difficult to make this relationship precise, since the
informal proof is not given as a mathematical object. But we can claim and prove
a stronger version of the value soundness theorem in which this connection is more
explicit.

Theorem 3.12 (Explicit Value Soundness) For any two expressions e and v and
deduction D :: e — v there exists a deduction P :: v Value such that

D N P
e<— v v Value

1s derivable.

Proof: By a straightfoward induction on the structure of D :: e < v (see Exer-
cise 3.14). O

Coupled with the proofs of the various representation theorems for expressions
and deductions this establishes a formal connection between value soundness and the
vs type family. Yet the essence of the relationship between the informal proof and
its representation in LF lies in the connection between to the reduction judgment,
and this remains implicit. To appreciate this problem, consider the judgment

D triy P
e<— v v Value

which is defined via a single axiom

vs_triv.
e<— v v Value

By value soundness and the uniqueness of the deduction of v Value for a given v,
D = P is derivable iff D Z& P is derivable, but one would hardly claim that
DY p represents some informal proof of value soundness.

Ideally, we would like to establish some decidable, formal notion similar to the
validity of LF objects which would let us check that the type family vs indeed
represents some proof of value soundness. Such a notion can be given in the form of
schema-checking which guarantees that a type family such as vs inductively defines
a total function from its first three arguments to its fourth argument. A discussion
of schema-checking [RP96, Sch00] is beyond the scope of these notes. Some material
may also be found in the documentation which accompanies the implementation of

Elf in the Twelf system [PS99].!

Hupdate on final revision]
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3.8 The Full LF Type Theory

The levels of kinds and types in the system from Section 3.5 were given as

Kinds K :=u:= type| A1 — =4, > K
Types A = aMp...M,| A — Az |x:4;. A

We now make two changes: the first is a generalization in that we allow dependent
kinds ITz:A. K. The kind of the form A — K is then a special case of the new
construct where x does not occur in K. The second change is to eliminate the
multiple argument instantiation of type families. This means we generalize to a
level of families, among which we distinguish the types as families of kind “type.”

Kinds K = type|llz:A. K
Families A = a|AM|Ix:A;. Ay
Objects M = c|z|iz:A. M| M M,
Signatures X = -|X,a:K |X%,cA
Contexts r == - |I'z:A

This system differs only minimally from the one given by Harper, Honsell, and
Plotkin in [HHP93]. They also allow families to be formed by explicit abstraction,
that is, Az:A4;. As is a legal family. These do not occur in normal forms and we
have thus chosen to omit them from our system. As mentioned previously, it also
differs in that we allow 8 and m-conversion between objects as the basis for our
notion of definitional equality, while in [HHP93] only S-conversion is considered.
The judgments take a slightly different form than in Section 3.5, in that we now
need to introduce a judgment to explicitly classify families.

'k A K A is a valid family of kind K
'EM:A M is a valid object of type A
I'k K : kind K is a valid kind

F X Sig 3 is a valid signature

KT Ctx T is a valid context

I'sM=N:A M is definitionally equal to N at type A
' A=B: K A is definitionally equal to B at kind K
I'k K =K' :kind kind K is definitionally equal to K’

These judgments are defined via the following inference rules.
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Y(a) = K

I'ka: K

I's A:1llz:B. K I'sM:B
' AM:[M/x)]K

I'k A: type I'z:Ak B : type
'k Hz:A. B : type

famcon

famapp

fampi

Y(e)=A Iz)=A
—— objcon ——— objvar
I'kc: A I'kz: A

I'k A:type I'Ne:Ak M : B

'k A\z:A. M :1Ixz:A. B
I's M:1lz:A. B 'k N:A
', M N :[N/z|]B
'k M:A I'k A= B:type
'sM:B

objlam

objapp

typcnv

—— kndtyp
I' ks, type : kind

I'k A: type I'z:Ak K : kind

kndpi
' Iz:A. K : kind
'k A: K I'k K =K' kind
kndcnv
'k A: K’
K T Ctz 'k A:type )
ctxemp ctxobj

K - Ctz kI z:A Ctx
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— sigemp

F - Sig

FX Sig . K : kind
FX,a: K Sig

F X Sig K A : type
FX,c: A Sig

sigfam

sigobj

For definitional equality, we have several classes of rules. The first rules intro-
duces [B-conversion.

I'k A:type INe:Ak M: B 'k N:A
'k (A\x:A. M) N =[N/z]M : [N/x]B

beta

We verify the validity of the objects and types involved in order to guarantee that
I''s, M =N : AimpliessI' 5, M : Aand I' 5, N : A. The second rule is
extensionality: two objects of function type are equal, if they are equal on an
arbitrary argument x.

I'k A:type I'N'eAsx Mx=Nzxz:B

ext
'k M=N:1Iz:A. B
This rule is equivalent to 7-conversion
I's M :1Iz:A. B
ta*.

e
'k (A\:A. M z) =M :1lz:A. B

where 7 is restricted to the case the x is not free in M. The second class of rules
specifies that = is an equivalence, satisfying reflexivity, symmetry, and transitivity
at each level. We only show the rules for objects; the others are obvious analogues.

T'hM:A ) Tk N=M:A
———— objrefl ———— objsym
'k M=M:A 'k M=N:A

Ik M=0:A4A 'O=N:A

objtrans

'k M=N:A
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Finally we require rules to ensure that = is a congruence, that is, conversion can be
applied to subterms. Technically, we use the notion of a simultaneous congruence
that allows simultaneous conversion in all subterms of a given term. We only show
the congruence rules at the levels of objects.

YX(e)=A Iz)=A
———— cngobjcon ——————— cngobjvar
I'kc=c:A I'kz=z:A4

Fl—lelezﬂm:Ag.Al FFEMQENQZAQ
I |_>: Ml M2 = N1 N2 : [MQ/J?]Al
Ik A= A: type I A” = A : type IxAx M=N:B

' Ae:A' M =X x:A”. N :llz:A. B

cngobjapp

cngobjlam

In addition we also need type and kind conversion rules for the same reason they
are needed in the typing judgments (see Exercise 3.15). Some important properties
of the LF type theory are stated at the end of next section.

3.9 Canonical Forms in LF

The notion of a canonical form, which is central to the representation theorems
for LF encodings, is somewhat more complicated in full LF than in the simply
typed fragment given in Section 3.1. In particular, we need to introduce auxil-
iary judgments for canonical types. At the same time we replace the rules with
an indeterminate number of premises by using another auxiliary judgment which
establishes that an object is atomic, that is, of the form = M; ... M, or ¢ My ... M,,
and its arguments My, ..., M, are again canonical. An analogous judgment exists
at the level of families. Thus we arrive at the judgments

'k M QA M is canonical of type A
I'k Af type A is a canonical type

'kM]A M is atomic of type A
'k Al K A is atomic of kind K

These are defined by the following inference rules.
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'k A1 type I'Ne:Akx M B
'k Ax:A. M {y llz:A. B
I'k A type ' M|A
kM A
' M{Q A I'k A= B:type
'k M1{ B

canpi

canatm

cancnv

YX()=A Iz)=A
————atmcon ——  atmvar
I'kclA I'kzl]A
'k M| Iz:A B Tk Nf{A
Tls M N | [N/z]B
' MJA I'k A= B:type

'k M|B

atmapp

atmcnv

The conversion rules are included here for the same reason they are included
among the inference rules for valid types and terms.

Y(a) = K

I'kal K

'k Alllx:B. K 'k M1{B
'k AM | [M/x]K

kAl K 'k K=K':kind
'k Al K’

'k A1 type I'z:A bk B 1 type
'k Ix:A. B ) type

I'k A | type

'k A1 type

attcon

attapp

attcnv

cntpi

cntatm

We state, but do not prove a few critical properties of the LF type theory. Basic
versions of the results are due to Harper, Honsell, and Plotkin [HHP93], but their
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seminal paper does not treat extensionality or n-conversion. The theorem below is
a consequence of results in [HP00]. The proofs are quite intricate, because of the
mutually dependent nature of the levels of objects and types and are beyond the
scope of these notes.

Theorem 3.13 (Properties of LF) Assume ¥ is a valid signature, and I' a context
valid in 3. Then the following hold.

1. fTE M Athenl M: A.
2. IfT'kx A { type then ' k5, A : type.

3. For each object M such that I' ks, M : A there exists a unique object M’ such
that ' s M = M' : A and T i M’ { A. Moreover, M’ can be effectively
computed.

4. For each type A such that T’ ks, A : type there exists a unique type A’ such
that 'y A= A’ : type and T’ ks, A’ {} type. Moreover, A’ can be effectively
computed.

5. Type checking in the LF type theory is decidable.

3.10 Summary and Further Discussion

In this chapter we have developed a methodology for representing deductive systems
and their meta-theory within the LF Logical Framework. The LF type theory is a
refinement of the Church’s simply-typed A-calculus with dependent types.

The cornerstone of the methodology is a technique for representing the expres-
sions of a language, whereby object-language variables are represented by meta-
language variables. This leads to the notion of higher-order abstract syntax, since
now syntactic operators that bind variables must be represented by corresponding
binding operators in the meta-language. As a consequence, expressions that differ
only in the names of bound variables in the object language are a-convertible in the
meta-language. Furthermore, substitution can be modelled by (-reduction. These
relationships are expressed in the form of an adequacy theorem for the represen-
tation which postulates the existence of a compositional bijection between object
language expressions and meta-language objects of a given type. Ordinarily, the
representation of abstract syntax of a language does not involve dependent, but only
simple types. This means that the type of representations of expressions, which was
exp in the example used throughout this chapter, is a type constant and not an in-
dexed type family. We refer to such a constant as a family at level 0. We summarize
the methodology in the following table.
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| Object Language | Meta-Language |
Syntactic Category Level 0 Type Family
Expressions exp : type
Variable Variable
x x
Constructor Constant
(e1,e2) pair "e; ' Tey”, where
pair : exp — exp — exp
Binding Constructor Second-Order Constant
letval z = e; iney | letv"e; (Ax:exp. ez ), where
letv : exp — (exp — exp) — exp

An alternative approach, which we do not pursue here, is to use terms in a first-
order logic to represent Mini-ML expressions. For example, we may have a binary
function constant pair and a ternary function constant letv. We then define a pred-
icate exp which is true for expressions and false otherwise. This predicate is defined
via a set of axioms. For example, Ve;. Ves. exp(e1) A exp(er) D exp(pair(er, ez)).
Similarly, Va. Vey. Ves. var(z) A exp(e1) A exp(ez) D exp(letv(x, e, e2)), where var
is another predicate which is true on variables and false otherwise. Since first-
order logic is undecidable, we must then impose some restriction on the possible
definitions of predicates such as exp or var in order to guarantee decidable rep-
resentations. Under appropriate restrictions such predicates can then be seen to
define types. A commonly used class are reqular tree types. Membership of a term
in such a type can be decided by a finite tree automaton [GS84]. This approach
to representation and types is the one usually taken in logic programming which
has its roots in first-order logic. For a collection of papers describing this and re-
lated approaches see [Pfe92]. The principal disadvantage of regular tree types in a
first-order term language is that it does not admit representation techniques such
as higher-order abstract syntax. Its main advantage is that it naturally permits
subtypes. For example, we could easily define the set of Mini-ML values as a sub-
type of expressions, while the representation of values in LF requires an explicit
judgment. Thus, we do not capture in LF that it is decidable if an expression is a
value. Some initial work towards combining regular tree types and function types
is reported in [FP91] and [Pfe93].

The second representation technique translates judgments to types and deduc-
tions to objects. This is often summarized by the motto judgments-as-types. This
can be seen as a methodology for formalizing the semantics of a language, since
semantic judgments (such as evaluation or typing judgments) can be given conve-
niently and elegantly as deductive systems. The goal is now to reduce checking of
deductions to type-checking within the framework (which is decidable). For this
reduction to work correctly, the simply-typed framework which is sufficient for ab-
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stract syntax in most cases, needs to be refined by type families and dependent
function types. The index objects for type families typically are representations of
expressions, which means that they are typed at level 0. We refer to a family which
is indexed by objects typed at level 0 as a level 1 family. We can summarize this
representation technique in the following table.

| Object Language | Meta-Language |
Semantic Judgment Level 1 Type Family
e eval : exp — exp — type
Inference Rule Constant Declaration
evs:
€Y s [1E:exp. 1TV :exp.
se—sv eval EV
—eval sE) (sV)
Deduction Well-Typed Object
Deductive System Signature

An alternative to dependent types (which we do not pursue here) is to define
predicates in a higher-order logic which are true of valid deductions and false oth-
erwise. The type family eval, indexed by two expressions, then becomes a simple
type eval and we additionally require a predicate valid. The logics of higher-order
Horn clauses [NM98] and hereditary Harrop formulas [MNPS91] support this ap-
proach and the use of higher-order abstract syntax. They have been implemented
in the logic programming language AProlog [NM99] and the theorem prover Is-
abelle [Pau94]. The principal disadvantage of this approach is that checking the
validity of a deduction is reduced to theorem proving in the meta-logic. Thus de-
cidability is not guaranteed by the representation and we do not know of any work
to isolate decidable classes of higher-order predicates which would be analogous to
regular tree types. Hereditary Harrop formulas have a natural logic programming
interpretation, which permits them to be used as the basis for implementing pro-
grams related to judgments specified via deductive systems. For example, programs
for evaluation or type inference in Mini-ML can be easily and elegantly expressed
in AProlog. In Chapter 7?7 we show that a similar operational interpretation is also
possible for the LF type theory, leading to the language Elf.

The third question we considered was how to represent the proofs of properties
of deductive systems. The central idea was to formulate the functions implicit in a
constructive proof as a judgment relating deductions. For example, the proof that
evaluation returns a value proceeds by induction over the structure of the deduction
D :: e — v. This gives rise to a total function f, mapping each D :: e < v into a
deduction P :: v Value. We then represent this function as a judgment D — P
such that D = P is derivable if and only if f(D) = P. A strong adequacy theorem,
however, is not available, since the mathematical proof is informal, and not itself
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introduced as a mathematical object. The judgment between deductions is then
again represented in LF using the idea of judgments-as-types, although now the
index objects to the representing family represent deductions. We refer to a family
indexed by objects whose type is constructed from a level 1 family as a level 2 family.
The technique for representing proofs of theorems about deductive systems which
have been formalized in the previous step is summarized in the following table.

| Object Language | Meta-Language |

Informal Proof Level 2 Type Family
vs : I E:exp. IV :exp.

Value Soundness eval EV — value V — type

Case in Structural Induction Constant Declaration
Base Case for Axioms Constant of Atomic Type
Induction Step Constant of Functional Type

A decidable criterion on when a given type family represents a proof of a theorem
about a deductive system is subject of current research [RP96, Sch00].2

An alternative to this approach is to work in a stronger type theory with explicit
induction principles in which we can directly express induction arguments. This
approach is taken, for example, in the Calculus of Inductive Constructions [PM93]
which has been implemented in the Coq system [DFH'93]. The disadvantage of
this approach is that it does not coexist well with the techniques of higher-order
abstract syntax and judgments-as-types, since the resulting representation types
(for example, exp) are not inductively defined in the usual sense.

3.11 Exercises

Exercise 3.1 Consider a variant of the typing rules given in Section 3.1 where the
rules var, con, lam, tcon, and ectx are replaced by the following rules.

kT Ctz Y()=A kI Ctz Iz)=A
con’ var’
I'kc: A I'kz: A
INe:Ax M : B
lam’
' AXt:A.M:A— B
F X Sig Y(a) = type F X Sig
tcon’ ——ectx
K a: type K - Ctz

In what sense are these two systems equivalent? Formulate and carefully prove an
appropriate theorem.

2[update in final revision]
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Exercise 3.2 Prove Theorem 3.1.
Exercise 3.3 Prove Lemma 3.4

Exercise 3.4 Give LF representations of the natural semantics rules ev_pair, ev_fst,
and ev_snd (see Section 2.3).

Exercise 3.5 Reconsider the extension of the Mini-ML language by unit and dis-
joint sum type (see Exercise 2.7). Give LF representation for

1. the new expression constructors,
2. the new rules in the evaluation and value judgments, and

3. the new cases in the proof of value soundness.

Exercise 3.6 Give the LF representation of the evaluations in Exercise 2.3. You
may need to introduce some abbreviations in order to make it feasible to write it
down.

Exercise 3.7 Complete the definition of the representation function for evaluations
given in Section 3.6.

Exercise 3.8 Complete the definition of the judgment

D N P
e <— v v Value

given in Section 3.7 and give the LF encoding of the remaining inference rules.

Exercise 3.9 Formulate and prove a theorem which expresses that the rules lam”
and app” in Section 3.5 are no longer necessary, if A — B stands for Ilz:A. B for
some = which does not occur in B.

Exercise 3.10 State the rules for valid signatures, contexts, and kinds which were
omitted in Section 3.8.

Exercise 3.11 Formulate an adequacy theorem for the representation of evalua-
tions which is more general than Theorem 3.9 by allowing free variables in the
expressions e and v.

Exercise 3.12 Show the case for ev_app in the proof of Lemma 3.8.
Exercise 3.13 Prove Theorem 3.10.

Exercise 3.14 Prove Theorem 3.12.
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Exercise 3.15 Complete the rules defining the full LF type theory.
Exercise 3.16 Prove items 1 and 2 of Theorem 3.13.

Exercise 3.17 In Exercise 2.13 you were asked to write a function observe : nat —
nat that, given a lazy value of type nat returns the corresponding eager value if it
exists.

1. Carefully state and prove the correctness of your function observe.

2. Explain the meaning of your proof as a higher-level judgment (without nec-
essarily giving all details).
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